
A b s t r a c t. The prediction of cation exchange capacity from

readily available soil properties remains a challenge. In this study,

firstly, we extended the entire particle size distribution curve from

limited soil texture data and, at the second step, calculated the

fractal parameters from the particle size distribution curve. Three

pedotransfer functions were developed based on soil properties,

parameters of particle size distribution curve model and fractal

parameters of particle size distribution curve fractal model using

the artificial neural networks technique. 1 662 soil samples were

collected and separated into eight groups. Particle size distribution

curve model parameters were estimated from limited soil texture

data by the Skaggs method and fractal parameters were calculated

by Bird model. Using particle size distribution curve model para-

meters and fractal parameters in the pedotransfer functions

resulted in improvements of cation exchange capacity predictions.

The pedotransfer functions that used fractal parameters as pre-

dictors performed better than the those which used particle size

distribution curve model parameters. This can be related to the

non-linear relationship between cation exchange capacity and

fractal parameters. Partitioning the soil samples significantly in-

creased the accuracy and reliability of the pedotransfer functions.

Substantial improvement was achieved by utilising fractal para-

meters in the clusters.

K e y w o r d s: cation exchange capacity, fractal theory,

particle size distribution, pedotransfer functions

INTRODUCTION

Measuring cation exchange capacity (CEC) is difficult,

costly and time-consuming (Salehi et al., 2008). Moreover,

in many cases, CEC values are unavailable in the databases

(Seybold et al., 2005). Despite the considerable amount of re-

search done to predict CEC from readily available soil pro-

perties, improvement of the predictions without additional

costs remains a challenging issue. It may be more suitable

and economical to develop pedotransfer functions (PTFs)

which use some auxiliary variables (the variables which

were calculated from soil properties and can be used as input

parameters in the PTFs to predict hard-to-measure soil

properties) to improve the prediction of CEC. Soil scientists

need a reliable estimation for CEC and it would be very

important to improve the predictions only by using readily

available soil properties. These improvements will benefit

all users of soil survey data and will help them in the exact

interpretation of their results. Therefore, research in

developing methods for the prediction of CEC from readily

available soil data is becoming increasingly important

(Bishop and McBratney, 2001).

Cation exchange capacity is commonly related to soil

texture, mineralogy, and any other information, such as frac-

tal parameters and specific surface area, that depicts their

variation. This information can be used to predict CEC

(Bishop and McBratney, 2001) leading to successful estima-

tion of CEC from the fractal parameters.

Fractal theory has been employed successfully to

explain the soil particle size distribution (PSD) by many

authors such as Bird et al. (2000). Ersahin et al. (2006)

related the CEC of the soils to the fractal dimension of PSD

using regression method. The estimation of CEC can be im-

proved by using more precise values of fractal dimension

that are sensitive to the type of clays in the soils (Ersahin et

al., 2006). Fractal dimension and CEC increased with in-

creasing finer fractions of the soil and there was a positive

correlation between fractal dimension and CEC. The existen-

ce of these relationships suggests that fractal parameters

should be useful in predicting CEC more accurately.

Calculation of fractal parameters for soils needs the data

for the entire PSD curve that is not available in most cases,

and some databases. The entire PSD curve can be developed
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from limited soil texture data (ie sand, silt and clay) (Skaggs

et al., 2001). Fractal models of PSD can be fitted to the result

of PSD curve. The parameters of the developed model and

the fractal parameters can be useful to predict CEC.

To our knowledge no one has used fractal parameters,

especially fractal parameters and PSD curve model para-

meters, to predict CEC by artificial neural networks. Thus

the objectives of this study were:

– to calculate the fractal parameters and PSD curve para-

meters using limited soil texture data and to investigate

their relationships as new variables with soil CEC, and

– to develop the PTFs by artificial neural networks to eva-

luate the usefulness for soil CEC prediction of different

types of new variables.

MATERIALS AND METHODS

To predict the CEC of the soils 1 662 disturbed soil

samples were taken from soil data base of Rice Research

Institute of Iran (RRII). Soil samples were passed through

a 2 mm sieve. The soil properties that were used in this study

included pH in saturated soil paste, soil particle size distri-

bution (sand, silt and clay), organic carbon (OC), and cation

exchange capacity (CEC). Sand, silt and clay mass fractions

were measured by hydrometer method (Gee and Or, 2002).

