
A b s t r a c t. The potential of electronic nose to distinguish of

wheat seeds was studied. The reproducibility and practicability of

electronic nose data was evaluated by repeating the analysis of

samples with a time difference of two months. The principle

components analysis and linear discriminant analysis were applied

to the generated patterns to distinguish the varieties of wheat seeds.

The results showed that they could distinguish the wheat varieties

properly. The stepwise discriminant analysis and a three-layer back-

propagation neural network were developed for pattern prediction

models. The results showed that both models could identify the

wheat varieties, the back-propagation neural network presented the

higher percent of correct classifications in comparison to stepwise

discriminant analysis. Moreover, gas chromatography mass spectro-

metry analysis of the headspaces of same samples confirmed that

electronic nose as a powerful tool is able to identify the wheat seeds.

K e y w o r d s: electronic nose, wheat seeds, identification, gas

chromatography mass spectrometry

INTRODUCTION

The usual methods for identification of wheat seeds are

seed protein electrophoresis, DNA molecular markers tech-

niques, morphological identification and field evaluation

(Li et al., 2006). In most cases, these methods are expensive

and time-consuming, have low reproducibility, both in their

commercial as well as in their technological implications.

Several attempts have been made recently to classify wheat

varieties using nondestructive methods such as machine

vision (Douik and Abdellaoui, 2008; Li et al., 2007), near

infrared spectrometer (Li et al., 2008) and thermal imaging

(Manickavasagan et al., 2010). Most of them used kernel

morphological features of a single grain for variety identi-

fication. It would be highly desirable to have an alternative

method for classification of wheat varieties, which may use

some characteristics of the kernels other than morphological

features. A simple variety identification system with less com-

plexity for bulk sample testing (not single grain analysis)

would be most desirable in the grain-handling facilities.

Electronic nose (E-nose) is instrument which mimics

the sense of smell. These devices are typically array of

sensors used to detect and distinguish odours precisely in

complex samples and at low cost (Peris and Escuder-

Gilabert, 2009). In contrast to the well known analytical gas

chromatography mass spectrometry (GC-MS) and sensory

techniques that have been used for the analysis of flavour

compounds, the E-nose does not give any information about

the compounds causing the investigated aroma; neither

about the identity of the compounds nor their sensorial pro-

perties. Using E-nose the aroma is judged by the so-called

‘aroma pattern’, which should be characteristic to the inves-

tigated substrate (O'Sullivan et al., 2003). With the use of

appropriate mathematical methods, E-nose should be ca-

pable of recognizing the aroma pattern or of distinguishing it

from aroma patterns of other samples (Peris and Escuder-

Gilabert, 2009; Zhang and Wang, 2008). E-nose could gain

importance in the food industry.

Several successful applications of E-noses to the moni-

toring of flavour and/or aroma components along a food

production process have been published. In a recent study

(Defilippi et al., 2009) evaluated the aroma of Castlebrite

apricots that were harvested at two different stages of

ripening and stored under different refrigeration conditions

using GC, sensory panel and E-nose techniques, and con-

cluded that aroma-related volatile compounds were more

influential in dictating E-nose response to different apricot

samples. In a study on determination of the shelf life of milk,

it was found that E-nose could clearly detect both bacteria

growth in milk and shelf life (Labreche et al., 2005). In

Int. Agrophys., 2012, 26, 413-418

doi: 10.2478/v10247-012-0058-y

Identification of different wheat seeds by electronic nose

Bo Zhou1, Jun Wang1*, and Jinfeng Qi2

1Department of Biosystems Engineering, 2Institute of Applied Entomology,

Zhejiang University, 268 Kaixuan Road, Hangzhou 310029, China

Received June 20, 2011; accepted January 25, 2012

© 2012  Institute of Agrophysics, Polish Academy of Sciences*Corresponding author’s e-mail: jwang@zju.edu.cn

IIINNNTTTEEERRRNNNAAATTTIIIOOONNNAAALLL

AAAgggrrroooppphhhyyysssiiicccsss

www.international-agrophysics.org



another study an E-nose was designed to monitor bakery

products, and satisfied results were obtained (Needham et

al., 2005). Nowadays, E-nose has already been used in va-

rious field, such as: pork (O'Sullivan et al., 2003), mandarin

(Gomez et al., 2007), peach (Benedetti et al., 2008; Di

Natale et al., 2001), apple (Li and Heinemann, 2007), pear

(Oshita et al., 2000), wine (Garcia et al., 2006) and grain

(Balasubramanian et al., 2007; Evans et al., 2000). More-

over, E-nose and GC-MS have also been used for detection

of spoilage of grain and mycotoxins, ergosterol, and odour

volatiles in durum wheat (Abramson et al., 2005; Presicce et

al., 2006). However, most of them are on qualitative identi-

fication of stored grains, no information has been available

on the applicability of an electronic nose for the identifi-

cation different varieties of wheat seeds.

