Estimation of evaporation and transpiration rates under varying water availability for improving crop management of soybeans using oxygen isotope ratios of pore water
More details
Hide details
Department of Water, Atmosphere and Environment, Institute of Soil Physics and Rural Water Management, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
Department of Water, Atmosphere and Environment, Institute of Meteorology and Climatology, University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180 Vienna, Austria
Gunther Carl Liebhard   

Department of Water, Atmosphere and Environment, Institute of Soil Physics and Rural Water Management, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
Final revision date: 2022-06-03
Acceptance date: 2022-06-08
Publication date: 2022-07-20
Int. Agrophys. 2022, 36(3): 181–195
  • ET partitioning combined with yield data allows evaluation of managing actions
  • SWC and meteorological conditions had comparable impact on E and T as canopy
  • A wet surface layer substantially raises the E rate even under closed canopy
  • Evaporation drops to almost zero at plant covered and desiccated soil surfaces
Knowledge of crop water requirements and the effects of management practices on the amounts of water used for crop transpiration and that lost through soil evaporation is essential for efficient agricultural water management. Therefore, this study investigated the temporal evolution of weekly evaporation and transpiration rates under varying soil water conditions in a conventionally managed soybean field by partitioning evapotranspiration based on a water and δ18O-stable isotope mass balance. The estimated rates were considered in combination with vertical soil water distribution, atmospheric demand (based on crop evapotranspiration), actual evapotranspiration, and the plant development stage. This allowed for the weekly rates to be compared to the current conditions resulting from dry periods, rain or irrigation events, and the extent of the canopy. The range of weekly transpiration/evapotranspiration, from blossom to maturation, was between 0.60 (±0.11) and 0.82 (±0.10). Within this range, transpiration/evapotranspiration shifted depending on the vertical soil water distribution and meteorological conditions. During dry soil surface periods, evaporation dropped to almost zero, whereas a wet surface layer substantially increased evaporation/evapotranspiration, even under a closed canopy. Under given conditions, the application of a few intense irrigations before the drying of the soil surface is recommended.
This work was supported by the European Union’s Horizon 2020 Research and Innovation Programme (Grant number 773903)(2018-2022).
The authors declare no conflict of interest.
Allen R.G., Pereira L.S., Raes D., and Smith M., 1998. Crop evapotranspiration - Guidelines for computing crop water requirements. (Irrigation and drainage, 56), Rome: FAO, ISBN: 92-5-104219-5.
Allen R.G., Walter I.A., Elliott R.L., Howell T.A., Itenfisu D., Jensen M.E., and Snyder R.L., 2005. The ASCE standardized reference evapotranspiration equation. Am. Soc.Civil Eng.,
Allison G.B., 1998. Stable isotopes in soil and water studies, In: hydrologie et géochimie isotopique, hydrology and isotope geochemistry (Eds C. Causse, F. Gasse). Éditions de l'Orstom, Paris, 23-38.
Ashley D.A., 1983. Soybean. In: crop-water relations (Eds I.D. Teare, M.M. Peet). Wiley, New York, 389-422.
Bai H. and Purcell L.C., 2018. Response of carbon isotope discrimination and oxygen isotope composition to mild drought in slow-and fast-wilting soybean genotypes. J. Crop Improv., 32, 239-253,
Bauer T. and Strauss P., 2014. A rule-based image analysis approach for calculating residues and vegetation cover under field conditions. Catena, 113, 363-369,
Briggs L.J. and Shantz H.L., 1913. The water requirement of plants. US Government Printing Office.
Brisson N., Itier B., L’Hotel J.C., and Lorendeau J.Y., 1998. Parameterisation of the Shuttleworth-Wallace model to estimate daily maximum transpiration for use in crop models. Ecol. Modell., 107, 159-169,
Bunce J., 2019. Consistent differences in field leaf water-use efficiency among soybean cultivars. Plants, 8, 123,
Clark I.D. and Fritz P., 2013. Environmental isotopes in hydrogeology. Boca Raton, Florida. CRC press,
De Pascale S., Dalla Costa L., Vallone S., Barbieri G., and Maggio A., 2011. Increasing water use efficiency in vegetable crop production: from plant to irrigation systems efficiency. Horttechnology, 21, 301-308,
Dubbert M. and Werner C., 2019. Water fluxes mediated by vegetation: emerging isotopic insights at the soil and atmosphere interfaces. New Phytol., 221, 1754-1763,
Ehleringer J.R. and Dawson T.E., 1992. Water uptake by plants: perspectives from stable isotope composition. Plant. Cell Environ., 15, 1073-1082,
Eitzinger J., Trnka M., Semerádová D., Thaler S., Svobodová E., Hlavinka P., Šiška B., Takáč J., Malatinská L., Nováková M., Dubrovský M., and Žalud Z., 2013. Regional climate change impacts on agricultural crop production in Central and Eastern Europe-hotspots, regional differences and common trends. J. Agric. Sci., 151, 787-812. doi:
Ellsworth P.Z. and Williams D.G., 2007. Hydrogen isotope fractionation during water uptake by woody xerophytes. Plant Soil, 291, 93-107,
Evett S.R., Schwartz R.C., Casanova J.J., and Heng L.K., 2012. Soil water sensing for water balance, ET and WUE. Agric. Water Manag., 104, 1-9,
Evett S.R., Schwartz R.C., Tolk J.A., and Howell T.A., 2009. Soil profile water content determination: Spatiotemporal variability of electromagnetic and neutron probe sensors in access tubes. Vadose Zo. J., 8, 926-941,
Eyre S.R., 2017. Vegetation and soils: a world picture. Routledge. Transaction Publishers, Rutgers University, New Jersey.