Organic carbon was determined by Walky-Black procedure

(Nelson and Sommers, 1986). Cation exchange capacity was

determined by the ammonium saturation method at pH 7.0

(Soil Survey Division Staff, 1993).

In this study, firstly, we extend the entire PSD curve

from limited soil texture data and obtained PSD curve model

(the model of Skaggs et al. (2001)) parameters. At the

second step, the fractal model of Bird et al. (2000) was fitted

on PSD curve data (that was extended at the first step) and

fractal parameters were calculated. At the third step, basic

soil properties (including the contents of sand, silt, and clay,

OC and soil pH), PSD curve model parameters and fractal

parameters were used to predict CEC using three PTFs for

all data set. At the fourth step, all data sets were partitioned

into eight groups or clusters and basic soil properties and

fractal parameters were used to predict CEC using two PTFs

for each group. In order to understand the method a flow

chart visually shows the procedure (Fig. 1).

Firsts step: Complete PSD for the 20 size classes (0-2,

2-3, 3-5, 5-10, 10-20, 20-30, 30-40, 40-50, 50-60, 60-100,

100-150, 150-200, 200-300, 300-400, 400-600, 600-800,
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Fig. 1. Flow chart that visually shows the procedure of predicting CEC.



800-1 000, 1 000-1 300, 1 300-1 600 and 1 600-2 000 µm)

were estimated from sand, silt and clay, using the Skaggs et

al. (2001) model:
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where: P(r) is the mass fraction of soil particles with radii

less than r, r0 is the lower limit on radii for which the model

applies, and � and u are model parameters that can be calcu-

lated using the following equations:
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To implement the method described in the above

section, we must select values for r0, r1, and r2. In this study

we used r0 = 1 µm, r1 = 25 µm, and r2 = 999 µm. According

to the USDA particle-size classification system, these radii

specify that P r( )0 is the clay mass fraction, P r( )1 is the clay

plus silt fraction, and P r( )2 is the clay plus silt plus sand mass

fraction. Assuming the linear distribution of sand particles,

P r( )2 was calculated using the clay plus silt mass fraction

and the clay plus silt plus sand mass fraction. However, the

assumption may not be correct, but 999 µm is too close to the

upper limit on radii of sand fraction (1 000 µm), then this

assumption will not introduce much error to the model.

Second step: In this study cumulative solid mass distri-

bution of the Pore-Solid Fractal model was applied to PSD

data (Bird et al., 2000):

Ms d d di i
D( ) ,� � �� 3 (6)

where: Ms d di( )� is the cumulative mass of particles below

an upper limit di, D is the fractal dimension of the PSD, and

� is the composite scaling constant. The fractal parameters

of D and � were obtained by fitting the above model to the

PSD data that was estimated using the Skaggs et al. (2001)

method. Then the D and � were used as predictors to esti-

mate CEC. The coefficients of � and u are the parameters of

the PSD curve model as well as D and � but the first two

parameters are related to a non-fractal model and the later

two parameters are related to a fractal model.

Third step: The fractal dimension D had non-normal

distributions, then, it is normalized by 10
D-2

. All variables

(pH, OC, sand, silt, clay, � and D, PSD curve model para-

meters (� and u) and CEC) were standardized to have a zero

mean and unit variance.

At this step, three PTFs were developed as follows. The

first pedotransfer function (PTF1) was based on the basic

soil properties including the contents of sand, silt, and clay,

OC and soil pH. The second pedotransfer function PTF2

included fractal parameters D and � in the Eq. (6) besides

those variables in PTF1 as inputs. In the third pedotransfer

function PTF3, PSD curve model parameters � and u in the

Eq. (1) were included besides the basic soil properties.

Fourth step: At the fourth step, all data sets were parti-

tioned into more homogeneous soil groups or clusters to

improve the accuracy and reliability of the CEC estimation.

The grouping of the data sets was based on soil properties

using cluster analysis by SPSS software (SPSS Inc, 1994).

Ward clustering method with squared Euclidian distance

was used to group all data into eight clusters in order to

minimize within-cluster variances and squared Euclidian

distances between groups. Then, for every data cluster,

PTF1 and PTF2 were developed according to the third step.