The objectives in this research are:

– to investigate the capacity of E-nose identifying the diffe-

rent varieties of wheat samples, using a specific E-nose

device (PEN 2) based on sensor array and suitable pattern

recognition techniques;

– to study whether the results of E-nose correspond with the

GC-MS analysis.

MATERIALS AND METHODS

The experimented samples were three different varie-

ties of winter wheat seeds (Varieties: Jiangsu18, 13 and

9023, and labeled W18, W13 and W9023, respectively),

which were supplied by the Yangzhou farm, Jiangsu. The

three varieties of wheat were harvested in early June 2009.

The three groups of samples were stored at room tempe-

rature. The volatiles emitted by wheat change slightly du-

ring storage, but for long-term storage the wheat quality will

be deteriorated and an electronic nose could successfully

discriminate the different age of wheat (Pang et al., 2008).

Thus, to investigate the capacity of E-nose identifying the

different varieties of wheat samples at different storage-

time. The three varieties of wheat seeds were measured with

a time difference of two months (SET I and SET II). 75 sam-

ples (25 duplicates for each variety, respectively) were pre-

pared for each set. Thus, there were 150 samples in all for

detection by E-nose. For each treatment, 50 g of wheat

sample was weighed out. The sample was placed in 500 ml

flasks for analyses of response to volatiles using E-nose. The

flask was closed tightly after introducing wheat sample and

was held at the temperature (50±1°) for 30 min before static

headspace sampling.

The volatile collection system has been described by

Lou (Lou et al., 2005). Temperature was kept at 28°C during

the whole process. After the 6 h collection period, com-

pounds were eluted from the adsorbent traps with 200 ml

dichloromethane. Collections were replicated six times for

each wheat variety. Volatiles analyses were done with an HP

6890 series gas chromatograph equipped with a flame

ionization detector and coupled to a HP 5973 mass selective

detector. An HP-5 (30 m, 0.25 mm in dia, 0.25 mm film

thickness; Alltech, Deerfield, IL, USA) capillary column was

equipped for separation. Helium (24 ml min
-1

) was used as

the carrier gas. A splitless injection (injection injector tem-

perature 250°C and the injection amount is 3 ml) was used,

Followed injection, the column temperature was performed

as followed: from 40°C (2 min hold) to 250°C at 6°C min
-1

,

and held at 250°C for 2 min. All compounds were analyzed

by the HP 5973 mass spectrometer. Compounds were iden-

tified by comparison of retention times and mass spectra

with those of authentic standards. The authentic standard

chemicals were obtained from Fluka, Sigma, Aldrich.

A PEN2 E-nose (Win Muster Airsense, Schwerin,

Germany) was used to obtain the odour signal patterns from

headspace of wheat samples. This E-nose contains an array

of 10 different metal oxide sensors positioned into a small

chamber. Each sensor has a certain degree of affinity to-

wards specific chemical or volatile compounds. Table 1 lists

all the sensors used and their main applications. This table

contains current known or specified reaction.

During the measurement process, the headspace gas of

a sample was pumped into the sensor chamber at a constant

rate of 100 ml min
-1

via a Teflon-tubing connected to a needle.

When the gas accumulated in the headspace of vials was

pumped into the sensor chamber, the ratio of conductance of

each sensor changed. The sensor response was expressed as

ratio of conductance (G/G0) (G and G0, conductivity of the

sensors when the sample gas or zero gas blows over). The

measurement procedure was controlled by a computer pro-

gram. The flush time was set to 40 s. The measurement time

was 65 s, which was enough for the sensors to reach stable

values. The interval for data collection was 1 s. A computer re-

corded the response of E-nose every second, thus 65 data

were recorded for each sensor. When the measurement was com-

pleted, the acquired data was properly stored for later use.

Each sample data of E-nose was a matrix with 65 rows

and 10 columns (65 measurement times and 10 sensors). The

analysis was carried out using the signal stability at 58 s

in wheat. The pattern-recognition techniques used were

principal component analysis (PCA), linear discriminant

analysis (LDA), stepwise discriminant analysis (SDA) and

back-propagation neural network (BPNN).

