RESEARCH PAPER
Mineral nitrogen content in hydrographic areas of Poland depending on land use
 
More details
Hide details
1
New Chemical Synthesis Institute, Al. Tysiąclecia Państwa Polskiego 13 A, 24-110 Puławy, Poland
2
Department of Grassland Science and Landscaping, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
3
State School of Higher Education in Chełm, Pocztowa 54, 22-100 Chełm, Poland
4
Department of Agricultural and Environmental Chemistry, University of Life Sciences in Lublin, Akademicka 15, 20-033 Lublin, Poland
5
Institute of Agrophysics Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
Publish date: 2019-10-25
Acceptance date: 2019-05-07
 
Int. Agrophys. 2019, 33(4): 481–491
KEYWORDS
TOPICS
ABSTRACT
One unintended consequence of nitrogen use in agriculture is an increase in nitrate content in ground waters. Nitrogen content was evaluated in soil samples from specific hydrographic regions of Poland from the 60-90 cm soil layer, in which this nutrient is not readily available to the main root mass of crop plants and may negatively affect the environment. It was revealed that Nmin content in specific hydrographic regions was highly dependent on both the soil type and land use. Notably higher values of Nmin content were observed for organic soils. The highest N contents were found in the grasslands of the north-western area of Poland, while they were slightly lower in several regions of the main Odra River catchment and west of the Vistula River. The area with a high Nmin content in soils under maize was significantly larger compared to the grasslands area and primarily included the hydrographic regions of the Odra River basin in its south-western stretch, and of the Vistula River on its western and south-eastern side. With regard to the arable land under mixed cereals, the soils with the highest Nmin content in the non-root layer were predominantly located in hydrographic regions belonging to the main Odra catchment and to the catchment of the Vistula River in its upper course.
 
REFERENCES (49)
1.
Antonkiewicz J., Kołodziej B., Bielińska E.J., and Gleń-Karolczyk K., 2018. The use of macroelements from municipal sewage sludge by the Multiflora rose and the Virginia fanpetals. J. Ecol. Eng., 19(6), 1-13. https://doi.org/10.12911/22998....
 
2.
Bałuch-Małecka A., Benedycki S., and Benedycka Z., 2004. Post-harvest value of legume-grass mixtures (in Polish). Annales UMCS sec. E, Agricultura, 59(1), 449-455.
 
3.
Baranowski P., Krzyszczak J., Sławiński C., Hoffmann H., Kozyra J., Nieróbca A., Siwek K., and Gluza A., 2015. Multifractal analysis of meteorological time series to assess climate impacts. Climate Research, 65, 39-52. https://doi.org/10.3354/cr0132....
 
4.
Baryła R. and Kulik M., 2006. Content of nitrogen and basic mineral components in pasture sward in different years of its utilization (in Polish). Annales UMCS sec. E, Agricultura, 61, 157-164.
 
5.
Convention, 1992. The convention on the protection of the marine environment of the Baltic Sea Area, Dz. U. (J. Laws) of 2000, No. 28, item 346, the so-called Helsinki Convention.
 
6.
Coyne M.S. and Frye W.W., 2005. Nitrogen in soil. Cycle. Encyclopedia of Soil in the Environment. Hillel D., Elsevier Ltd., 13-21.
 
7.
De Notaris C., Rasmussen J., Sørensen P., and Olesen J.E., 2017. Nitrogen leaching: a crop rotation perspective on the effect of N surplus, field management and use of catch crops. Agric., Ecosys. Environ., 255, 1-11. https://doi.org/10.1016/j.agee....
 
8.
Directive, 91/676/CEE. The Council Directive of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources (91/676/EEC, OJ L375/1), the so-called Nitrate Directive.
 
9.
Directive, 2000/60/EC. The Directive of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy (2000/60/EC OJ L375/10), the so-called Water Framework Directive.
 
10.
Fotyma M., Kęsik K., and Pietruch Cz., 2010. Mineral nitrogen in soils of Poland as an indicator of plants nutrient requirements and soil water cleanness (in Polish). Nawozy i Nawożenie, 38, 4-83.
 
