
A b s t r a c t. The present investigation deals with analyzing

the compressive strength properties of two varieties (Tarom and

Fajr) of parboiled paddy and milled rice including: ultimate stress,

modulus of elasticity, rupture force and rupture energy. Combined

artificial neural network and genetic algorithm were also applied to

model these properties. The parboiled samples were prepared with

three soaking temperatures (25, 50 and 75�C) and three steaming

times (10, 15 and 20 min). The samples were then dried to final

moisture contents of 8, 10 and 12% (w.b.). In general, Tarom va-

riety had higher compressive strength properties for paddy and

milled rice than Fajr variety. With increase in steaming time from

10 to 20 min, all mentioned properties increased significantly,

whereas these properties were decreased with increasing moisture

content from 8 to 12% (w.b.). Coupled artificial neural network

and genetic algorithm model with one hidden layer, three inputs

(soaking temperature, steaming time and moisture content), was

developed to predict the compressive strength properties as model

outputs. Results indicated that this model could predict these pro-

perties with high correlation and low mean squared error.

K e y w o r d s: artificial neural network, genetic algorithm,

paddy, milled rice

INTRODUCTION

Rice (Oryza sativa L.) is the principal food cereal in the

world and it is the main food of over half of the world

population (Razavi and Farahmandfar, 2008). The majority

of Iranian rice (75%) is grown in Mazandaran and Guilan

provinces (Zareiforoush et al., 2010). The production rate is

still far from the country rice self-sufficiency. Increasing the

grain severity and hence reducing the processing losses

could be a possible way of compenzation for the increasing

demand. The primary step in rice processing is dehusking of

paddy, which results in brown rice. Polishing or removing of

bran to yield white rice is the second step. Knowledge of the

compressive strength properties of rice is important in the

design of milling equipment to predict their cracking

behaviour and to minimize the losses during handling,

drying, cleaning and milling processes. For this reason,

extensive studies have been done in this area, that would be

reviewed here.

Shitanda et al. (2001) explored the physical and mecha-

nical properties of paddy and rice. They showed that short-

grain rice was harder than long-grain variety and had less

broken grain. They noted that husking characteristics of rice

are related to shape and size of rice. Cao et al. (2004) ex-

plored the effect of moisture content on some mechanical

properties of brown rice. They showed that moisture content

has a significant effect on mechanical properties ie com-

pressive strength and tensile strength decreased with in-

creasing moisture content. Corrêa et al. (2007) explored

mechanical behaviour of grains in rice processing. They

showed that compressive force was significantly affected by

processing. Zareiforoush et al. (2010) investigated the me-

chanical properties of two rice varieties. They recommen-

ded that lower rates of compressing load can minimize the

percentage of cracked grains. Saif et al. (2004) showed that

the parboiling process is suitable for enhancing ultimate

tensile strength and modulus of elasticity of rice kernel. They

reported that steaming time and drying temperature signifi-

cantly affected tensile strength properties. Parnsakhorn and

Noomhorm (2008) also noted that parboiling processes

caused an increase in the hardness of rice. They showed that

hardness increases with increase in soaking time and

steaming time.
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The artificial neural network (ANN) method has recently

been of interest to researches and engineers in various

research areas and industries. ANN is increasingly being ap-

plied to process control and other areas, including the dy-

namic modelling of process operations, process prediction,

optimizing, non-linear transformation, remote sensing tech-

nology and parameter estimation for the design of control-

lers (Yang et al., 2009). ANNs and rice producing have been

coupled by many researchers. An ANN model was deve-

loped for paddy drying to predict energy consumption, final

moisture content, kernel cracking, moisture removal rate,

drying intensity and water mass removal rate (Zhang et al.,

2002). An ANN model was established to predict the flow

rate of paddy rice grains through orifices on horizontal

rotating cylindrical drum of a hand or tractor-drawn or

self-propelled drum seeder (Kumar et al., 2009). Yang et al.