This is because the main objective of this study was to test

the utility of fractal parameters in the prediction of CEC.

The 1 662 data were partitioned into two sets, using a ran-

domised approach, a training set of 1100 data, and a testing

set of 562 data and three PTFs (PTF1, PTF2 and PTF3) were

developed.

In order to develop the PTFs, the feed-forward multi-

layer perceptrons artificial neural networks with one hidden

layer were used. Different numbers of neurons in hidden la-

yer, ranging from 3 to 6, were employed. The transfer func-

tion in the hidden neurons was tangent hyperbolic. The net-

work with the optimized number of hidden neurons that had

the highest accuracy and reliability was selected as the ultima-

te PTFs. The soil CEC was selected as an output variable.

The data sets in each cluster were split randomly in the

training (about two thirds) and testing (about one-third) data

sets. Then two PTFs (PTF1 and PTF2) were developed for

each data cluster using artificial neural networks method.

The PTFs were developed by the combination of artifi-

cial neural networks and the bootstrap method (Efron and

Tibshirani, 1993). The input data were selected randomly

for 50 different times in order to obtain 50 bootstrap data sets

of the same size as the training data set. For each bootstrap

data set, a network was trained and CEC was estimated. The

mean of all 50 predictions was assumed as the final estimate.

The sensitivity coefficient of the output variable CEC to

a given input variable was approximated by allowing chan-

ges in the specified input variable within the range of mean
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± standard deviation values, while keeping all the other

input variables constant, and then dividing the resulting

standard deviation of the output variable by the standard

deviation of that specified input variable (NeuroSolutions,

2005). The relative importance of input variables was

obtained by per- forming sensitivity analyses.

The three criteria to evaluate both the accuracy and relia-

bility of the PTFs were Akaike information criterion (AIC),

rootmeansquareerror (RMSE), and relative improvement (RI).

In order to examine the differences between various

PTFs, the Morgan-Granger-Newbold (MGN) test was con-

ducted (Diebold and Mariano, 2002).

RESULTS AND DISCUSSION

The statistics of the soil properties, fractal parameters

and PSD curve model parameters are shown in Table 1. The

t-test indicated that the groups were not significantly

different between development and validation data sets. The

samples used in this study cover a wide range of the physical

and chemical soil properties as well as fractal parameters

and PSD curve model parameters. The textural range co-

vered by the experimental data set is shown on the USDA

texture triangle in Fig. 2. Predominant textural classes were

silty clay, silty clay loam, clay loam, and silt loam (Fig. 2).

Sand ranged from 0.1 to 98.0%, silt from 1.0 to 71.0% and

clay from 1.0 to 74.0%. CEC of the samples showed a wide

range from 2.3 to 58.8 cmolc kg
-1

. The range of pH was from

3.50 to 8.80. Different values were related to the different

land uses. The low pH was characteristic of tea fields and

high level of that was related to olive gardens. Standard

deviation of OC and sand were high. It seems that OC was

affected by field management. Variable managements were

applied on these fields. The low OC belonged to the beach

sands and olive gardens and high level of that was related to

paddy soils that are saturated the most.

Pearson correlations were performed to evaluate the

relationships between CEC and input variables (Table 2).

Preliminary evaluation of data regarding CEC showed that

it was best correlated with fractal parameters � (R = 0.46,

p < 0.001) and D (R = 0.49, p < 0.001). A power function

was used to describe the relationship between CEC and

fractal parameters. In order to investigate the relation bet-

ween CEC and fractal parameters different regression equa-

tions, including linear, exponential, logarithmic, polynomial

and power, were performed (Eq. (13) and (14)). The results

indicated that the power regression described the relations

between CEC and fractal parameters better than other

equations and a strong correlation was found. This is in

agreement with Ersahin et al. (2006) who reported signi-

ficant correlation between fractal dimension and CEC:

146 H. BAYAT et al.

Data set Parameter pH
OC

(%)

Sand

(%)

Silt

(%)

Clay

(%)
�

(g µmD-3)
D � u

CEC

(cmolc

kg-1)

