RESEARCH PAPER
Effects of growing spring barley in organic agriculture as a result of constructed bacterial consortia and living mulch
More details
Hide details
1
Faculty of Engineering and Economics, Ignacy Mościcki University of Applied Sciences in Ciechanów, Narutowicza 9, 06-400 Ciechanów, Poland
2
Institute of Agriculture and Horticulture, Faculty of Agricultural Sciences, University of Siedlce, Bolesława Prusa 14, 08-110 Siedlce, Poland
3
Department of Soil Science and Microbiology, Poznań University of Life Sciences, Szydłowska 50, 60-665 Poznań, Poland
Final revision date: 2024-12-13
Acceptance date: 2024-12-19
Publication date: 2025-04-22
Corresponding author
Rafał Górski
Faculty of Engineering and Economics, Ignacy Mościcki University of Applied Sciences in Ciechanów, Narutowicza 9, 06 - 400, Ciechanów, Poland
Int. Agrophys. 2025, 39(3): 227-243
HIGHLIGHTS
- Application of bacterial consortia increases yield of spring barley
- Living mulch of a mixture had the most favorable effect on spring barley
- Bacterial consortia and living mulch increase biological index of soil fertility
KEYWORDS
TOPICS
ABSTRACT
The objective of the research conducted in a temperate climate was to determine the effect of bacterial consortia in spring barley cultivated with living mulch on grain yield, grain yield structure, and the biological index of soil fertility. The experiment was conducted with the following two factors: bacterial consortia: control, inoculation with Azospirillum lipoferum Br17 and Azotobacter chroococcum, inoculation with Pseudomonas fluorescens, Bacillus subtilis, and Bacillus amyloliquefaciens, and inoculation with Azotobacter chroococcum, Pseudomonas fluorescens, Bacillus subtilis, and Bacillus amyloliquefaciens; living mulch: control, red clover, red clover and Italian ryegrass, Italian ryegrass. The highest spring barley yield characterized by the best biometrical characteristics of the ear and 1000-grain weight was recorded in the treatment with Azotobacter chroococcum, Pseudomonas fluorescens, Bacillus subtilis, and Bacillus amyloliquefaciens. Of the tested living mulch, the most favorable effect on grain yield and its structure was associated with the living mulch of red clover mixed with Italian ryegrass. Organic growers should be encouraged to apply the technology of cultivating spring barley with a mixture of red clover and Italian ryegrass used as living mulch following an application of Azotobacter chroococcum, Pseudomonas fluorescens, Bacillus subtilis, and Bacillus amyloliquefaciens, as it contributes to the highest grain yield with good yield structure while preserving the highest soil fertility.
CONFLICT OF INTEREST
The authors do not declare any conflict of interest.
REFERENCES (100)
1.
Abdul Rahman, N., Larbi, A., Berdjour, A., Kizito, F., Hoeschle-Zeledon, I., 2022. Cowpea living mulch effect on soil quality and grain yield in smallholder maize-based cropping system of Northern Ghana. J. Soil Sci. Plant. Nutr. 22, 3925-3940.
https://doi.org/10.1007/s42729....
2.
Afshar, R.K., Chen, C., Eckhoff, J., Flynn, C., 2018. Impact of a living mulch cover crop on sugarbeet establishment, root yield and sucrose purity. Field Crops Res. 223, 150-154.
https://doi.org/10.1016/j.fcr.....
3.
Althaf, H.S., Srinivas, P., 2013. Evaluation of plant growth promoting traits by Pseudomonas and Azotobacter isolated from rhizotic soils of two selected agro forestry tree species of Godavari Belt Region, India. Asian J. Exp. Biol. Sci. 4, 431-436.
4.
Balota, E.L., Kanashiro, M., Colozzi Filho, A., Andrade, D.S., Dick, R.P., 2004. Soil enzyme activities under long-term tillage and crop rotation systems in subtropical agro-ecosystems. Braz. J. Microbiol. 35, 300-306.
https://doi.org/10.1590/S1517-....
