Application of Phytotoxkit in the quick assessment of ashes suitability as fertilizers in sorghum crops
More details
Hide details
Laboratory of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 92-237 Łódź, Poland
Department of Nursery and Seed Research, Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
Acceptance date: 2018-12-19
Publication date: 2019-02-20
Int. Agrophys. 2019, 33(2): 145-152
The aim of the research was to check the suitability of the Phytotoxkit test for quick assessment of usefulness of ashes from the combustion of sorghum and Jerusalem artichoke biomass as fertilizers in the cultivation of energy crops. Seeds of Sorghum bicolor L. were placed in the Phytotoxkit-plates, filled with Alonet Substrate KS (Latvia) and containing 0-100% of ash from burnt sorghum and Jerusalem artichoke plants. Based on daily measurements under greenhouse conditions, dynamics of seed germination, growth speed of shoots and roots, their fresh and dry biomass, index of chlorophyll content and parameters of gas exchange were evaluated. The results indicated that the modified Phytotoxkit biotest could be useful for quick assessment of ashes usefulness as fertilizers, it can be performed under greenhouse conditions regardless of the growing season and may be an alternative to laborious and long-term field trials. Biotest showed that the studied ashes, used in the proper dosages, improved seed germination, plant growth and biomass yield. These events were associated with increased index of chlorophyll content in leaves, net photosynthesis, stomatal conductivity, transpiration and proportionally decreased concentration of intercellular CO2. This indicate, that the studied ashes can be used as fertilizers in sorghum crops.
Badek B., Romanowska-Duda Z., Grzesik M., and van Dujin B., 2014. Rapid evaluation of germinability of primed china aster (Callistephus chinensis Ness.) seeds with physiological and biochemical markers. J. Hort. Res., 22(2), 5-18,
Badek B., Romanowska-Duda Z., Grzesik M., and Kuras A., 2016. Physiological markers for assessing germinability of Lycopersicon esculentum seeds primed by environment-friendly methods. Pol. J. Environ. Stud., 25(5),1-8,
Barbosa R., Dias D., Lapa N., Lopes H., and Mendes B., 2013. Chemical and ecotoxicological properties of size fractionated biomass ashes. Fuel Process Technol., 109, 124-132,
Ciesielczuk T., Kusza G., and Nemś A., 2011. Fertilization with biomass ashes as a source of trace elements for soils. Ochrona Środowiska i Zasobów Naturalnych, 49, 219-227.
D’Abrosca B., Fiorentino A., Izzo A., Cefarelli G., Pascarella M.T., Uzzo P., and Monaco P., 2008. Phytotoxicity evaluation of five pharmaceutical pollutants detected in surface water on germination and growth of cultivated and spontaneous plants. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng., 43(3), 285-94,
Górnik K. and Grzesik M., 2002. Effect of Asahi SL on China aster ‘Aleksandra’ seed yield, germination and some metabolic events. Acta Physiol. Plant., 24, 379-383,
Grzesik M., Romanowska-Duda Z., and Kalaji H.M., 2017a. Effectiveness of cyanobacteria and green algae in enhancing the photosynthetic performance and growth of willow (Salix viminalis L.) plants under limited synthetic fertilizers application. Photosynthetica, 55(3), 510-521,
Grzesik M., Górnik K., Janas R., Lewandowki M., Romanowska-Duda Z., and van Duijn B., 2017b. High efficiency stratification of apple cultivar Ligol seed dormancy by phytohormones, heat shock and pulsed radio frequency. J. Plant. Physiol., 21, 81-90,
Grzesik M. and Romanowska-Duda Z., 2005. Sensitivity and monitoring response of Lactuca sativa germinated seeds to the toxicity of heavy metal salts in drinking water. In: Nutrient Management in Wastewater Treatment Processes and Recycle Streams, 1305-1308.
Grzesik M., and Romanowska-Duda Z., 2014. Improvements in germination, growth, and metabolic activity of corn seedlings by grain conditioning and root application with cyanobacteria and microalgae. Pol. J. Environ. Stud., 23(4), 1147-1153.