Development

set

Mean 6.96 2.13 25.0 42.1 32.9 16.2 2.84 0.409 0.631 26.5

(n = 1100) SD 0.82 1.51 17.9 11.1 13.9 7.1 0.11 0.078 0.322 9.3

Min 3.50 0.00 0.3 1.0 1.0 0.1 2.20 0.208 0.004 2.3

Max 8.70 7.99 98.0 71.0 69.8 34.3 2.97 1.098 3.041 58.8

Validation set Mean 6.94 2.13 26.1 41.4 32.6 16.0 2.83 0.413 0.625 26.2

(n = 562) SD 0.82 1.45 19.5 11.8 14.6 7.5 0.11 0.084 0.318 9.1

Min 3.50 0.00 0.1 3.0 1.0 0.1 2.21 0.194 0.015 5.0

Max 8.80 8.11 96.0 66.0 74.0 34.6 2.97 0.920 3.513 51.0

OC – organic carbon, � – constant in the fractal model, D – fractal dimension, � and u – parameters of PSD curve model.

T a b l e 1. Statistics of the development and validation data sets
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Fig. 2. Textural distribution of both training and testing data sets

on the USDA soil texture triangle.



CEC= 0.039 D
6.173

R = 0.604, (7)

CEC= 10.61 �0.322
R = 0.604, (8)

where: � is the constant in the fractal model and D is the

fractal dimension.

The correlations between CEC and PSD curve model

parameters (R = 0.11 for u and R = -0.20 for �) were lower

than the correlation between CEC and fractal parameters but

they were significant (p < 0.001).

The correlations between CEC and soil OC and between

CEC and clay content were both positive and significant

(p < 0.001). The same results have been reported by other

authors (Amini et al., 2005). The correlation between the

sand content and CEC was negative and significant

(p < 0.001). This is in agreement with Amini et al. (2005).

Correlations for silt and pH were weak and lower than 0.2,

although highly significant (p < 0.001).

For incorporating fractal parameters and PSD curve

model parameters, artificial neural networks were used to

develop the PTFs. In fact, this is the third step of the study.

According to the method described in the third step, three

PTFs (PTF1, PTF2 and PTF3) were developed for all data set

and the results for the development and validation are

summarized in Table 3. Also, the utility of introducing

fractal parameters to the model to predict CEC for all data set

is depicted in Fig. 3.

The prediction of soil CEC was improved by the use of

fractal parameters and PSD curve model parameters as pre-

dictors (Table 3 and Fig. 3). The improvements were signi-

ficant for the accuracy (development) of the PTFs. How-

ever, they were not significant for the reliability (validation)

of the PTFs. PTF2 that utilized fractal parameters produced

better results than PTF3 that utilized PSD curve model

parameters. Among the three PTFs that were developed to

predict soil CEC, PTF2 was the most successful. This result

confirmed our hypothesis that fractal models simulate the

PSD better than the conventional models and CEC may be

one of the properties that are controlled by the fractal beha-

viour of PSD. In fact the fractal theory could develop a more

complete description of soil structure and processes that are

impossible to describe by the conventional methods based

on Euclidean geometry (Soko³owska et al., 2001).

Some authors suggested that the fractal dimension of

the PSD is useful in quantifying the relationships between

soil texture and related soil properties and processes

(Hwanga Ii et al., 2002). Bayat et al. (2011) successfully

used fractal parameters to estimate soil water retention curve

by artificial neural networks and multi-objective group

method of data handling. It may be reasonable to assume that

one of the reasons for the insignificant effect of fractal

parameters and PSD curve model parameters on the pre-

diction of CEC is that improving PTF reliability may be an

issue distinctly different from improving PTF accuracy

(Pachepsky and Rawls, 1999). Another reason may be the
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Variable pH OC Sand Silt Clay � D � u

OC 0.13*** 1.00

Sand 0.18*** 0.03 1.00

Silt -0.02 0.14*** -0.64*** 1.00

Clay -0.23*** -0.15*** -0.79*** 0.04 1.00

� -0.22*** -0.14*** -0.90*** 0.28*** 0.95*** 1.00

D -0.19*** 0.00 -0.93*** 0.48*** 0.83*** 0.86*** 1.00

� 0.08** -0.04 0.71*** -0.80*** -0.29*** -0.53*** -0.47*** 1.00

u -0.07** -0.03 -0.56*** 0.64*** 0.23*** 0.49*** 0.36*** -0.81*** 1.00

CEC -0.09*** 0.43*** -0.45*** 0.12*** 0.48*** 0.46*** 0.49*** -0.20*** 0.11***

Significant correlations at: **p<0.01, ***p<0.001. Other explanations as in Table 1.