(2009) successfully used back propagation neural network

(BP-ANN) and principal components analysis (PCA) to

build a prediction model for the population occurrence of

paddy stem borer. A three-layer BP-ANN model which

could rapidly and objectively predict the grades of milled

rice based on the surface lipid content was revealed by Chen

and Huang (2010).

The so-called genetic algorithm (GA) has been intro-

duced to offer advantages compared with traditional me-

thods or system modelling and optimization problems. It is

also used for an optimal value of a complex function by

simulation of the biological evolutionary process based on

crossover and mutation (Izadifar and Jahromi, 2007). The

GA can be used to select the appropriate number of nodes in

the hidden layer of ANNs. A simple GA-based model was

applied to obtain the initial training parameters of a feed

forward neural network for prediction of freezing and

thawing times of foods (Goni et al., 2008). Wongrat et al.

(2011) combined GA and control vector parameterization to

solve the synthesis of rice drying processes.

The review of literature indicates that the coupled

ANN-GA is a hopeful approach to the modelling of compres-

sive strength properties of parboiled paddy and milled rice.

No publication was found on this subject in the literature.

The objective of this work was to develop an ANN-GA mo-

del for the compressive strength properties (ultimate stress

(MPa), modulus of elasticity (N mm
-2

), rupture force (N)

and rupture energy (mJ)) of parboiled paddy and milled rice

as a function of soaking temperature, steaming time and mois-

ture content. The paper presents the capability of GA to ob-

tain the trained optimal topology of the neural network, too.

MATERIALS AND METHODS

Samples of paddy rice samples of Tarom and Fajr culti-

vars were provided by Haraz Technology Extension and

Development Center (Mahmoodabad, Iran), those being two

main long-grain rice varieties in the north of Iran. The initial

moisture content of the samples was determined using the

standard hot air oven method.

To prepare parboiled samples, the paddy grains were

soaked in water at 25, 50 and 75�C for 48, 6 and 3 h, re-

spectively. The paddy samples were then steamed for 10, 15

and 20 min at 100°C and atmospheric pressure. The mois-

ture content of the paddy samples was about 40-45% (w.b.)

at the end of steaming process. Parboiled paddy samples

were left in shade until the moisture content reduced to 18%

(w.b.). The samples were then dried in a standard hot air

oven at 35-40°C, for 24-48 h, to achieve moisture content

levels of 12, 10 and 8% (w.b.). Samples were coded and

labelled according to their soaking temperature and steam-

ing time. For example, the sample with initial soaking

temperature of 75°C and steaming time of 20 min was given

the label number of 75-20. Three sub-samples of both par-

boiled rice varieties, each of 500 g, were taken and dehusked

at three mentioned moisture content levels, using a labora-

tory rubber roll type rice husker (ST 50, Yanmar, Japan).

The whole brown rice kernels were subsequently milled to

whiten the kernels, using a laboratory friction and abrasion

vertical type whitener (VP-31, Yamamoto, Japan). Com-

pressive strength properties, including ultimate stress (Y),

modulus of elasticity (MOE), rupture force (F) and rupture

energy (En) were measured. The experiments were also con-

ducted at constant rate of 0.14 mm s
-1

according to Shitanda

et al. (2002). Compression experiments were performed at

natural rest position of grain, using a digital stress-strain

tester machine (H5KS-1929, UK). A computer was con-

nected to the tester to record the compressive force and de-

formation of samples with time. The compressive test was

stopped immediately at reaching the yield point which was

specified by the cracking sound of grain. For each treatment

ten grains were randomly selected and the average deforma-

tion curve was used for the analysis. The data extracted from

experiments were analysed using SPSS (ver. 16) and Excel

software for plotting the necessary charts. Analyzes of varian-

ce of means were conducted using Duncan multiple tests.