Fereres E. and Soriano M.A., 2006. Deficit irrigation for reducing agricultural water use. J. Exp. Bot., 58, 147-159,
Fischer R.A., 1979. Growth and water limitation to dryland wheat yield in Australia: A physiological framework. J. Aust. Inst. Agric. Sci., 45, 83-89.
Foken T., 2008. The energy balance closure problem: an overview. Ecol. Appl., 18, 1351-1367,
Foken T., Aubinet M., and Leuning R., 2012a. The eddy covariance method. In: Eddy covariance. springer atmospheric sciences (Eds M. Aubinet, T Vesala, D. Papale). Springer, Dordrecht, 1-19,
Foken T., Leuning R., Oncley S., Mauder M., and Aubinet M., 2012b. Corrections and data quality control. In: Eddy covariance. springer atmospheric sciences (Eds M. Aubinet, T Vesala, D. Papale). Springer, Dordrecht, 85-131,
Gonfiantini R., 1986. Environmental isotopes in lake studies. Handbook of environmental isotope geochemistry, The Terrestrial Environment, B, 113-168,
Gordon H.S., 1940. Thermocouple psychrometers and evaporation studies. Bull. Am. Meteorol. Soc., 21, 115-116.
Gröning M., Lutz H.O., Roller-Lutz Z., Kralik M., Gourcy L., and Pöltenstein L., 2012. A simple rain collector preventing water re-evaporation dedicated for δ18O and δ2H analysis of cumulative precipitation samples. J. Hydrol., 448, 195-200,
Hedley C.B., Knox J.W., Raine S.R., and Smith R., 2014. Water: Advanced irrigation technologies, Enc. Agric. Food Systems, 378-406,
Horita J. and Wesolowski D.J., 1994. Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature. Geochim. Cosmochim. Acta, 58, 3425-3437,
IAEA, 2020. WISER - Water Isotope System for data analysis visualization and Electronic Retrieval.
Jiao X.-C., Song X.-M., Zhang D.-L., Du Q.-J., and Li J.-M., 2019. Coordination between vapor pressure deficit and CO2 on the regulation of photosynthesis and productivity in greenhouse tomato production. Sci. Rep., 9, 1-10,
Jovanovic Z. and Stikic R., 2018. Partial root-zone drying technique: from water saving to the improvement of a fruit quality. Front. Sustain. Food Syst., 1, 3,
Kodešová R., Vlasakova M., Fer M., Tepla D., Jakšík O., Neuberger P., and Adamovský R., 2013. Thermal properties of representative soils of the Czech Republic. Soil Water Res., 8, 141-150,
Kool D., Agam N., Lazarovitch N., Heitman J.L., Sauer T.J., and Ben-Gal A., 2014. A review of approaches for evapotranspiration partitioning. Agric. For. Meteorol., 184, 56-70,
Kucera C.L., 1954. Some relationships of evaporation rate to vapor pressure deficit and low wind velocity. Ecology, 35, 71-75,
Lascano R.J., Van Bavel C.H.M., Hatfield J.L., and Upchurch D.R., 1987. Energy and water balance of a sparse crop: simulated and measured soil and crop evaporation. Soil Sci. Soc. Am. J., 51, 1113-1121,
Liebhard G., Klik A., Stumpp C., and Nolz R., 2022. Partitioning evapotranspiration using water stable isotopes and information from lysimeter experiments. Hydrol. Sci. J., 67(4), 646-661,
Liu F., Andersen M.N., Jacobsen S.-E., and Jensen C.R., 2005. Stomatal control and water use efficiency of soybean (Glycine max L. Merr.) during progressive soil drying. Environ. Exp. Bot., 54, 33-40,
Loiskandl W. and Nolz R., 2021. Requirements for sustainable irrigated agriculture. Agronomy, 11, 306,
Loveys B.R., Stoll M., and Davies W.J., 2004. Physiological approaches to enhance water use efficiency in agriculture: exploiting plant signalling in novel irrigation practice. In: Water use efficiency in plant biology (Ed. M. Bacon). Wiley-Blackwell, Oxford, 113-14.