5.
Belimov, A.A., Safronova, V.I., Sergeyeva, T.A., Egorova, T.N., Matveyeva, V.A., Tsyganov, V.E., et al., 2001. Characteri-zation of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can. J. Microbiol. 47, 642-652.
https://doi.org/10.1139/w01-06....
6.
Bergström, L., Kirchmann, H., 2004. Leaching and crop uptake of nitrogen from nitrogen-15-labeled green manures and ammonium nitrate. J. Environ. Qual. 33, 1786-1792.
https://doi.org/10.2134/jeq200....
7.
Bhaskar, A., Vijaya, V., Davies, W.P., Cannon, N.D., Conway, J.S., 2014. Weed manifestation under different tillage and legume under-sowing in organic wheat. Biol. Agric. Hortic. 30, 253-263.
https://doi.org/10.1080/014487....
8.
Bouremani, N., Cherif-Silini, H., Silini, A., Bouket, A.C., Luptakova, L., Alenezi, F.N., et al., 2023. Plant Growth-Promoting Rhizobacteria (PGPR): A Rampart against the adverse effects of drought stress. Water 15, 418.
https://doi.org/10.3390/w15030....
9.
Boyd, N.S., Gordon, R., Asiedu, S.K., Martin, R.C., 2001. The effects of living mulches on tuber yields of potato (Solanum tuberosum L.). Biol. Agric. Hortic. 18, 203-220.
https://doi.org/10.1080/014487....
10.
Chandra, D., Srivastava, R., Gupta, V.V., Franco, C.M., Paasricha, N., Saifi, S.K., et al., 2019. Field performance of bacterial inoculants to alleviate water stress effects in wheat (Triticum aestivum L.). Plant Soil 441, 261-281.
https://doi.org/10.1007/s11104....
11.
Cohen, A.C., Travaglia, C.N., Bottini, R., Piccoli P.N., 2009. Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botan. 87, 455-462.
https://doi.org/10.1139/B09-02....
12.
Cirilli, M., Bellincontro, A., De Santis, D., Botondi, R., Colao, M.C., Muleo, R., et al., 2012. Temperature and water loss affect ADH activity and gene expression in grape berry during postharvest dehydration. Food Chem. 132, 447-454.
https://doi.org/10.1016/j.food....
13.
Cougnon, M., Durand, J.L., Julier, B., Barre, P., Litrico, I., 2022. Using perennial plant varieties for use as living mulch for winter cereals. A review. Agron. Sustain. Dev. 42, 110.
https://doi.org/10.1007/s13593....
14.
Çağlar, Ö., Bulut, S., 2023. Determination of efficiency parameters of barley inoculated with phosphorous-solubilizing and nitrogen-fixing bacteria. Gesunde. Pflanz. 75, 1325-1333.
https://doi.org/10.1007/s10343....
15.
Çakmakçı, R., Haliloglu, K., Türkoğlu, A., Özkan, G., Kutlu, M., Varmazyari, A., et al., 2023. Effect of different plant growth-promoting rhizobacteria on biological soil properties, growth, yield and quality of oregano (Origanum onites L.). Agronomy 13, 2511.
https://doi.org/10.3390/agrono....
16.
Datt, N., Singh, D., 2019. Enzymes in relation to soil biological properties and sustainability. In: Meena, R., Kumar, S., Bohra, J., Jat, M. (Eds) Sustainable management of soil and environment. Springer, Singapore
https://doi.org/10.1007/978-98....
17.
Dawood, A., Majeed, A., Ul-Allah, S., Naveed, M., Farooq, S., Sarwar, N., et al., 2023. Combined application of organic and inorganic nitrogen and seed inoculation with rhizobacteria (Stenotrophomonas maltophilia FA-9) improved productivity, nitrogen use efficiency, and economic returns of pearl millet. Sustainability 15, 8248.
https://doi.org/10.3390/su1510....
