Stress equation for a cantilever beam: a model of lodging resistance in field pea
Jamin A. Smitchger 1  
,   Norman Weeden 2  
,   Idil Akin 3  
,   Tom Warkentin 4  
More details
Hide details
Department of Crop and Soil Sciences, Washington State University, PO Box 646420, Pullman, WA, USA 99164-6420
Department of Plant Sciences & Plant Pathology, Montana State University, PO Box 173150 Bozeman, MT, USA 59717-3150
Civil and Environmental Engineering, Washington State University, PO Box 642910, Pullman, WA 99164
Plant Sciences, Crop Development Centre, University of Saskatchewan, 2C04-Agriculture Building, Saskatoon, SK, Canada S7N 5A8
Jamin A. Smitchger   

Crop and Soil Sciences, Washington State University, PO Box 646420, Johnson Hall Rm 235/233E, 99164, Pullman, United States
Final revision date: 2019-12-17
Acceptance date: 2020-02-19
Publication date: 2020-03-30
Int. Agrophys. 2020, 34(2): 213–222
Mechanically harvested crops must be erect (lodging resistant) to facilitate harvest. Stem lodging changes canopy structure, increases disease pressure, reduces yield, and reduces harvest efficiency in pea. A number of studies have examined the traits that cause lodging susceptibility, but the relative impact of each trait is difficult to determine. A great need exists in pea breeding to develop a working model to explain lodging resistance. This study used the flexure formula to predict the amount of lodging variation explained by some of the major traits. Datasets from pea indicate that the percent variation explained by this lodging model is ~58%, and this model can be used to predict the relative impact of an increase in load, height, stem diameter, stem wall thickness, or yield on lodging susceptibility. This study indicates that plant height is strongly correlated with lodging susceptibility, but stem diameter is positively correlated with lodging resistance. Stem wall thickness appears to have no major effect on lodging resistance, which has not been previously reported in pea. Any doubling in plant height would also double the amount of stem material, but stem stress is expected to increase fourfold. A doubling in stem diameter is expected to increase the amount of stem material by fourfold and decrease stem stress by eightfold. The results of this study indicate that plant breeders should focus on increasing basal stem diameter to increase lodging resistance.
ASTM International, 2019. American Society for Testing and Materials (ASTM) ASTM D790. Section 1.2. Accessed: 12/14/2019.,
Banniza S., Hashemi P., Warkentin T.D., Vandenberg A., and Davis A.R., 2005. The relationships among lodging, stem anatomy, degree of lignification, and resistance to mycosphaerella blight in field pea (Pisum sativum). Can. J. Botany, 83: 954-967.
Beeck C.P., Wroth J., and Cowling W.A., 2006. Genetic variation in stem strength in field pea (Pisum sativum L.) and its association with compressed stem thickness. Aust. J. Agric. Res., 57, 193-199.
Beeck C.P., Wroth J., and Cowling W.A., 2008a. Additive genetic variance for stem strength in field pea (Pisum sativum). Aust. J. Agric. Res., 59, 80-85.
Beeck C.P., Wroth J.M., Falk D.E., Khan T., and Cowling W.A., 2008b. Two cycles of recurrent selection lead to simultaneous improvement in black spot resistance and stem strength in field pea. Crop Sci., 48, 2235-2244.
Blake V., Birkett C.L., Matthews D.E., Hane D., Bradbury P., and Jannink J., 2015. The triticeae toolbox: combining phenotype and genotype data to advance small-grains breeding. The Plant Genome.
Chen H.F., Shan Z.H., Sha A.H., Wu B.D., Yang Z.L., Chen S.L., et al., 2011. Quantitative trait loci analysis of stem strength and related traits in soybean. Euphytica, 179: 485-497.
Chen H.F., Yang Z.L., Chen L.M., Zhang C.J., Yuan S.L., Zhang X.J., et al., 2017. Combining QTL and candidate gene analysis with phenotypic model to unravel the relationship between lodging and related traits in soybean. Mol. Breeding, 37: 14.
Elkoca E. and Kantar F., 2006. Response of pea (Pisum sativum L.) to mepiquat chloride under varying application doses and stages. J. Agron. Crop Sci., 192: 102-110.
Fulbright J., Wanner K., Bekkerman A., and Weaver D., 2017. Wheat Stem Sawfly Biology. MT201107AG. Montana State University Extension. Accessed: 8/2/2018.
Godoy J., Gizaw S., Chao S., Blake N., Carter A., Cuthbert R., Dubcovsky J., Hucl P., Kephart K., Pozniak C., Prasad P.V., Pumphrey M., and Talbert L., 2018. Genome-wide association study of agronomic traits in a spring-planted North American elite hard red spring wheat panel. Crop Sci., 58: 1838-1852.
Goldenberg J.B., 1965. Afila a new mutation in pea (Pisum sativum L.). Boletin Genetico, 1: 27-31.
Guo L., Yang S., and Jiao H., 2013. Behavior of thin-walled circular hollow section tubes subjected to bending. Thin-Walled Structures, 73: 281-289.
Hedden P., 2003. The genes of the green revolution. Trends in Genetics, 19: 5-9. doi:10.1016/s0168-9525(02)00009-4.
Inoue M., Gao Z.S., and Cai H.W., 2004. QTL analysis of lodging resistance and related traits in Italian ryegrass (Lolium multiflorum Lam.). Theor. Appl. Genet., 109: 1576-1585.
Jha A.B., Arganosa G., Tar’an B., Diederichsen A., and Warkentin T.D., 2013. Characterization of 169 diverse pea germplasm accessions for agronomic performance, Mycosphaerella blight resistance and nutritional profile. Genet. Resour. Crop Ev., 60: 747-761.