11.
Fronzek S., Pirttioja N., Carter T.R., Bindi M., Hoffmann H., Palosuo T., Ruiz-Ramos M., Tao F., Trnka M., Acutis M., Asseng S., Baranowski P., Basso B., Bodin P., Buis S., Cammarano D., Deligios P., Destain M.-F., Dumont B., Ewert F., Ferrise R., François L., Gaiser T., Hlavinka P., Jacquemin I., Kersebaum K.C., Kollas C., Krzyszczak J., Lorite I.J., Minet J., Minguez M.I., Montesino M., Moriondo M., Müller C., Nendel C., Öztürk I., Perego A., Rodríguez A., Ruane A.C., Ruget F., Sanna M., Semenov M.A., Sławiński C., Stratonovitch P., Supit I., Waha K., Wang E., Wu L., Zhao Z., and Rötter R.P., 2018. Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change. Agricultural Systems, 159, 209-224. https://doi.org/10.1016/j.agsy....
 
12.
García-Díaz A., Bienes R., Sastre B., Novara A., Gristina L., and Cerdà A., 2017. Nitrogen losses in vineyards under different types of soil groundcover. A field runoff simulator approach in central Spain. Agric., Ecosys. Environ., 236, 256-267. https://doi.org/10.1016/j.agee....
 
13.
Grover S.P., Butterly C.R., Wang X., and Tang C., 2017. The short-term effects of liming on organic carbon mineralisation in two acidic soils as affected by different rates and application depths of lime. Biol. Fertil. Soils, 53, 431-443.
 
14.
GUS, 2018. Statistical Yearbook of Agriculture. www.stat.gov.pl.
 
15.
Hatch D., Goulding K., and Murphy D., 2002. Nitrogen. – Agriculture, hydrology and water quality. CABI Publishing, 7-27.
 
16.
Hoffmann H., Baranowski P., Krzyszczak J., Zubik M., Sławiński C., Gaiser T., and Ewert F., 2017. Temporal properties of spatially aggregated meteorological time series. Agricultural and Forest Meteorology, 234-235, 247-257. https://doi.org/10.1016/j.agrf....
 
17.
Krzyszczak J., Baranowski P., Hoffmann H., Zubik M., and Sławiński C., 2017a. Analysis of Climate Dynamics Across a European Transect Using a Multifractal Method. In: Advances in Time Series Analysis and Forecasting: Selected Contributions from ITISE 2016. (Eds I. Rojas, H. Pomares, O. Valenzuela), Contributions to Statistics. Springer Int. Publishing, Cham, 103-116. https://doi.org/10.1007/978-3-....
 
18.
Krzyszczak J., Baranowski P., Zubik M., and Hoffmann H., 2017b. Temporal scale influence on multifractal properties of agro-meteorological time series. Agric. Forest Meteorol., 239, 223-235. https://doi.org/10.1016/j.agrf....
 
19.
Krzyszczak J., Baranowski P., Zubik M., Kazandjiev V., Georgieva V., Sławiński C., Siwek K., Kozyra J., and Nieróbca A., 2019. Multifractal characterization and comparison of meteorological time series from two climatic zones. Theoretical Appl. Climatology, 137, 1811-1824. https://doi.org/10.1007/s00704....
 
20.
Lamorski K., Pastuszka T., Krzyszczak J., Sławiński C., and Witkowska-Walczak B., 2013. Soil water dynamic modeling using the physical and support vector machine methods. Vadose Zone J., 12(4). https://doi.org/10.2136/vzj201....
 
21.
Lipiński W., 2010. The content of mineral nitrogen in arable soils of nitrate vulnerable zones (NVZ) (in Polish). Nawozy i Nawożenie, 38, 111-120.
 
22.
Marecik R., Biegańska-Marecik R., Cyplik P., Ławniczak Ł., and Chrzanowski Ł., 2013. Phytoremediation of industrial wastewater containing nitrates, nitroglycerin, and nitroglycol. Polish J. Environ. Stud., 22(3), 773-780.
 
23.
Murat M., Malinowska I., Gos M., and Krzyszczak J., 2018. Forecasting daily meteorological time series using ARIMA and regression models. Int. Agrophys., 32(2), 253-264. https://doi.org/10.1515/intag-....
 