Majoube M., 1971. Fractionnement en oxygene 18 et en deuterium entre l’eau et sa vapeur. J. Chim. Phys., 68, 1423-1436,
Masseroni D., Corbari C., and Mancini M., 2014. Limitations and improvements of the energy balance closure with reference to experimental data measured over a maize field. Atmósfera, 27, 335-352,
Meier U., 2018. Growth stages of mono- and dicotyledonous plants : BBCH Monograph, 2. Auflage. ed. Biologische Bundesanstalt für Land und Forstwirtschaft,
Molden D., Murray-Rust H., Sakthivadivel R., and Makin I., 2003. A water-productivity framework for understanding and action. In: Water productivity in agriculture: limits and opportunities for improvement (Eds J.W. Kijne R. Barker D. Molden). Wallingford, UK: CABI; Colombo, Sri Lanka: International Water Management Institute, 1-18. (Comprehensive Assessment of Water Management in Agriculture Ser. 1),
Moore C.J., 1986. Frequency response corrections for eddy correlation systems. Boundary-Layer Meteorol., 37, 17-35,
Nangia V., 2020. Water for food, water for life: The drylands challenge,
Neukum C., Morales Santos A.G., Ronelngar M., and Vassolo S., 2021. Modelling groundwater recharge, actual evaporation and transpiration in semi-arid sites of the Lake Chad Basin: The role of soil and vegetation on groundwater recharge. Hydrol. Earth Syst. Sci. Discuss., 1-27,
Paltineanu I.C. and Starr J.L., 1997. Real-time soil water dynamics using multisensor capacitance probes: Laboratory calibration. Soil Sci. Soc. Am. J., 61, 1576-1585,
Pan X., Liu Y., Fan X., and Gan G., 2017. Two energy balance closure approaches: applications and comparisons over an oasis-desert ecotone. J. Arid Land, 9, 51-64,
Rawson H.M., Begg J.E., and Woodward R.G., 1977. The effect of atmospheric humidity on photosynthesis, transpiration and water use efficiency of leaves of several plant species. Planta, 134, 5-10,
Ribas-Carbo M., Taylor N.L., Giles L., Busquets S., Finnegan P.M., Day D.A., Lambers H., Medrano H., Berry J.A., and Flexas J., 2005. Effects of water stress on respiration in soybean leaves. Plant Physiol., 139, 466-473,
Ritchie J.T. and Burnett E., 1971. Dryland evaporative flux in a subhumid climate: II. Plant influences 1. Agron. J., 63, 56-62,
Rothfuss Y., Quade M., Brüggemann N., Graf A., Vereecken H., and Dubbert M., 2021. Reviews and syntheses: Gaining insights into evapotranspiration partitioning with novel isotopic monitoring methods. Biogeosciences, 18, 3701-3732,
Ruggiero A., Punzo P., Landi S., Costa A., Van Oosten M.J., and Grillo S., 2017. Improving plant water use efficiency through molecular genetics. Horticulturae, 3, 31,
Sakuratani T., 1987. Studies on Evapotranspiration from Crops. J. Agric. Meteorol., 42, 309-317,
Sarkar D., Kar S.K., Chattopadhyay A., Rakshit A., Tripathi V.K., Dubey P.K., and Abhilash P.C., 2020. Low input sustainable agriculture: A viable climate-smart option for boosting food production in a warming world. Ecol. Indic., 115, 106412,
Sauer T.J., Singer J.W., Prueger J.H., DeSutter T.M., and Hatfield J.L., 2007. Radiation balance and evaporation partitioning in a narrow-row soybean canopy. Agric. For. Meteorol., 145, 206-214,
Scanlon T.M. and Kustas W.P., 2010. Partitioning carbon dioxide and water vapor fluxes using correlation analysis. Agric. For. Meteorol., 150, 89-99,
Scanlon T.M. and Sahu P., 2008. On the correlation structure of water vapor and carbon dioxide in the atmospheric surface layer: A basis for flux partitioning. Water Resour. Res., 44,
Schotanus P., Nieuwstadt F.T.M., and De Bruin H.A.R., 1983. Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes. Boundary-Layer Meteorol., 26, 81-93,
Scott R.L., Knowles J.F., Nelson J.A., Gentine P., Li X., Barron-Gafford G., Bryant R., and Biederman J.A., 2020. Water Availability impacts on evapotranspiration partitioning. Agric. For. Meteorol., 108251,
Sentek Pty Ltd, 2009. Diviner 2000 user guide version 1.5. Stepney, South Australia. 5069,
Seyfried M.S., Grant L.E., Du E., and Humes K., 2005. Dielectric loss and calibration of the Hydra Probe soil water sensor. Vadose Zo. J., 4, 1070-1079,
Shuttleworth W.J. and Wallace J.S., 1985. Evaporation from sparse crops-an energy combination theory. Q. J. R. Meteorol. Soc. 111, 839-855,
Šimůnek J., Šejna M., Van Genuchten M.T., Jacques D., Mallants D., Saito H., and Sakai M., 1998. HYDRUS-1D. simulating one-dimensional movement of water, heat, and multiple solutes in variably-saturated media, Version 2.