The feed-forward neural networks are the most popular

architectures due to their structural flexibility and good

representational capabilities (Salehi et al., 2011). Any ANN

model contains an input layer, an output layer and one or

more hidden layers. The number of neurons in the input and

output layers are equal to the number of system inputs and

outputs, respectively. The ANN structure employed for

modelling of mentioned properties had three input variables

including soaking temperature, steaming time and moisture

content level. The output variables of the ANNs were Y,

MOE, F and En.

The number of hidden layers and their neurons is an im-

portant and crucial stage in the design of any ANN, which

depends on the problem to be investigated. A network with

very few hidden nodes would not be able to approximate

a determined data set. However, a network with too many

hidden nodes may over-fit the training set and would be

unable to adapt to new input conditions. As others have

done, the topology of the network was selected by trial and
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error. The other parameters of network also affect the

network training process. These parameters are the mass of

the connection between neurons and bias for each neuron in

the hidden and output layers. These parameters are updated

through a training procedure, with the aim of minimizing the

difference between the network outputs and the target va-

lues. However, the response of a network strongly depends

on the initial value of these parameters. Typically, the initial

values of these parameters were selected randomly. Feed

forward ANN with back-propagation training algorithm and

the hyperbolic tangent sigmoid transfer function in the hid-

den and output layers were used. In order to obtain an ANN

model having the best performance, Bayesian regularization

(BR) algorithm was carried out during five hundred epochs.

Recently the GA method has been widely used for

finding the best topology and initial parameters of ANN to

obtain good training process (Goni et al., 2008; Salehi et al.,

2011). Consequently, GA was employed for initializing of

mass and bias. In this study, there were only 27 datasets

available, due to the limit in experimental studies. Three

datasets were randomly selected as testing sets. The remain-

ing 24 datasets were used for training the ANN. In this

regard a similar method has been reported by others such as

Zhang et al. (2002). The remaining three datasets were used

for testing purposes. The performance of ANN parameters

was statistically measured by mean squared error (MSE) and

regression coefficient (R
2
).

The network having minimum MSE and maximum R
2

was selected as the best ANN model.

The genetic algorithm is a global search algorithm that

simulates a natural evolution and is widely used for solving

optimization and estimation problems. Selection, crossover

and mutation are the base operations of GA. These operators

act on the current population for producing the next popula-

tion. The selection operator evaluates the population ac-

cording to the best individuals. Individuals with high fitness

values (representing better solutions to the problem) will

have a higher probability of surviving and entering the

pooling population, while low-valued individuals will have

a high risk of being removed from the population. In this

way individuals with the best genes or characteristics will

have better chance of survival and mating. In this study the

tournament method was used as the selection method.

Crossover of two individuals (named as parents) were

chosen randomly from pooling population and combined to

produce two new individuals (named as children). In this

work, uniform crossover with probability (Pc = 0.8) was

applied. Mutation (random genetic changes) increases the

ability of GA to escape from local optimum. The mutation

makes small random changes with probability (Pm = 0.005)

in the individuals (Shopova and Vaklieva-Bancheva, 2006).

The individual with the best fitness value in the current po-

pulation can be lost during the crossover and mutation pro-

cedures. To avoid this situation the individual with the best

fitness value is stored as elite individual at the end of each

generation. The elite individual is then directly added to the

next generation.

For defining and initializing the ANN parameters in the

GA space, the structure of ANN is determined and then the

whole parameters (mass and bias) of network are coded by

chromosomes. The developed algorithm, schematized in

Fig. 1, was coded in Matlab software with the following

procedure.

– Steps 1: defining the GA parameters (number of indivi-

dual in population, initial population, maximum genera-

tions, Pm, Pc), ANN topology and preparing the expe-

rimental data in two sets (training and testing).

– Step 2: the ANN parameters set based on individual in the

population, and then the ANN training and performance is

evaluated for each individual as fitness value of each

individual as a linear combination of the train and test

mean square error (Goni et al., 2008):

MSE MSE MSEFitness Train Test� � �� �( )1

where: � is weighing parameter with value selected as 0.3, in

order to the effect of MSE for the test be greater than MSE for

the training, this value was selected.