RESULTS AND DISCUSSION

In order to obtain sufficient volatile compounds infor-

mation about the samples, GC-MS measurements were car-

ried out. Volatile compounds were identified by comparison

of GC data with reference compounds. The typical chroma-

tograms for three varieties of wheat seeds are shown in Fig. 1.

The peaks in chromatogram at times shorter than 5 min were

due to solvent-solvent interactions and extracted impurities,

thus each chromatogram started at 5 min. A wide variety of

compounds belonging to various functional groups including

alcohols, aldehydes, esters, ketones, acetates, and furans
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were identified from the headspace of the wheat samples.

The results are consistent with those of other authors

(Presicce et al., 2006). Based on visual observations of chro-

matograms, the volatile compounds of three wheat varieties

were quite similar, but the content of each compound was

different according to peak profiles and the W9023 had

a unique peak which labeled with ‘*’ (compound: 2, 6,

10-dodecatrien-1-ol, 3, 7, 11-trimethyl). These indicated

that each wheat variety had its unique character.

A typical response by 10 sensors during measuring

a wheat sample is shown in Fig. 2. Each curve represents

a different sensor transient. The curves represent conduc-

tivity of each sensor against time due to the electro-valve

action when volatiles reached the measurement chamber. In
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Fig. 1. Typical chromatograms for three varieties of wheat seeds (W13, W18 and W9023).

Number

in array

Sensor

name General description Reference

S1 W1C Aromatic compounds Toluene, 10 mg kg-1

S2 W5S Very sensitive, broad range sensitivity, react on nitrogene oxides, very sensitive

with negative signal

NO2, 1 mg kg-1

S3 W3C Ammonia, used as sensor for aromatic compounds Propane, 1 mg kg-1

S4 W6S Mainly hydrogen, selectively, (breath gases) H2, 100 mg kg-1

S5 W5C Alkanes, aromatic compounds, less polar compounds Propane, 1 mg kg-1

S6 W1S Sensitive to methane (environment) ca. 10 mg kg-1. Broad range, similar to No. 8 CH3, 100 mg kg-1

S7 W1W Reacts on sulfur compounds, H2S 0.1  mg kg-1. Otherwise sensitive to many

terpenes and sulfur organic compounds, which are important for smell,

limonene, pyrazine

H2S, 1 mg kg-1

S8 W2S Detects alcohol, partially aromatic compounds, broad range CO, 100 mg kg-1

S9 W2W Aromatics compounds, sulfur organic compounds H2S, 1 mg kg-1

S10 W3S Reacts on high concentrations >100  mg kg-1, sometime very selective (methane) CH3, 10 CH3, 100 mg kg-1

T a b l e  1. Sensors used and their main applications in PEN 2

Fig. 2. Ten sensors typical responses to wheat seeds aroma

(W9023).



initial period, the ratio of conductance (G/G0) of each sensor

was close to 1.0, then increased or decreased continuously,

and finally stabilized after about 50 s. In this research, the

signal of each sensor at response 58 s was used in analysis.

In order to investigate whether E-nose was able to dis-

tinguish among different varieties, PCA and LDA analysis

were applied. The analysis was carried out using the signal

stability at 58 s in wheat seeds. PCA and LDA analysis

results of SET I are shown in Fig. 3. PCA in Fig. 3a shows the

score plot inside ellipses and represents the standard variation

around different varieties for wheat. The processed data show

an erratic shift of different varieties along the first principal

component, PC1, which explains 83.38% of the total variance

with value 95.58%. The second principal component (PC2)

explains 12.1% of the variation and shows no particular trend

with varieties. The three varieties of wheat samples were

distinguishable from each group, except W13 and W18, had

a little overlapped. When using LDA analysis (Fig. 3b), the

three varieties of wheat were clearly distinguished from

each group. In this plot about 90.26% of total variance of

data is displayed. LDA function 1 (LD1) and function 2 (LD2)

accounted for 77.07 and 13.19% of variance respectively.

PCA and LDA analysis results of SET II are shown in Fig.

3cd. The results were similar to the SET I. PC1 explained

98.65% of total variance, PC2 explained 0.99% of variation

in Fig. 3c. There were similar successful classifications by

LDA (Fig. 3d). LD1 and LD2 accounted for 89.86 and 7.32%

of variance respectively. The three wheat samples were,

again, distinguished completely. These results demonstrate

that different wheat varieties had different volatiles. Wheat

samples could be distinguished completely by LDA. Com-

pared to PCA plot, the response values in every cluster in

LDA plot are more concentrated and the intervals of clusters

are larger, which implies that LDA method is better than

PCA for distinguishing different variety of wheat samples.