Šimůnek J., Van Genuchten M.T., and Šejna M., 2012. The HYDRUS software package for simulating the two-and three-dimensional movement of water, heat, and multiple solutes in variably-saturated porous media. Technical Manual, Version 2, 258.
Singer J.W., Heitman J.L., Hernandez-Ramirez G., Sauer T.J., Prueger J.H., and Hatfield J.L., 2010. Contrasting methods for estimating evapotranspiration in soybean. Agric. Water Manag., 98, 157-163,
Stevens, 2015. Comprehensive stevens hydra probe users manual, Rev. Portland,
Stroosnijder L., 1987. Soil evaporation: Test of a practical approach under semi-arid conditions. Netherlands J. Agric. Sci., 35, 417-426,
Strudley M.W., Green T.R., and Ascough II J.C., 2008. Tillage effects on soil hydraulic properties in space and time: State of the science. Soil Tillage Res., 99, 4-48,
Sutanto S.J., Wenninger J., Coenders-Gerrits A.M.J., and Uhlenbrook S., 2012. Partitioning of evaporation into transpiration, soil evaporation and interception: a comparison between isotope measurements and a HYDRUS-1D model. Hydrol. Earth Syst. Sci. 16, 2605-2616,
Tanner C.B. and Sinclair T.R., 1983. Efficient water use in crop production: research or re-search?, In: limitations to efficient water use in crop production (Eds H.M. Taylor W.R. Jordan, and T.R. Sinclair). Amer. Soc. Agronomy, Crop Sci. Soc. Amer., and Soil Sci. Soc. Amer., Madison, Wisconsin, 1-27,
UNESCO, 2020. The United Nations world water development report 2020: water and climate change, 978-92-3-100371-4.
von Hoyningen-Huene J., 1983. Die interzeption des Niederschlages in landwirtschaftlichen Pflanzenbeständen., p 1-53. In: Schriftenreihe deutscher Verband für Wasserwirtschaft und Kulturbau, Num 57, Hamburg Berlin. 1983.
Wassenaar L.I., Hendry M.J., Chostner V.L., and Lis G.P., 2008. High resolution pore water δ2H and δ18O measurements by H2O (liquid)- H2O (vapor) equilibration laser spectroscopy. Environ. Sci. Technol., 42, 9262-9267,
Webb E.K., Pearman G.I., and Leuning R., 1980. Correction of flux measurements for density effects due to heat and water vapour transfer. Q. J. R. Meteorol. Soc., 106, 85-100,
Welp L.R., Lee X., Kim K., Griffis T.J., Billmark K.A., and Baker J.M., 2008. δ18O of water vapour, evapotranspiration and the sites of leaf water evaporation in a soybean canopy. Plant, Cell Environ., 31, 1214-1228,
Wenninger J., Beza D.T., and Uhlenbrook S., 2010. Experimental investigations of water fluxes within the soil-vegetation-atmosphere system: Stable isotope mass-balance approach to partition evaporation and transpiration. Phys. Chem. Earth, Parts A/B/C, 35, 565-570,
Wu Y., Du T., Ding R., Tong L., Li S., and Wang L., 2017. Multiple methods to partition evapotranspiration in a maize field. J. Hydrometeorol., 18, 139-149,
Xiao W., Wei Z., and Wen X., 2018. Evapotranspiration partitioning at the ecosystem scale using the stable isotope method - A review. Agric. For. Meteorol., 263, 346-361,
Zhang D., Du Q., Zhang Z., Jiao X., Song X., and Li J., 2017. Vapour pressure deficit control in relation to water transport and water productivity in greenhouse tomato production during summer. Sci. Rep., 7, 43461,