18.
de Andrade, L.A., Santos, C.H.B., Frezarin, E.T., Sales, L.R., Rigobelo, E.C., 2023. Plant growth-promoting rhizobacteria for sustainable agricultural production. Microorganisms 11, 1088.
https://doi.org/10.3390/microo....
19.
de Aquino, G.S., Shahab, M., Moraes, L.A.C., Moreira, A., 2023. Plant growth promoting rhizobacteria increased canola yield and root system. J. Plant Nutr. 46, 1400-1406.
https://doi.org/10.1080/019041....
20.
Efthimiadou, A., Katsenios, N., Chanioti, S., Giannoglou, M., Djordjevic, N., Katsaros, G., 2020. Effect of foliar and soil application of plant growth promoting bacteria on growth, physiology, yield and seed quality of maize under Mediterranean conditions. Sci. Rep. 10, 1-11.
https://doi.org/10.1038/s41598....
21.
Elhawat, N., Kovács, A.B., Antal, G., Kurucz, E., Domokos-Szabolcsy, É., Fári, M.G., et al., 2024. Living mulch enhances soil enzyme activities, nitrogen pools and water retention in giant reed (Arundo donax L.) plantations. Sci. Rep. 14, 1704.
https://doi.org/10.1038/s41598....
22.
El-Shamy, M.A., Alshaal, T., Mohamed, H.H., Rady, A.M.S., Hafez, E.M., Alsohim, A.S., et al., 2022. Quinoa response to application of phosphogypsum and plant growth-promoting rhizobacteria under water stress associated with salt-affected soil. Plants 11, 872.
https://doi.org/10.3390/plants....
23.
European Commission, 2019. The European green deal. Communication from the commission to the European parliament, the European Council, the Council, the European economic and social committee and the committee of the regions COM(2019) 640. Brussels, Belgium.
25.
Gaspareto, R.N., Jalal, A., Ito, W.C.N., Oliveira, C.E.S., Garcia, C.M.P., Boleta, E.H.M., et al., 2023. Inoculation with plant growth-promoting bacteria and nitrogen doses improves wheat productivity and nitrogen use efficiency. Microorganisms 11, 1046.
https://doi.org/10.3390/microo....
26.
Gastal, F., Lemaire, G., 2002. N uptake and distribution in crops: an agronomical and ecophysiological perspective. J. Exp. Bot. 53, 789-799.
https://doi.org/10.1093/jexbot....
27.
Gaudin, A.C.M., Westra, S., Loucks, C.E.S., Janovicek, K., Martin, R.C., Deen, W., 2013. Improving resilience of northern field crop systems using inter-seeded red clover: A Review. Agronomy 3, 48-180.
https://doi.org/10.3390/agrono....
28.
Ghimire, K., Peta, V., Bücking, H., Caffe, M., 2023. Effect of non-native endophytic bacteria on oat (Avena sativa L.) growth. Int. J. Plant Biol. 14, 827-844.
https://doi.org/10.3390/ijpb14....
29.
Gil-Sotres, F., Trasar-Cepeda, C., Leiros, M.C., Seoane, S., 2005. Different approaches to evaluating soil quality using biochemical properties. Soil Biol. Biochem. 37, 877-887.
https://doi.org/10.1016/j.soil....
30.
Glick, B.R., 1995. Metabolic load and heterologous gene expression. Biotechnol. Adv. 13, 247-261.
31.
Hafez, E.M., Osman, H.S., Gowayed, S.M., Okasha, S.A., Omara, A.E.D., Sami, R., et al., 2021. Minimizing the adversely impacts of water deficit and soil salinity on maize growth and productivity in response to the application of plant growth-promoting Rhizobacteria and silica nanoparticles. Agronomy 11, 676.
https://doi.org/10.3390/agrono....
32.
Hashem, A., Tabassum, B., Fathi Abd Allah, E., 2019. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi. J. Biol. Sci. 26, 1291-1297.
https://doi.org/10.1016/j.sjbs....