– Step 3: until the stopping criteria do not reach their maxi-

mum value, the operating algorithm is used for repro-

ducing new generation. The elite individuals are also se-

lected and directly added to the new generation.

In this research, the ANN had 3 neurons in the input

layer and four neurons in the output layer. The soaking

temperature, steaming time and moisture content were taken

as the input parameters, where as the Y, MOE, F and En as

output parameters for both varieties.

RESULTS AND DISCUSSION

The mean value and standard deviation of Y, MOE, F

and En of parboiled paddy of Tarom and Fajr varieties in

different soaking temperature, steaming time and moisture

contents are given in Table 1, respectively. In general, the

ultimate stress of both varieties decreased with increase in

moisture content from 8 to 12% (w.b.). Cao et al. (2004)

observed a similar trend for three brown rice varieties.

ANOVA results showed that the ultimate stress of both

varieties was significantly affected (p�0.05) by soaking

temperature, where as 25 and 50�C soaking temperature had

maximum and minimum ultimate stresses, respectively

(Table 2). Results also show that ultimate stress of both

paddies increased significantly (p�0.01) with increase in

steaming time. The highest and lowest values of ultimate

stress of parboiled paddy of Tarom (5.14 and 3.28 MPa,

respectively) and Fajr (4.96 and 3.23 MPa, respectively)

were obtained for 25-20 and 50-10, respectively. According

to Table 3 the ultimate stress of Tarom and Fajr paddy was
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significantly (p�0.01) affected by variety; however Tarom

variety had higher ultimate stress than Fajr. It may be related

to differences in textural and strength properties of paddy

husk and bran. According to Table 1, the modulus of

elasticity of both parboiled paddies decreased with increase

in moisture content from 8 to 12% (w.b.). The results were

similar to those reported by Zhang et al. (2005) and Ekinci

et al. (2010). In general, soaking temperatures of 25 and

50�C represent the highest and lowest values, respectively,

for modulus of elasticity of Tarom and Fajr paddy varieties,

and it was significantly affected by soaking temperature

(p�0.01). Modulus of elasticity increased significantly

(p�0.01) with increase in steaming time for each soaking

temperature. ANOVA results (Table 2) showed that the

modulus of elasticity of both paddies was significantly

affected by variety (p�0.01), while Tarom variety had

higher modulus of elasticity than Fajr. The lowest and

highest values of modulus of elasticity of parboiled Tarom

paddy (36.54 and 54.1 N mm
-2

, respectively) and Fajr paddy

(35.17 and 52.62 N mm
-2

, respectively) were obtained for

50-10 and 25-20, respectively (Table 1).

According to these Tables, rupture force of both paddies

decreased with increase in moisture content from 8 to 12%

(w.b.). In this regard similar results have been reported by

others such as Zhang et al. (2005), Ekinci et al. (2010) and

Singh et al. (2010). Rupture force of Tarom and Fajr va-

rieties was significantly affected (p�0.05) by soaking tem-

perature, where the highest and lowest values were related to

25 and 50�C, respectively. Rupture force of both varieties

increased significantly (p�0.01) with increase in steaming

time from 10 to 20 min, which agrees with the results of Saif

et al. (2004). However, Tarom variety had higher rupture

force than Fajr. The lowest and highest values of Tarom at

266.1 and 279.5 N, and Fajr paddy at 265.3 and 278.1 N,

respectively, were obtained.