24.
Powlson D.S., 1988. Measuring and minimising losses of fertilizer nitrogen in arable agriculture. In: Nitrogen Efficiency in Agricultural Soils, Elsevier Applied Science, 231-245.
 
25.
Pietrzak S., Urbaniak M., and Sapek B., 2006. The assessment of changes of the concentration and leaching of mineral forms of nitrogen in soil solutions (in Polish). Woda-Środowisko-Obszary Wiejskie, 6(17), 51-63.
 
26.
Pirttioja N., Carter T.R., Fronzek S., Bindi M., Hoffmann H., Palosuo T., Ruiz-Ramos M., Tao F., Trnka M., Acutis M., Asseng S., Baranowski P., Basso B., Bodin P., Buis S., Cammarano D., Deligios P., Destain M.-F., Dumont B., Ewert F., Ferrise R., François L., Gaiser T., Hlavinka P., Jacquemin I., Kersebaum K.C., Kollas C., Krzyszczak J., Lorite I.J., Minet J., Minguez M.I., Montesino M., Moriondo M., Müller C., Nendel C., Öztürk I., Perego A., Rodríguez A., Ruane A.C., Ruget F., Sanna M., Semenov M.A., Sławiński C., Stratonovitch P., Supit I., Waha K., Wang E., Wu L., Zhao Z., and Rötter R.P., 2015. Temperature and precipitation effects on wheat yield across a European transect: a crop model ensemble analysis using impact response surfaces. Climate Res., 65, 87-105. https://doi.org/10.3354/cr0132....
 
27.
PN-R-04028:1997 Agrochemical soil analysis - Determination of nitrate and ammonium ions in the mineral soils.
 
28.
Randal G.W. and Goss M.J., 2008. Nitrate losses to surface water through subsurface tile drainage. In: Nitrogen in the Environment: Sources, Problems, and Management (Eds J.L. Hatfield, R.F. Follett). Elsevier, 145-175.
 
29.
Regulation, 2002. Regulation of the Minister of Environment of 23 December 2002 concerning specific requirements to be met by action programs aimed at reducing runoff of nitrogen from agricultural sources, Dz.U. (J. Laws) of 2003, No. 4, item 44.
 
30.
Rodríguez A., Ruiz-Ramos M., Palosuo T., Carter T.R., Fronzek S., Lorite I.J., Ferrise R., Pirttioja N., Bindi M., Baranowski P., Buis S., Cammarano D., Chen Y., Dumont B., Ewert F., Gaiser T., Hlavinka P., Hoffmann H., Höhn J.G., Jurecka F., Kersebaum K.C., Krzyszczak J., Lana M., Mechiche-Alami A., Minet J., Montesino M., Nendel C., Porter J.R., Ruget F., Semenov M.A., Steinmetz Z., Stratonovitch P., Supit I., Tao F., Trnka M., de Wit A., and Rötter R.P., 2018. Implications of crop model ensemble size and composition for estimates of adaptation effects and agreement of recommendations. Agric. Forest Meteorol., 264, 351-362. https://doi.org/10.1016/j.agrf....
 
31.
Rousk J., Bååth E., Brookes P.C., Lauber C.L., Lozupone C., Caporaso J.G., Knight R., and Fierer N., 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J., 4, 1340-1351. http://dx.doi.org/10.1038/isme....
 
32.
Ruiz-Ramos M., Ferrise R., Rodríguez A., Lorite I.J., Bindi M., Carter T.R., Fronzek S., Palosuo T., Pirttioja N., Baranowski P., Buis S., Cammarano D., Chen Y., Dumont B., Ewert F., Gaiser T., Hlavinka P., Hoffmann H., Höhn J.G., Jurecka F., Kersebaum K.C., Krzyszczak J., Lana M., Mechiche-Alami A., Minet J., Montesino M., Nendel C., Porter J.R., Ruget F., Semenov M.A., Steinmetz Z., Stratonovitch P., Supit I., Tao F., Trnka M., de Wit A., and Rötter R.P., 2018. Adaptation response surfaces for managing wheat under perturbed climate and CO2 in a Mediterranean environment. Agricultural Systems, 159, 260-274. https://doi.org/10.1016/j.agsy....
 