T a b l e 2. Correlation coefficients (R) between input and output variables

Step AIC RMSE RI MGN

Development PTF1 11 684 6.10

PTF2 11 636 5.97 2.16 4.97

PTF3 11 662 6.04 1.02 2.30

Validation PTF1 5 540 5.82

PTF2 5 530 5.77 0.86 1.24

PTF3 5 531 5.77 0.77 1.13

AIC – Akaike information criterion, RI – relative improvement,

RMSE – root mean squared error, MGN – Morgan-Granger-

Newbold. MGN value corresponding to significant difference

(p < 0.05) for accuracy and reliability is 1.96. In the MGN test,

PTF2 and PTF3 were compared with the PTF1.

T a b l e 3. Development and validation results of the PTFs for all

data set



large and general data set used in this study. Nemes et al.

(2003) found that PTFs from large and general data sets

make large errors. They suggested that having a small set of

relevant data is better than using a large but more general

data set.

Sensitivity analysis was performed to investigate the

contribution of fractal parameters in the prediction of CEC

and the result is shown in Fig. 4. The fractal parameters

(� and D) explained 32% of the variation in CEC. The corre-

lation between fractal parameters and soil properties will

amplify the contribution of fractal parameters in a model

with fractal parameters and soil properties as independent

variables when compared with a model with only soil pro-

perties as independent variables. This result shows the utili-

ty of fractal parameters in describing the relationship bet-

ween CEC and soil texture. In spite of calculating the fractal

parameters from sand, silt and clay, they could significantly

improve the CEC prediction. Thus, the results obtained in

this study reflect that fractal parameters and PSD curve

model parameters can be used as predictors for CEC

prediction. Each of OC and clay content explained 19% of

the variation in CEC for PTF2. Contribution of organic mat-

ter (Peinemann et al., 2000) and clay (MacDonald, 1998) in

the soil CEC has been reported by some authors. However,

the relationship between clay and CEC can be highly va-

riable. Different clay minerals have different CECs and the

relative proportion of pH-dependant and permanent charge

varies among clay minerals. Soil pH and silt content had the

least effect on the prediction of CEC. Krogh et al. (2000)

proposed an equation based on the same inputs (clay, silt,

OC and pH) which explained 90% of soil CEC variation.

Stratifying the data based on CEC or textural classes did

not lead to any considerable improvement of accuracy or

reliability of the PTFs. Data stratification by using cluster

analysis with all the variables provided the best-fit models

for the soil samples (Table 4).

Stratifying data into more homogeneous groups on the

basis of all variables could improve the CEC predictions

considerably. When soils with various geneses are included

in the PTFs and variables such as mineralogical composition

have not been controlled, soil properties become less

predictive. In fact partitioning the data according to squared

Euclidian distance of the variables between groups in-

creased significantly the accuracy and reliability of the PTFs

(Table 4). However, only the accuracy of the PTFs was im-

proved in the study of Pachepsky and Rawls (1999) by

grouping the data according to the taxonomic unit, soil

moisture regime, soil temperature regime, and soil textural

class in the prediction of soil water retention curve. The

result of this study may show the superiority of classifying

the data according to the squared Euclidian distance to the

other classification criteria.

The potential importance of fractal parameters is well

illustrated by using artificial neural networks in the pre-

diction of soil CEC for the development and validation data

sets in the PTFs after grouping all data (Table 4 and Fig. 5).

In all 8 clusters (C1-C8) utilising fractal parameters, CEC pre-

dictions improved substantially in comparison to the PTFs

without utilizing fractal parameters (Table 4 and Fig. 5).

Using fractal parameters as inputs improved the accuracy of

CEC predictions (except C5), from 4.39% for C6 to 58.45%
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Fig. 3. Distribution of predicted versus measured CEC for PTF1, PTF2 and PTF3 of all data set for the validation step.

Fig. 4. Sensitivity analysis of output variable (CEC) to the input

variables for PTF2.



for C7.The reliabilityof CECpredictions improved from0.68%

for C6 to 55.5% for C7. This large improvement in estimates

of soil CEC was a benefit arising from the ability of the frac-

tal theory to control the relationship between PSD and CEC.