Jha A.B., Tar’an B., Stonehouse R., and Warkentin T.D., 2016. Identification of QTLs associated with improved resistance to ascochyta blight in an interspecific pea recombinant inbred line population. Crop Sci., 56: 2926-2939.
Kaatz D. and Gritton E.T., 1975. Yield and height response to anti lodging treatments in peas. Scientia Horticulturae (Amsterdam), 3: 359-365.
Klimek-Kopyra A., Głąb T., and Lorenc-Kozik A., 2015. Estimation of tendrils parameters depending on the sowing methods, in contrasting Pisum sativum L. varieties. Rom. Agric. Res., 32: 239-244.
Kof E.M., Oorzhak A.S., Vinogradova I.A., Kalibernaya Z.V., Krendeleva T.E., Kukarskikh G.P., et al., 2004. Leaf morphology, pigment complex, and productivity in wild-type and afila pea genotypes. Russ. J. Plant Physiol., 51: 449-454.
Kosev V. and Mikic A., 2012. Short communication. Assessing relationships between seed yield components in spring-sown field pea (Pisum sativum L.) cultivars in Bulgaria by correlation and path analysis. Span. J. Agric. Res., 10: 1075-1080.
McPhee K.E. and Muehlbauer F.J., 1999. Stem strength in the core collection of Pisum germplasm. Pisum Genetics, 31: 21-23.
Mendel, Gregor. 1866. Versuche über Plflanzenhybriden. Verhandlungen des naturforschenden Vereines in Brünn, Bd. IV für das Jahr 1865, Abhandlungen, 3-47.
Mikel M.A., 2013. Ancestry and characterization of US contemporary proprietary garden pea (Pisum sativum L. convar. medullare Alef.) germplasm. Genet. Resour. Crop Ev., 60: 2207-2217.
Murfet I.C. and Reid J.B., 1993. Developmental mutants in peas: Genetics, molecular biology and biotechnology by R. Casey and D.R. Davies, 165-216.
Niklas K., Spatz H.-C., and Vincent J., 2006. Plant biomechanics: An overview and prospectus. Am. J. Bot., 93: 1369-1378.
Rasdorsky W., 1929. Über die Baumechanik der Pflanzen (Teil I-III). Biologia generalis. Internationales Archiv für allgemeine Fragen der Lebensforschung, 5: 63-94.
Schouls J. and Langelaan J.G., 1994. Lodging and yield of dry peas (Pisum sativum L.) as influenced by various mixing ratios of a conventional and a semi-leafless cultivar. J. Agronomy and Crop Sci., 172: 207-214.
Schwendener S., 1874. Das mechanische Prinzip im anatomischen Bau der Monocotylen mit vergleichenden Ausblicken auf die u¨brigen Pflanzenklassen. Engelmann, Leipzig, Germany.
Shah A.N., Tanveer M., Rehman A.U., Anjum S.A., Iqbal J., and Ahmad R., 2017. Lodging stress in cereal-effects and management: an overview. Environ. Sci. Poll. Res., 24: 5222-5237.
Schulgasser K. and Witztum A., 1992. On the strength, stiffness and stability of tubular plant stems and leaves. J. Theor. Biol., 155: 497-515.
Singh A.K. and Srivastava C.P., 2015. Effect of plant types on grain yield and lodging resistance in pea (Pisum sativum L.). Indian J. Gen. Pl. Br., 75: 69-74.
Skubisz G., Kravtsova T.L., and VelikanovL.P., 2007. Analysis of the strength properties of pea s tems. Int. Agrophysics, 21, 189-197.
Smitchger J. and Weeden N., 2019. Quantitative trait loci controlling lodging resistance and other important agronomic traits in dry field peas. Crop Sci., 59, 1442-1456.
Spies J.M., Warkentin T., and Shirtliffe S.J., 2010. Basal branching in field pea cultivars and yield-density relationships. Can. J. Plant Sci., 90: 679-690.
Stelling D., 1989. Problems of breeding for improved standing ability in dried peas, Pisum sativum L. J. Agron. Crop Sci., 163: 21-32.
Stubbs C.J., Baban N.S., Robertson D.J., Alzube L., and Cook D.D., 2018. Bending stress in plant stems: Models and Assumptions. In: Plant Biomechanics (Eds A. Geitmann, J. Gril). Springer, Cham.
Swinhoe R., McCann M., Rameau C., Smith A., and Wang T., 2001. Reinforcing stem architecture in peas. Proc. 4th Eur. Conf. Grain Legumes: Towards a sustainable production of healthy food and novel products, 8-12 July, Cracow, Poland. European Association of Grain Legume Research, Executive Secretariat, Paris, 290-291.
Tar’an B., Warkentin T., Somers D.J., Miranda D., Vandenburg A., Blade S., et al., 2003. Quantitative trait loci for lodging resistance, plant height and partial resistance to mycosphaerella blight in field pea (Pisum sativum L.). Theor. Appl. Genet., 107: 1482-1491.
Wall D. and Townley-Smith L., 1996. Wild mustard (Sinapis arvensis) response to field pea (Pisum sativum) cultivar and seeding rate. Can J. Plant Sci., 76: 907-914.
Wang T.F., Gossen B.D., and Slinkard A.E., 2006. Lodging increases severity and impact of mycosphaerella blight on field pea. Can. J. Plant Sci., 86: 855-863.
Xue J., Zhao Y.S., Gou L., Shi Z.G., Yao M.N., and Zhang W.F., 2016. How high plant density of maize affects basal internode development and strength formation. Crop Sci., 56: 3295-3306.