33.
Herrera, J.M., Rubio, G., Häner, L.L., Delgado, J.A., Lucho-Constantino, C.A., Islas-Valdez, S., et al., 2016. Emerging and established technologies to increase nitrogen use efficiency of cereals. Agronomy 6, 25.
https://doi.org/10.3390/agrono....
34.
Hlisnikovský, L., Menšík, L., Kunzová, E., 2023. Development and the effect of weather and mineral fertilization on grain yield and stability of winter wheat following alfalfa-analysis of long-term field trial. Plants 12, 1392.
https://doi.org/10.3390/plants....
35.
Hupe, A., Schulz, H., Bruns, C., Haase, T., Heß, J., Joergensen, R.G., et al., 2018. Even Flow? Changes of carbon and nitrogen release from pea roots over time. Plant Soil 431, 143-157.
https://doi.org/10.1007/s11104....
36.
Jaskulska, I., Lemanowicz, J., Dębska, B., Jaskulski, D., Breza-Boruta, B., 2023. Changes in soil organic matter and biological parameters as a result of long-term strip-till cultivation. Agriculture 13, 2188.
https://doi.org/10.3390/agricu....
37.
Johnson, J.L., Temple, K.L., 1964. Some variables affecting the measurement of “catalase activity” in soil. Soil Sci. Soc. Am. J. 28, 207-209.
38.
Karimi, N., Goltapeh, E.M., Amini, J., Mehnaz, S., Zarea, M.J., 2020. Effect of Azospirillum zeae and seed priming with zinc manganese and auxin on browth and yield parameters of wheat under dryland farming. Agric. Res. 10, 44-55.
https://doi.org/10.1007/s40003....
39.
Känkänen, H., Eriksson, C., 2007. Effects of undersown crops on soil mineral N and grain yield of spring barley. Eur. J. Agron. 27, 25-34.
https://doi.org/10.1016/j.eja.....
40.
Khan, N., Bano, A., Ali, S., Babar, M.A., 2020. Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regul. 90, 189-203.
https://doi.org/10.1007/s10725....
41.
Khaliq, Z., Mukhtar, S., Zareen, M., Mehnaz, S., Malik, K.A., 2023. Comparison of application method of PGPR-based biofertilizer on wheat (Triticum aestivum L.) growth under climate control and field conditions. Pak. J. Bot. 56, 1-13.
https://doi.org/10.30848/PJB20...).
42.
Koryagin, Y.V., Kulikova, E.G., Koryagina, N.V., Trishina, V.A., 2022. Application of microbiological fertilizers in barley cultivation technology. IOP Conf. Ser: Earth Environ. Sci. 953.
https://doi.org/10.1088/1755-1....
43.
Kundan, R., Pant, G., Jadon, N., Agrawal, P.K., 2015. Plant growth promoting rhizobacteria: Mechanism and current prospective. J. Fertil. Pestic. 6, 1000155.
https://doi.org/10.4172/2471-2....
44.
Ladha, J.K., Peoples, M.B., Reddy, P.M., Biswas, J.C., Bennett, A., Jat, M.L., et al., 2022. Biological nitrogen fixation and prospects for ecological intensification in cereal-based cropping systems. Field Crops Res. 283, 108541.
https://doi.org/10.1016/j.fcr.....
45.
Levakova, O.V., 2022. Variability of the elements of spring barley yield structure depending on the hydrothermal conditions of vegetation. Agra. Nauka. Evro-Severo-Vostoka 23, 327-333.
https://doi.org/10.30766/2072-....
46.
Liu, J., Bergkvist, G., Ulén, B., 2015. Biomass production and phosphorus retention by catch crops on clayey soils in southern and central Sweden. Field Crops Res. 171, 130-137.
https://doi.org/10.1016/j.fcr.....
47.