The utility of introducing fractal parameters to the mo-

del to predict CEC for cluster 7 is depicted in Fig. 5. Introduc-

ing fractal parameters to the model increased the accuracy

and reliability of PTF2 in comparison with PTF1 by decreas-

ing the RMSE from 12.4 to 5.3 and increasing the R
2

from

0.071 to 0.364 and decreasing the distribution of measured

versus predicted CEC. In fact the data was distributed away

from the 1:1 line in the PTF1, whereas, in PTF2 the data was

distributed around the 1:1 line (Fig. 5). Therefore, the fractal

approach is a useful tool to describe the processes of porous

medium (Hwanga Ii et al., 2002).

The main advantage of using fractal parameters and

PSD curve model parameters as predictors was the improve-

ment of the CEC prediction without additional measurements.

This result is in agreement with some authors (Giménez et

al., 1997) that used fractal dimension in characterizing the

porous medium and improving the accuracy and reliability

of the models. In the same way, Wu et al. (2003) used some

easily measurable data to predict soil CEC. Then they utili-

zed the predicted CEC for estimating and mapping of soil

copper content by kriging.

In this study the artificial neural networks was run at least

15 times and the PTF with the best performance was selec-

ted. The RMSE values obtained for PTF2 of the clusters

ranged from 1.86 to 6.58 (cmolc kg
-1

) for training and

validation. The authors are well aware that the accuracy

(based on the RMSE of training) and reliability (based on the

RMSE of validation) of the developed PTFs are not very

high but they are comparable with the RMSE and coefficient

of determination (R
2
) values reported in the literature. For

example, Manrique et al. (1991) used a lot of soil physical

and chemical properties such as clay content, organic car-

bon, sum of exchangeable bases, 1 M KC1 extractable Al,

clay plus silt content, pH in soil/water ratio 1:1, dithio-

nite-citrate extractable Al, and Al saturation to predict CEC

and reported R
2

values of 0.38-0.93. Using more input va-

riables may increase the accuracy and reliability but their

measurement would be more costly and time consuming. In

this regard only more readily available data may be used to

estimate CEC in our study. Amini et al. (2005) tested several

published PTFs and developed some PTFs to predict CEC

by artificial neural networks with the RMSE values of

2.54-3.97. Ersahin et al. (2006) used the textural fractions to

predict CEC by the regression method and reported R
2

values of 0.22-0.48 while with employing fractal dimension
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Cluster

number
PTF

n RMSE RI MGN n RMSE RI MGN

Development Validation

C1 PTF1 200 4.95 140 10.80

PTF2 4.36 11.95 3.240* 5.25 51.60 13.060*

C2 PTF1 120 4.9 76 8.44

PTF2 4.25 13.19 2.739* 5.38 36.20 7.059*

C3 PTF1 90 3.33 34 6.95

PTF2 2.62 21.31 3.562* 5.42 22.10 3.099*

C4 PTF1 160 3.1 87 4.05

PTF2 2.74 11.57 4.559* 3.75 7.29 2.215*

C5 PTF1 90 1.64 39 4.68

PTF2 1.86 -13.1 1.935 3.61 22.80 2.794*

C6 PTF1 200 4.19 103 6.63

PTF2 4.01 4.39 2.040* 6.58 0.68 0.920

C7 PTF1 110 11.50 52 14.10

PTF2 4.78 58.45 13.790* 6.29 55.50 8.675*

C8 PTF1 110 5.32 7.68

PTF2 4.06 23.69 4.985* 51 5.85 23.90 2.818*

n – number of samples in the development and validation steps of each cluster, C1-C8 – clusters 1-8. Other explanations as in Table 3.

*Significant differences (p < 0.05) between each PTF and the previous one (ie PTF1 with PTF2).

T a b l e 4. Development and validation results of the PTFs for the clusters



R
2

increased to 0.74. Seilsepour and Rashidi (2008), by

using the regression method, depending on the variables, re-

ported R
2

values of 0.01, 0.19, 0.21, 0.26 and 0.74. There-

fore, the PTF2 of the clusters developed in the present study

may be recommended to be used to predict CEC with good

reliability.