Rupture energy of Tarom and Fajr parboiled paddy was

affected significantly (p�0.01) by moisture content. Rupture

energy decreased with increase in moisture content from 8 to

12% (w.b.). Similar trends have been observed elsewhere

(Zhang et al., 2005; Ekinci et al., 2010), while some re-

searchers reported that rupture energy increased with in-

crease in moisture content (Altuntas and Yýldýz, 2007; Singh

et al., 2010). According to Table 1, the highest and lowest

values of rupture energy of parboiled paddy for Tarom (42.7

and 28.5 mJ, respectively), and for Fajr (39.8 and 26.9 mJ,

respectively) were obtained for 25-20 and 50-10, respec-

tively. It is seen that rupture energy was significantly

affected (p�0.01) by soaking temperature ie 25 and 50�C
had the highest and the lowest rupture energy values,

respectively. Increase in steaming time from 10 to 20 min

caused a meaningful increase (p�0.01) in the rupture

energy of parboiled paddy. Figure 2 shows the results of

ANN optimization by GA as MSE versus the number of

neurons in hidden layer for Tarom and Fajr paddy varieties.

The optimal ANN-GA model had the lowest MSE value

across all the networks. These graphs illustrate that for

Tarom paddy the optimal network has MSE of 0.027 for

train, 0.069 for fitness and 0.087 for test with 9 neurons

in hidden layer. The corresponding values for Fajr paddy are

0.014 for train, 0.061for fitness and 0.081 for test with 11
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- Experimental data

- Normalization of data

- Data selection for training

and testing

- Number of individuals in

the population (12)

- Initial population

- Maximum number of

generations

- Pm (mutation probability,

typically 0.005)

- Pc (uniform crossover
probability, typically 0.8)

- ANN parameters

- Number of hidden layers
and neurons in hidden

layers

Decode of
population

Fitness

evaluation

Training and testing network

Stopping
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satisfied

Best set of initial
parameters

Yes

ElitismNew generation

Mutation

Crossover

Selection
No

Fig. 1. Diagram of the developed combined GA-ANN.
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neurons in hidden layer. Table 3 shows the MSE for training

and testing data and correlation coefficient (R
2
) value for the

predicted data of optimal GA-ANN model. As it shown, the

high value of R
2

(0.910-0.991) and low value of MSE (0.017-

0.720), for both varieties, confirmed that the ANN-GA model

can adequately describe the relationship between Y, MOE,

F, En of the paddies and the parboiling process parameters.

The mean value and standard deviation of ultimate stress,

modulus of elasticity, rupture force and rupture energy of par-

boiled milled rice for Tarom and Fajr varieties in different

soaking temperatures, steaming times and moisture contents

are given in Table 4, respectively. According to the results,

ultimate stress of milled rice decreased significantly with in-

crease in moisture content from 8 to 12% (w.b.). The highest

and lowest values of ultimate stress were obtained at 25 and

50�C, respectively. For both varieties increase in steaming

time from 10 to 20 min caused an increase of the ultimate

stress of milled rice. Comparing data in Table 1 with those of

Tables 2 and 3 it can be concluded that ultimate stress of pad-

dy was higher than that of milled rice. It may be because of re-

moving husk and bran in milling process caused this pro-

perty to decrease. In general, milled rice of parboiled Tarom

variety had higher ultimate stress than Fajr ie the highest and

lowest values of ultimate stress for Tarom were 2.59 and

1.98 MPa, and for Fajr were 2.5 and 1.98 MPa, respectively.

Modulus of elasticity of parboiled milled rice of Tarom

and Fajr varieties meaningfully (p�0.01) decreased with

increase in moisture content from 8 to 12% (w.b). Similar

results were obtained by Zhang et al. (2005) and Ekinci et al.

(2010). Modulus of elasticity was significantly (p�0.01)

affected by soaking temperature (Table 5). Increase in

steaming time caused an increase of the modulus of

elasticity of milled rice of parboiled paddy. The lowest and

highest values of modulus of elasticity for milled rice of

parboiled Tarom (44.71 and 59.73 N mm
-2

, respectively)

and Fajr (41.17 and 57.89 N mm
-2

, respectively) were

observed for 15-10 and 25-20, respectively. Rupture force

of milled rice decreased significantly (p�0.01) with in-

crease in moisture content from 8 to 12% (w.b.). The highest

and lowest values of rupture force obtained for Tarom

milled rice were 200.5 and 185.5 N, respectively, and for

Fajr milled rice – 198.8 and 185.1 N, respectively.