Løes, A.K., Henriksen, T.M., Eltun, R., Sjursen, H., 2011. Repeated use of green-manure catch crops in organic cereal production-grain yields and nitrogen supply. Acta Agric. Scand. B Soil Plant Sci. 61, 164-175.
https://doi.org/10.1080/090647....
48.
Mackiewicz-Walec, E., Krzebietke, S.J., Borowik, A., Klasa, A., 2023. The effect of spring barley fertilization on the content of polycyclic aromatic hydrocarbons, microbial counts and enzymatic activity in soil. Int. J. Environ. Res. Public. Health. 20, 3796.
https://doi.org/10.3390/ijerph....
49.
Mandal, A., Patra, A.K., Singh, D., Swarup, A., Masto, R.E., 2007. Effect of long-term application of manure and fertilizer on biological and biochemical activities in soil during crop development stages. Bioresour. Technol. 98, 3585-3592.
https://doi.org/10.1016/j.bior....
50.
Malézieux, E., Crozat, Y., Dupraz, C., Laurans, M., Makowski, D., Ozier-Lafontaine, H., et al., 2009. Mixing plant species in cropping systems: concepts, tools and models: a review. Sustain. Agric. 329-353.
https://doi.org/10.1007/978-90....
51.
Martin, R.C., Greyson, P.R., Gordon, R., 1999. Competition between corn and a living mulch. Can. J. Plant Sci. 79, 579-586.
52.
Minuț, M., Diaconu, M., Roșca, M., Cozma, P., Bulgariu, L., Gavrilescu, M., 2023. Screening of Azotobacter, Bacillus and Pseudomonas species as plant growth-promoting bacteria. Processes 11, 80.
https://doi.org/10.3390/pr1101....
53.
Naseri, R., Azadi, S., Rahimi, M.J., Maleki, A., Mirzaei, A., 2013. Effects of inoculation with Azotobacter chroococcum and Pseudomonas putida on yield and some of the important agronomic traits in barley (Hordeum vulgar L.). Intl. J. Agron. Plant Prod. 4, 1602-1610.
54.
Newman, M.M., Hoilett, N., Lorenz, N., Dick, R.P., Liles, M.R., Ramsier, C., et al., 2016. Glyphosate effects on soil rhizosphere-associated bacterial communities. Sci. Total Environ. 543, 155-160.
https://doi.org/10.1016/j.scit....
55.
Niewiadomska, A., Majchrzak, L., Borowiak, K., Wolna-Maruwka, A., Waraczewska, Z., Budka, A., et al., 2020. The influence of tillage and cover cropping on soil microbial parameters and spring wheat physiology. Agronomy 10, 200.
https://doi.org/10.3390/agrono....
56.
Niewiadomska, A., Płaza, A., Wolna-Maruwka, A., Budka, A., Głuchowska, K., Rudziński, R., et al., 2023. Consortia of plant growth-promoting rhizobacteria and selected catch crops for increasing microbial activity in soil under spring barley grown as an organic farming system. App. Sci. 13, 5120.
https://doi.org/10.3390/app130....
57.
Nikkhah, H.R., Saberi, M.H., Mahlouji, M., 2010. Study of effective traits on grain yield of two and six row barley genotypes (Hordeum vulgare L.) under terminal drought stress conditions. Iran J. Field Crop Sci. 12, 170-184.
58.
Nyfeler, D., Huguenin-Elie, O., Suter, M., Frossard, E., Lüscher, A., 2011. Grass-legume mixtures can yield more nitrogen than legume pure stands due to mutual stimulation of nitrogen uptake from symbiotic and non-symbiotic sources. Agric. Ecosyst. Envir. 140, 155-163.
https://doi.org/10.1016/j.agee....
59.
Ortiz-Castro, R., Campos-García, J., López-Bucio, J., 2020. Pseudomonas putida and Pseudomonas fluorescens influence Arabidopsis root system architecture through an auxin response mediated by bioactive cyclodipeptides. J. Plant Growth. Regul. 39, 254-265.
https://doi.org/10.1007/s00344....
60.