In order to investigate whether E-nose was able to pre-

dict the wheat varieties, SDA and BPNN analysis were

applied. First, the samples of SET I and SET II were used for

the direct prediction severally. For each set, 60 wheat sam-

ples (20 samples of each variety) were selected randomly for
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a b

Fig. 3. Scores plot of three different varieties wheat seeds for the: SET I: a – PCA analysis, b – LDA analysis; SET II: c – PCA analysis,

d – LDA analysis.
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the training set, the rest of 15 wheat samples (5 samples of

each variety) composed the testing set. Then, in order to veri-

fy reproducibility and practicability, 60 wheat samples of

SET I were selected randomly for the training set, 15 wheat

samples of SET II composed the testing set for cross

prediction. SDA was applied in order to select the most

discriminant wheat samples. The correct identification rate

of training set was 100%. Table 2 showed the results for

testing set of SET I and SET II. The correction ratio of results

for testing samples of SET I was 100%. The correction ratio

of the results for the testing samples of the SET II was

96.67%; one sample of W13 was classified into W18. The

results for testing set of cross prediction are shown in Table

2. The correction ratio of results for testing samples was

83.33%; four samples of W13 were classified into W18 and

one sample of W18 was classified into W13. A three-layer

back-propagation neural network was used. The architec-

ture of artificial neural network was chosen: 10×18×1

three-layer back-propagation according to Kolmogorov

theorem, hereinto, ten is the num of input neurons, the num

of wheat variety indices as target output, respectively. The

training algorithm was variable learning rate back-propa-

gation (Traingdx) algorithm available in MATLAB Neural

Network Toolbox. After several attempts, training para-

meters were chosen with maximum epoch of 1 000 and goal

of 0.01, respectively. The threshold of prediction error was

set as 0.2 that means if the actual value differs by more than

0.2 from its prediction value, the prediction result is consi-

dered to be failed. The correct identification rate of training

set was 100%. The results of BPNN for testing set of SET I

and SET II were shown in Table 3. The correction ratio of

results for testing samples of SET I was 100%. The cor-

rection ratio of results for testing samples of SET II was

96.67%; one sample of W13 was misclassified. The results

for testing set of cross prediction are shown in Table 3. The

correction ratio of results for testing samples was 90%; two

samples of W13 were classified into W18 and one sample of

W18 was misclassified. These results indicate that E-nose

may be successfully applied as rapid method for classifying

different variety of wheat samples. In addition, classifica-

tion techniques such as neural networks (that are trained

with known samples in order to classify unknowns) may

provide better results. From GC-MS results we can conclude

that volatile compounds of W13 had much more similar to
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Simulated results W13 W18 W9023 Correct rate (%)

SET I

W13

W18

W9023

10

10

10

100

100

100

SET II

W13

W18

W9023

9 1a

10

10

90

100

100

SET I and II

W13

W18

W9023

6

1a

4a

9

10

60

90

100

aSamples of the incorrectly classified.

T a b l e  2. Discrimination of testing set by SDA

Samples Desired outputs

Predict resulting outputs

Correct rate (%)
Correct Error

SET I

W13

W18

W9023

1

2

3

10

10

10

0

0

0

100

100

100

SET II

W13

W18

W9023

1

2

3

9

10

10

1

0

0

90

100

100

SET I and II

W13

W18

W9023

1

2

3

8

9

10

2

1

0

80

90

100

T a b l e  3. Discrimination of testing set by BPNN



W18 than to W9023. From Fig. 3ac, PCA results showed

that W13 and W18 had a little overlapped. SDA and BPNN

results indicated that misclassified samples predominantly

involved confusion between W13 and W18. The agreement

between these results obtained by GC-MS with those ob-

tained by E-nose implies that E-nose combined with GC-MS

analysis of the headspace of samples as a powerful tool is

able to identify the wheat seeds.

CONCLUSIONS

1. The analysis results showed that the principal compo-

nent analysis and linear discriminant analysis could properly

distinguish the three varieties of wheat seeds.

2. The stepwise discriminant analysis (SDA) and a three-

layer back-propagation neural network (BPNN) were deve-

loped for pattern recognition models.

3. The results showed that both models for training data

sets the discrimination rate of three wheat seed varieties

were 100%, for different testing data sets the SDA discri-

mination rate was over 83.33% and the BPNN was over 90%,

the BPNN presented the higher percent of correct classi-

fications in comparison to SDA.
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