According to Table 7, soaking temperature of parboiled

milled rice has a significant (p�0.01) effect on rupture

force, the highest and lowest values of this property being

observed at 25 and 50°C, respectively. Rupture force of

milled rice increased meaningfully (p�0.01) with increase

in steaming time from 10 to 20 min. However, Tarom variety

had higher rupture force than Fajr, and this property was

78 A. NASIRAHMADI et al.

Source DOF

“F” value

Y MOE F En

V 1 89.42** 242.73** 4.63* 3284.67**

St 2 125.9** 1380.04** 12.52** 3193.55**

ST 2 60.53* 1026.24** 3.65* 1011.57**

Mc 2 39.98* 257.52** 6.58** 3685.3**

St×V 2 40.13* 70.85** 0.89ns 195.85**

ST×V 2 14.19* 19.74* 1.59* 210.98**

ST×St 4 3.63** 65.57** 0.83ns 85.83*

St×Mc 4 14.08* 328.02** 0.33ns 63.64*

Mc×V 2 0.12ns 7.54* 2.01* 50.96*

ST×Mc 4 3.09* 19.74* 1.43ns 94.41**

ST×St×V 4 10.12* 27.25** 0.75ns 94.02**

St×Mc×V 4 0.50ns 9.31* 3.02* 113.59**

ST×St×Mc 8 0.56ns 65.06* 0.30ns 44.15*

ST×Mc×V 4 1.42ns 31.07** 1.16ns 78.75*

ST×St×Mc×V 8 0.25ns 11.44* 1.17ns 26.89ns

Error 486

Total 539

V– variety, St – steaming time, ST – soaking temperature, Mc – moisture content, significant at: *p�0.05, **p�0.01, ns – not

significant. Other explanations as in Table 1.

T a b l e 2. ANOVA indicating the effect of independent variables on compressive strength properties of parboiled paddy
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Fig. 2. Estimation of training, fitness and test of GA-ANN model as MSE versus number of neurons in hidden layer for: a – Tarom and

b – Fajr paddy varieties.

Compressive

strength

properties

MSE of

R2

training data testing data

Tarom Fajr Tarom Fajr Tarom Fajr

Y 0.122 0.048 0.132 0.056 0.923 0.915

MOE 0.017 0.151 0.041 0.720 0.975 0.910

F 0.073 0.055 0.095 0.166 0.984 0.929

En 0.090 0.122 0.160 0.547 0.991 0.990

Explanations as in Table 1.

T a b l e 3. Correlation coefficient and mean square error for performance of ANN-GA model for parboiled Tarom and Fajr paddy

varieties

Fig. 3. Estimation of training, fitness and test of GA-ANN model as MSE versus number of neurons in hidden layer for: a – Tarom and

b – Fajr milled rice varieties.
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affected significantly by variety. Comparing the data ob-

tained for paddies and milled rice samples, it can be ob-

served that paddy had higher rupture force than milled rice,

which could have been an effect of the increased resistance

of paddy husk and bran against compressive force, which

has already been reported by Corrêa et al. (2007). ANOVA

results (Table 5) showed that moisture content had a sig-

nificant effect on rupture energy ie this property decreased

with increase in moisture content from 8 to 12% (w.b.). The

lowest and highest values of rupture energy for Tarom

milled rice were obtained as 7.8, 27.7 mJ and for Fajr as

13.9, 26.9 mJ, respectively. Rupture energy of milled rice

was meaningfully (p�0.01) affected by soaking tempera-

ture and the highest and lowest values were observed for 25

and 50�C, respectively. Rupture energy of milled rice

increased significantly (p�0.01) with increase in steaming

time from 10 to 20 min. However, milled rice of Tarom

variety had higher rupture energy than that of Fajr. Figure 3

shows the results of ANN optimization by GA as MSE

versus number of neurons in hidden layer for Tarom and Fajr

milled rice varieties. As shown, the value of MSE decreased

with increase in the number of neurons in hidden layer until
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Source DOF