Omara, P., Aula, L., Oyebiyi, F., Raun, W.R., 2019. World cereal nitrogen use efficiency trends: review and current knowledge. Agrosyst. Geosci. Environ. 2, 1-8.
https://doi.org/10.2134/age201....
61.
Qian, X., Gu, J., Pan, H.J., Zhang, K.Y., Sun, W., Wang, X.J., et al., 2015. Effects of living mulches on the soil nutrient contents, enzyme activities, and bacterial community diversities of apple orchard soils. Eur. J. Soil. Biol. 70, 23-30.
https://doi.org/10.1016/j.ejso....
62.
Petit, S., Cordeau, S., Chauvel, B., Bohan, D., Guillemin, J.P., Steinberga, C., 2018. Biodiversity-based options for arable weed management. A review. Agron. Sustain. Dev. 38, 48.
https://doi.org/10.1007/s13593....
63.
Płaza, A., Niewiadomska, A., Górski, R., Rudziński, R., Rzążewska, E., 2022. The effect of the nitrogen-fixing bacteria and companion red clover on the total protein content and yield of the grain of spring barley grown in a system of organic agriculture. Agronomy 12, 1522.
https://doi.org/10.3390/agrono....
64.
Płaza, A., Niewiadomska, A., Górski, R., Rosa, R., 2023. A combination of bacterial products and cover crops as an innovative method of weed control in organic spring barley. J. Plant Prot. Res. 63, 196-207.
https://doi.org/10.24425/jppr.....
65.
Poeplau, C., Don, A., 2015. Carbon sequestration in agricultural soils via cultivation of cover crops-A meta-analysis. Agric. Ecosyst. Environ. 200, 33-41.
https://doi.org/10.1016/j.agee....
66.
Príncipe, A., Fernandez, M., Torasso, M., Godino, A., Fischer, S., 2018. Effectiveness of tailocins produced by Pseudomonas fluorescens SF4c in controlling the bacterial-spot disease in tomatoes caused by Xanthomonas vesicatoria. Microbiol. Res. 212, 94-100.
https://doi.org/10.1016/j.micr....
67.
Poudel, P., Ødegaard, J., Mo, S.J., Andresen, R.K., Tandberg, H.A., Cottis, T., et al., 2022. Italian ryegrass, perennial ryegrass, and meadow fescue as undersown cover crops in spring wheat and barley: Results from a mixed methods study in Norway. Sustainability 14, 13055.
https://doi.org/10.3390/su1420....
68.
Radicetti, E., Baresel, J.P., El-Haddoury, E.J., Finckh, M.R., Mancinelli, R., Schmidt, J.H., et al., 2018. Wheat performance with subclover living mulch in different agro-environmental conditions depends on crop management. Eur. J. Agron. 94, 36-45.
https://doi.org/10.1016/j.eja.....
69.
Raheem, A., Shaposhnikov, A., Belimov, A.A., Dodd, I.C., Ali, B., 2018. Auxin production by rhizobacteria was associated with improved yield of wheat Triticum aestivum L under drought stress. Arch. Agron. Soil Sci., 64, 574-587.
https://doi.org/10.1080/036503....
70.
Rehman, M.M.U., Zhu, Y., Abrar, M., Khan, W., Wang, W., Iqbal, A., et al., 2022. Moisture-and period-dependent interactive effects of plant growth-promoting rhizobacteria and AM fungus on water use and yield formation in dryland wheat. Plant Soil 1-17.
https://doi.org/10.1007/s11104....
71.
Rashid, M.I., Mujawar, L.H., Shahzad, T., Almeelbi, T., Ismail, I.M., Oves, M., 2016. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol. Res. 183, 26-41.
https://doi.org/10.1016/j.micr....
72.
Reed, L., Glick, B.R., 2023. The recent use of plant-growth-promoting bacteria to promote the growth of agricultural food crops. Agriculture 13, 1089.
https://doi.org/10.3390/agricu....
73.