On the other hand, according to Davatgar et al. (2006),

smectite is the dominant clay mineral in most of the soils of

the Guilin province, north of Iran. The PTFs developed in

this study are also related to smectitic soils that have quite

different behaviours compared to soils with other dominant

clay minerals, due to large surface area, high cation exchan-

ge capacities, chemically active surfaces, reversible inter-

layer expansibility (Laird et al., 1992), high potential of

swelling and shrinkage with minimal horizon differentiation

due to pedoturbation (Ahmad, 1983), wide and deep cracks

as deep as 50 cm and at least 1 cm wide (Staff, 1975). In spite

of numerous PTFs having been offered to predict CEC in

different soils, fewer PTFs have been introduced to predict

CEC in smectitic soils.

Smectitic soils are very difficult to manage (Millan et al.,

2002) and the predictability of hard-to-measure soil proper-

ties from readily available properties may be less promis-

ing. Therefore, developing the PTFs for these soils that

could predict CEC only by readily available soil properties

that have comparable accuracy with the PTFs reported for

the other soils in the literature would be a great step forward.

Moreover, there are two key points in this study. First,

the significant improvement of the CEC predictions by PTF2
(developed simply by using PSD fractal parameters) for

most of the clusters in comparison to PTF1. As a matter of

fact, the significant improvement was obtained only by
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Fig. 5. Distribution of predicted versus measured CEC for PTF1 and PTF2 of C1-C8 clusters for the validation step.



calculating fractal parameters and using them as predictors,

without spending more cost. It clearly demonstrates the

utility of fractal theory in describing PSD of Vertisols as has

been reported by Millán and Orellana (2001). Second, the

effect of clustering in the improvements of the PTFs that was

considerable.

Sensitivity analysis was performed to investigate the

contribution of fractal parameters in the prediction of CEC

in eight clusters (Table 5). In the PTFs (PTF1-2) developed

for eight clusters (C1-C8), fractal parameters explained

between 30.2 and 58.7% of the variation in CEC, with C8

and C7 having the lowest and highest incorporation,

respectively. Of the eight PTF2s developed for the clusters,

� had the highest contribution in six clusters (C1, C2, C3, C4,

C6 and C7) and in C5 the fractal dimension (D) had the highest

incorporation. Only in one cluster (C8), a non-fractal para-

meter (clay) had the highest contribution in predicting CEC.

Amini et al. (2005) developed several PTFs to estimate

CEC by artificial neural networks and multiple regressions.

They explained 70% of the variation in CEC using soil clay

and organic matter content. They concluded that adding

sand and silt did not significantly improve the accuracy of

the PTFs. However, there are several factors that could

improve the CEC prediction such as the type and the

morphology of clay minerals, and the origin of soil organic

matter (Stewart and Hossner, 2001) but, they are costly and

time consuming. Therefore, finding variables such as fractal

parameters that can improve the CEC prediction would be

very useful. Our result showed the importance of fractal

parameters in the prediction of CEC. Since in this study

fractal parameters were calculated only from sand, silt and

clay, therefore it could be a great step forward to improve the

CEC prediction without additional measurements. How-

ever, similar to other authors (Wosten et al., 2001), the PTFs

developed in this study can be recommended for application

only in the same pedo-environmental conditions within in-

put variable range.

CONCLUSIONS

1. Correlations were found between cation exchange

capacity and fractal parameters and particle size distribution

curve model parameters. These correlations could be stron-

ger by using non-linear regression equations. As a result,

using fractal parameters and particle size distribution curve

model parameters in predicting cation exchange capacity by

artificial neural networks resulted in improvements, and

thus, they successfully could be used as predictors for cation

exchange capacity prediction.

2. The artificial neural network models that use fractal

parameters as predictors had better performance than the

pedotransfer functions that use particle size distribution

curve model parameters.

3. Partitioning the data increased significantly the ac-

curacy and reliability of the artificial neural network mo-

dels. Utilizing fractal parameters in the clusters improved

the cation exchange capacity prediction substantially.

4. The results of the study also indicated that fractal

parameters are the most important factors which affect ca-

tion exchange capacity prediction.

5. Pedotransfer functions that utilize fractal parameters

and particle size distribution curve model parameters are

interesting and flexible approaches for the prediction of

cation exchange capacity by artificial neural networks.

Therefore, these artificial neural network models provide an

easy, economic and brief methodology to improve the

estimation of soil cation exchange capacity.
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