Insam H., and Knapp B.A. 2011. Recycling of biomass ashes. Springer-Verlag Berlin Heidelberg,
Jagodzinski l.S., O’Donoghue M.T., Heffernan L.B., van Pelt F.N.A.M., O’Halloran J., and Jansen M.A.K., 2018. Wood ash residue causes a mixture of growth promotion and toxicity in Lemna minor. Sci. Total Environ., 625, 667-676,
Kalaji M.H., Schansker G., Ladle R.J., Golt-Sev V., Boska K., Allakhverdiev S., Brestic M., Bussotti F., Calatayud A., Dabrowski P., Elsheery N., Ferroni L., Guidi L., Hogewoning S.W., Jajoo A., Misra A.N., Nebauer S.G., Pancaldi S., Penella C., Poli D., Pollastrini M., Romanowska-Duda Z.B., Rutkowska B., Serodio J., Suresh K., Szulc W., Tambussi E., Yanniccari M., and Zivcak M., 2014. Frequently Asked Questions about chlorophyll fluorescence: practical issues. Photosynthesis Res., 122, 121-158,
Meller E. and Bilenda E., 2012. Effects of biomass ash on the physicochemical properties of light soil. Polityka energetyczna, 15(3), 287-292.
Naghipour A.S., Bashari A., Khajeddin S.J., Tahmasebi P., and Iravani M., 2016. Effects of smoke, ash and heat shock on seed germination of seven species from Central Zagros rangelands in the semi-arid region of Iran. African J. Range Forage Sci., 33(1), 67-71,
Ozuah Z., 2015. The technical and regulatory issues of using biomass ashes for land application / improvement. CEGEG015 Collaborative Environmental Systems Project May 14, 2010, DOI: 10.13140/2.1.3132.2402.
Piekarczyk M., Kotwica K., and Jaskulski J., 2011. Effect of barley, wheat and rape straw ash on the manganese and iron content in sandy soil. Fragm. Agron., 28(3), 91-93.
Puchalski C., Zapałowska A., and Hury G., 2017. The impact of sewage sludge and biomass ash fertilization on the yield, including biometric features and phyisiological parameters of plants of two jerusalem artichoke (Helianthus tuberosus L.) cultivars. Folia Pomer. Univ. Technol. Stetin., Agric., Aliment., Pisc., Zootech., 332(41)1, 37-52,
Radić S., Medunić G., Kuharić Ż., Roje V., Maldini K., Vujčić V., and Krivohlavek A., 2018. The effect of hazardous pollutants from coal combustion activity: Phytotoxicity assessment of aqueous soil extracts. Chemosphere, 199, 191-20,
Romanowska-Duda Z., Grzesik M., and Kalaji H.M., 2010. Phytotoxkit test in growth assessment of corn as an energy plant fertilized with sewage sludge. Environment Protection Engineering, 36(1), 73-81.
Romanowska-Duda Z.B., Grzesik M., Mankiewicz J., and Zalewski M., 2006. Bioindication of microcystins toxicity by germinating seeds, In: Environmental Toxicology (Eds A.G. Kungolos, C.A. Brebbia, C.P. Samaras, V. Popov), 243-252,
Römbke J. and Moser T., 2009. Ecotoxicological characterization of 12 incineration ashes using 6 laboratory tests. Waste Manag., 29, 2475-2482,
Santalla M., Omil B., Rodrigues-Soalleiro R., and Merino A., 2011. Efectiveness of wood ash containing charcoat as a fertilizer for a forest plantation in a temperate region. Plant Soil, 346, 63-78.
Schiemenz K. and Eichler-Löbermann B., 2010. Biomass ashes and their phosphorus fertilizing effect on different crops. Nutr. Cycl. Agroecosyst., 87, 471-482,
Stankowski S., Hury G., Gibczyńska M., and Jurgiel-Małecka G., 2014. Impact of lime, biomass ash and compost as well as preparation of EM applications on grain yield and yield components of wheat. Inżynieria Ekologiczna, 38, 17-25.
Yan Z., Wang W., Zhou J., Yi X., Zhang J., Wang X., and Liu Z., 2015. Screening of high phytotoxicity priority pollutants and their ecological risk assessment in China’s surface waters. Chemosphere, 128, 28-35,
Vassiliev S.V., Baxter D., Andersen L.K., and Vassileva C.G., 2010. An overview of the chemical composition of biomass. Fuel, 89, 913-933,
Vassiliev S.V., Baxter D., Andersen L.K., and Vassileva C.G., 2013. An overview of the composition and application of biomass ash. Fuel, 105, 19-39,
Journals System - logo
Scroll to top