“F” value

Y MOE F En

V 1 14.52* 78.81** 317.15** 309.23**

St 2 351.99** 263.08** 256.97** 808.54**

ST 2 68.23** 157.65** 174.68** 538.48**

Mc 2 240.72** 346.01** 179.51** 113.96**

St×V 2 10.94* 1.815NS 129.66** 49.67**

ST×V 2 2.63NS 0.37NS 109.61** 446.02**

ST×St 4 1.88NS 5.96* 77.23** 122.19**

St×Mc 4 7.38* 2.90* 33.09* 124.92**

Mc×V 2 0.56NS 0.56NS 63.03** 16.92*

ST×Mc 4 0.68NS 1.96NS 12.90* 47.26**

ST×St×V 4 0.81NS 4.45* 95.50** 37.24**

St×Mc×V 4 1.88NS 1.11NS 10.53* 9.63*

ST×St×Mc 8 2.25* 2.19* 73.04** 34.26**

ST×Mc×V 4 4.02* 1.39NS 33.51** 24.48*

ST×St×Mc×V 8 1.41NS 1.21NS 9.57* 21.17*

Error 486

Total 539

Explanation as in Table 2.

T a b l e 5. ANOVA indicating the effect of independent variables on compressive strength properties of parboiled milled rice

Compressive

strength

properties

MSE of

R2

training data testing data

Tarom Fajr Tarom Fajr Tarom Fajr

Y 0.011 0.155 0.371 0.659 0.962 0.900

MOE 0.093 0.034 0.135 0.083 0.978 0.905

F 0.048 0.024 0.051 0.068 0.988 0.987

En 0.059 0.015 0.088 0.096 0.927 0.955

Explanations as in Table 1.

T a b l e 6. Correlation coefficients and mean square error for performance of ANN-GA model for parboiled Tarom and Fajr milled rice

varieties



it became the lowest value of MSE at 10 for Tarom and 11

neurons for Fajr milled rice. It is also seen that the optimal

network has MSE values of 0.051 for train, 0.126 for fitness

and 0.159 for test of Tarom milled rice. The corresponding

values for Fajr are 0.044 for train, 0.74 for fitness and 0.087

for test, respectively. The MSE for training and testing data

and R
2

value of Tarom and Fajr milled rice for optimal

GA-ANN model are presented in Table 6. Comparison of the

predicted results with experimental data shows very small

MSE (0.011-0.659) and high R
2

(0.9-0.988), indicating

good agreement between compressive strength properties

and parboiling process. In this regard some researchers

reported high R
2

and low MSE for modelling and predicting

of products, such as Sablani and Rahman (2003) for pre-

dicting thermal conductivity of food, Gulati et al. (2010)

for modelling and optimization of soybean hydration for

facilitating soybean processing, Fathi et al. (2011) for an

intelligent modelling system to predict the physicochemical

properties of dried kiwifruit. As a result, the developed mo-

del can be used efficiently for the modelling of compressive

strength properties of parboiled paddy and milled rice.

CONCLUSIONS

1. Compressive strength values of parboiled paddy and

milled rice were significantly affected by varieties, Tarom

had higher values than Fajr for paddy and milled rice.

2. Removing husk and bran in milling process caused

the ultimate stress, rupture force and rupture energy of

milled rice to decrease.

3. All mentioned properties increased significantly with

increase in steaming time from 10 to 20 min.

4. The best GA-ANN model observed had 9 and 11

neurons in hidden layer for Tarom and Fajr paddy, respec-

tively.

5. The developed model can be used efficiently to pre-

dict compressive strength properties of parboiled paddy and

milled rice.
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