Rezaei, E., Miri, M.R., Shamsaee, H.R., Sepehri, M.H., Golzardi, F., 2017. Effect of cumulative application of nitrogen and PGPR on the various traits of barley (Hordeum vulgare L.) under drought stress conditions. J. Exp. Biol. Agric. 5, 302-308.
https://doi.org/10.18006/2017.....
74.
Santoyo, G., Guzman-Guzman, P., Parra-Cota, F.I., de los Santos-Villalobos, S., Orozco-Mosqueda, M.C., Glick, B.R., 2021. Plant growth stimulation by microbial consortia. Agronomy 11, 219.
https://doi.org/10.3390/agrono....
75.
Sati, D., Pande, V., Pandey, S.C., Samant, M., 2023. Recent advances in PGPR and molecular mechanisms involved in drought stress resistance. J. Soil Sci. Plant Nutr. 23, 106-124.
https://doi.org/10.1007/s42729....
76.
Shabaan, M., Asghar, H.N., Zahir, Z.A., Zhang, X., Sardar, M.F., Li, H., 2022. Salt-tolerant PGPR confer salt tolerance to maize through enhanced soil biological health, enzymatic activities, nutrient uptake and antioxidant defense. Front Microbiol. 13, 901865.
https://doi.org/10.3389/fmicb.....
77.
Shalaby, M., Elbagory, M., EL-Khateeb, N., Mehesen, A., EL-Sheshtawy, O., Elsakhawy, T., et al., 2023. Potential impacts of certain N2-fixing bacterial strains and mineral N doses for enhancing the growth and productivity of maize plants. Plants 12, 3830.
https://doi.org/10.3390/plants....
78.
Singer, J., Casler, M.D., Kohler, K.A., 2006. Wheat effect on frost-seeded red clover cultivar establishment and yield. Agron. J. 98, 265-269.
https://doi.org/10.2134/agronj....
79.
Singh, S., Madakemohekar, A.H., Prasad, L.C., Prasad, R., 2015. Genetic variability and correlation analysis of yield and its contributing traits in barley (Hordeum vulgare L.) for drought tolerance. Indian Res. J. Genet. Biotech. 7, 103-108.
80.
Sivasakthi, S., Usharani, G., Saranjar, P., 2014. Biocontrol potentiality of plant growth promoting bacteria (PGPR) - Pseudomonas fluorescens and Bacillus subtilis: A review. Afr. J. Agric. 9, 1265-1277.
https://doi.org/10.5897/AJAR20....
81.
Siwik-Ziomek, A., Szczepanek, M., 2019. Soil extracellular enzyme activities and uptake of N by oilseed rape depending on fertilization and seaweed biostimulant application. Agronomy 9, 480.
https://doi.org/10.3390/agrono....
82.
Sjursen, H., Brandsæter, L.O., Netland, J., 2012. Effects of repeated clover undersowing, green manure ley and weed harrowing on weeds and yields in organic cereals. Acta Agric. Scand. B. Soil Plant Sci. 62, 138-150.
https://doi.org/10.1080/090647....
83.
Slimani, A., Raklami, A., Oufdou, K., Meddich, A., 2023a. Isolation and characterization of PGPR and their potenzial for drought alleviation in barley plants. Gesunde. Pflan. 75, 377-391.
https://doi.org/10.1007/s10343....
84.
Slimani, A., Oufdou, K., Meddich, A., 2023b. Intercropping and co-inoculation of beneficial microorganisms of soils improve drought tolerance in barley and alfalfa plants. Gesunde. Pflan. 1-15.
https://doi.org/10.1007/s10343....
85.
Spiertz, J.H.J., 2009. Nitrogen, sustainable agriculture and food security: A Review. In: Sustainable Agriculture; Springer: Dordrecht, The Netherlands 635-651.
86.