33.
Sapek B., 2010. Nitrogen and phosphorus release from soil organic matter (in Polish). Woda-Środowisko-Obszary Wiejskie 10, 3(31), 229-256.
 
34.
Sapek B. and Kalińska D., 2004. Mineralization of soil organic nitrogen compounds in the light of long-term grassland experiments in IMUZ (in Polish). Woda-Środowisko-Obszary Wiejskie, 4, 1(10), 183-200.
 
35.
Sapek B. and Kalińska D., 2007. Mineralization of nitrogen and phosphorus compounds in the soil of agriculturally used and not used meadow (in Polish). Roczn. Glebozn., 58(1), 109-120.
 
36.
Sapek A. and Sapek B., 2007. Changes of the mineral nitrogen content in meadow soil on the background of differentiated nitrogen fertilization. Roczn. Glebozn., 58(1), 99-108.
 
37.
Soon Y.K., Clayton G.W., and Rice W.A., 2001. Tillage and previous crop effects on dynamics of nitrogen in a wheat – soil system. Agronomy J., 93, 842-849.
 
38.
Tian Q., Wang X., Wang D., Wang M., Liao C., Yang X., and Liu F., 2017. Decoupled linkage between soil carbon and nitrogen mineralization among soil depths in a subtropical mixed forest. Soil Biol. Biochem., 109, 135-144. https://doi.org/10.1016/j.soil....
 
39.
Tkaczyk P., Bednarek W., Dresler S., Krzyszczak J., Baranowski P., and Sławiński C., 2017. Relationship between assimilable-nutrient content and physicochemical properties of topsoil. Int. Agrophys., 31(4), 551-562. https://doi.org/10.1515/intag-....
 
40.
Tkaczyk P., Bednarek W., Dresler S., and Krzyszczak J., 2018a. The effect of some soil physicochemical properties and nitrogen fertilisation on winter wheat yield. Acta Agrophysica, 25(1), 107-116. https://doi.org/10.31545/aagr0....
 
41.
Tkaczyk P., Bednarek W., Dresler S., Krzyszczak J., Baranowski P., and Brodowska M.S., 2018b. Content of certain macro and microelements in orchard soils in relation to agronomic categories and reaction of these soils. J. Elementology, 23(4), 1361-1372. https://doi.org/10.5601/jelem.....
 
42.
Trehan S.P., 1996. Immobilisation of 15NH4+ in three soils by chemical and biological processes. Soil Biol. Biochem., 28(8), 1021-1027.
 
43.
Tremblay N., Scharpf H.Ch., Weier U., Laurence H., and Owen J., 2001. Nitrogen management in field vegetables. A guide to efficient fertilisation. Agric. Agri-Food Canada, 1-63.
 
44.
Walczak R.T., Witkowska-Walczak B., and Baranowski P., 1997. Soil structure parameters in models of crop growth and yield prediction. Physical submodels. Int. Agrophysics, 11, 111-127.
 
45.
Walkiewicz A., Brzezińska M., and Bieganowski A., 2018. Methanotrophs are favored under hypoxia in ammonium-fertilized soils. Biol. Fertil. Soils, 1-10. https://doi.org/10.1007/s00374....
 
46.
Wasilewski Z., 2009. Present status and directions of grassland management according to the requirements of the Common Agricultural Policy (in Polish). Woda-Środowisko-Obszary Wiejskie, 9, 2(26), 169-184.
 
47.
Wasilewski Z., 2010. Botanical composition and utility value of grazed sward in various habitats. Woda-Środowisko-Obszary Wiejskie, 10, 4, 265-280.
 
48.
Watros A., Lipińska H., Lipiński W., Tkaczyk P., Krzyszczak J., and Baranowski P., 2018. The impact of fertilization on the mineral nitrogen content in grassland and fodder crop soils (in Polish). Przemysł Chemiczny, 97(11), 1899-1905. https://doi.org/10.15199/62.20....
 
49.
Wnuk E., Walkiewicz A., and Bieganowski A., 2017. Methane oxidation in lead-contaminated mineral soils under different moisture levels. Environ. Sci. Poll. Res., 24(8-9), 1-9. https://doi.org/10.1007/s11356....
 
eISSN:2300-8725
ISSN:0236-8722