Stefanic, F., Ellade, G., Chirnageanu, J., 1984. Researches concerning a biological index of soil fertility. In: Nemes M.P., Kiss S., Papacostea P., Stefanic C., Rusan M., (Eds) Proc. 5th Sympo. Soil Biology; Rom. Nat. Soc. Soil Sci., pp. 35-45.
87.
Sulewska, H., Niewiadomska, A., Ratajczak, K., Budka, A., Panasiewicz, K., Faligowska, A., et al., 2020. Changes in Pisum sativum L. plants and in soil as a result of application of selected foliar fertilizers and biostimulators. Agronomy 10, 1558.
https://doi.org/10.3390/agrono....
88.
Tahir, M., Mirza, M.S., Hameed, S., Dimitrov, M.R., Smidt, H., 2015. Cultivation-based and molecular assessment of bacterial diversity in the rhizosheath of wheat under different crop rotations. PLoS One 10, e0130030.
https://doi.org/10.1371/journa....
89.
Taheri, M., Astaraei, A., Lakzian, A., Emami, H., 2022. Application of biochar and sulfur-modified biochar in a saline-sodic and calcareous soil: Effects on soil water content, soil biochemical properties and millet (Panicum miliaceum) yield. Res. Square. 1-27.
https://doi.org/10.21203/rs.3.....
90.
Teasdale, J., Brandsæter, L., Calegari, A., Neto, F.S., 2007. Cover crops and weed management. In: M.K. Upadhyaya, R.E. Blackshaw, (Eds) Non-chemical weed management: principles, concepts and technology. CABI International: Oxfordshire, UK, pp. 49-64.
91.
Thalmann, A., 1968. Zur methodik der bestimmung der dehydrogenaseaktivit at im boden mittels Triphenytetrazoliumchlorid (TTC). Landwirtsch. Forsch. 21, 249-258.
92.
Wittwer, R.A., Dorn, B., Jossi, W., van der Heijden, M.G., 2017. Cover crops support ecological intensification of arable cropping systems. Sci. Rep. 7, 41911.
https://doi.org/10.1038/srep41....
93.
Verret, V., Gardarin, A., Pelzer, E., Médiène, S., Makowski, D., Valantin-Morison, M., 2017. Can legume companion plants control weeds without decreasing crop yield? A meta-analysis. Field Crops Res. 204, 158-168.
https://doi.org/10.1016/j.fcr.....
94.
Voronina, E., Sokolova, E., Tromenschleger, I., Mishukova, O., Hlistun, I., Miroshnik, M., et al., 2024. Properties of potential plant-growth-promoting bacteria and their effect on wheat growth promotion (Triticum aestivum) and soil characteristics. Microbiol. Res. 15, 20-32.
https://doi.org/10.3390/microb....
95.
Xu, X., Sharma, R., Tondelli, A., Russell, J., Comadran, J., Schnaithmann, F., et al., 2018. Genome-wide association analysis of grain yield-associated traits in a Pan-European barley cultivar collection. Plant Gen. 11, 170073.
https://doi.org/10.3835/plantg....
96.
Yousfi, S., Marín, J., Parra, L., Lloret, J., Mauri, P.V., 2021. A rhizogenic biostimulant effect on soil fertility and roots growth of turfgrass. Agronomy 11, 573.
https://doi.org/10.3390/agrono....
97.
Zandi, P., Schnug, E., 2022. Reactive oxygen species, antioxidant responses and implications from a microbial modulation perspective. Biology 11, 155.
https://doi.org/10.3390/biolog....
98.
Zaheer, M.S., 2019. Effect of plant growth promoting rhizobacteria (PGPR) and cytokinins on the growth and yield of wheat (Triticum aestivum L.) under drought. Islamia University, Bahawalpur.
100.
Zhang, M., Wang, Y., Chen, X., Xu, F., Ding, M., Ye, W., et al., 2021. Plasma membrane H+ -ATPase expression increases rice yield via simultaneous enhancement of nutrient uptake and photosynthesis. Nat. Commun. 12, 735.
https://doi.org/10.1038/s41467....