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A b s t r a c t. Moisture content uniformity is one of critical 
parameters to evaluate the quality of dried products and the drying 
technique. The potential of the hyperspectral imaging technique 
for evaluating the moisture content uniformity of maize kernels 
during the drying process was investigated. Predicting models 
were established using the partial least squares regression meth-
od. Two methods, using the prediction value of moisture content 
to calculate the uniformity (indirect) and predicting the moisture 
content uniformity directly, were investigated. Better prediction 
results were achieved using the direct method (with correlation 
coefficients RP = 0.848 and root-mean-square error of prediction  
RMSEP = 2.73) than the indirect method (RP = 0.521 and RMSEP 
= 10.96). The hyperspectral imaging technique showed significant 
potential in evaluating moisture content uniformity of maize ker-
nels during the drying process.

K e y w o r d s: maize kernels, hyperspectral imaging, mois-
ture content uniformity, drying

INTRODUCTION

Drying is a mass transfer process consisting of removal 
of water or another solvent by evaporation from the material. 
This process is important and often used as a final produc-
tion step before selling or packaging products. In the past 
decades, many drying techniques have been widely reported 
and used in food manufacturing. For a drying process, dry-
ing uniformity is one of important parameters to evaluate 
the quality of dried products and drying technology. Drying 
uniformity is defined as the relative standard deviation (RSD, 
ratio of standard deviation to mean measurement value) of 
temperature, moisture content (MC), colour, and shrinkage 

(Wang et al., 2013a; 2013b). Among them, moisture content 
uniformity (MCU) was gradually concerned by scholars. 
MC non-uniformity can cause many disadvantages, such 
as relatively short safe storage life, reduce storage stabi- 
lity, and can even cause mildew deterioration and reduce 
product use value at serious non-uniformity (Hashemi and 
Murray Douglas, 2003). Generally, MCU is calculated by 
the definition (ratio of MC standard deviation to MC mean 
measurement value). The number of selected samples determi- 
nes the accuracy of uniformity measurement. The more 
selected samples, the higher uniformity. Since the tradition-
al laboratory methods for MC measurements of agricultural 
foods, the gravimetric oven method and Karl Fisher titration 
(Aguilera, 2003), are destructive measurements, the same 
samples cannot be used for further analysis, which limits 
the number of selected samples for calculating uniformity.

Rapid non-destructive technologies for measuring the 
drying qualities of agricultural products have been studied 
extensively (Faustino et al., 2007; Fernández et al., 2005; 
Nowak and Lewicki, 2005; Mendoza et al., 2006; Toyoda 
et al., 2001). Among these approaches, machine vision 
and near-infrared spectroscopy are the two main methods 
(Lucas et al 2008; Makky et al., 2014; Mireei et al., 
2010; Romano et al., 2012; Wu et al., 2010). However, 
the machine vision method can only acquire average 
image information within the visible range and near- 
infrared spectroscopy can only acquire spectral information 
and cannot obtain the spatial information of the samples. 
As a relatively novel non-destructive technology, hyper-
spectral imaging integrates the advantages of machine 
vision and near-infrared spectroscopy, while overcoming the 
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drawbacks of both techniques when used alone. Hyper- 
spectral imaging provides more detailed or complete infor- 
mation, including internal structure characteristics, morpho- 
logical information, and chemical composition (Huang et 
al., 2013). This technology has been applied to non-destruc-
tive measurement of agricultural products for evaluating 
internal quality (Ariana and Lu, 2008; Huang and Lu, 2010; 
Li et al., 2012; Liu et al., 2006) and pesticide residues (Del 
Fiore et al., 2010; Peng et al., 2011; Shahin and Symons, 
2011). Thus, this technology may have the potential to be 
used as an alternative method for predicting the MCU of 
materials during drying.

In this study, we used maize kernels as raw materials to 
process dried products and evaluate the MCU during dry-
ing based on hyperspectral reflectance imaging technology. 
The specific objectives are as follows:

 – to extract image traits from preprocessed hyperspec-
tral reflectance images of dried maize kernels using the 
mean method; and

 – to evaluate the capability of partial least squares regres-
sion (PLSR) models for predicting the MCU of maize 
kernels during drying.

MATERIALS AND METHODS

Fresh maize (Zea mays L.) kernels used in this study, 
harvested at the commercial state, were purchased from 
a local market. To achieve a broader distribution of MC 
and reduce non-uniformity of initial MC, the maize kernels 
were soaked in water for 12 h. Then they were drained and 
kept at 4 °C and 95% relative humidity in a refrigerator and 
were used within 3 days. Fresh samples were kept at room 
temperature (~24 °C) for one hour before the experiment 
was started. 

Maize kernels were dried using a high-precision labora-
tory dryer developed at the State Key Laboratory of Food 
Science and Technology, Jiangnan University, China (Wang 
et al., 2013b). This microwave-assisted pulse-spouted bed 
vacuum- drying (PSMVD) experimental system essentially 
included a cylindrical multimode microwave cavity, a cir- 
cular duct vacuum drying chamber, a pulse-spouted sys-
tem, a heat supply system, a vacuum system, and a water 
load system. A detailed description of the dryer system is 
given by Wang et al. (2013b).

In this study, the experimental parameters were set as 
follows:

 – the pressure was set at 7-10 kPa,
 – the power was set to 516 W, and
 – the samples were spouted in the preselected time inter-
val of 5 s and held for 3 s by allowing nitrogen gas to 
flow periodically into the drying chamber.
Fresh maize kernels with a mass of 200 g were used for 

each batch. To achieve broad sample distribution of MC, 
six batches at different drying times (from 10 to 60, in steps 
of 10 min) were tested. The experiments were replicated 

thrice for each drying time. For each batch, two hundred 
dried maize kernels were selected randomly for hyperspec-
tral imaging and then tested using reference methods for 
MC. In total, 3600 kernels were used for further analysis.

An in-house developed line-scan hyperspectral reflec-
tance imaging system was used to acquire hyperspectral 
reflectance images from the maize kernels. The system 
includes a back-illuminated 1392 × 1024-pixel CCD 
(charge-coupled device) camera (Pixelfly QE IC 285AL, 
Cooke, USA), a spectrograph (1003A-10140 HyperspcTM 
VNIR C-Series, Headwall Photonics Inc., Fitchburg, USA) 
with a 25 μm slit covering an effective range of 400 nm to 
1 000 nm, a zoom lens (10004A-21226 Lens, F/1.4 FL23 mm, 
Standard Barrel, C-Mount., USA), a single optic line-light 
powered by a 150-W DC light source (halogen lamp, EKE, 
3250K, Techniquip, USA), and a horizontal motorized 
stage. Ten maize kernels were placed onto a 20×20 cm 
black background board in two rows and perpendicular to 
the scanning line of the hyperspectral imaging unit. Coupled 
with the distance between the zoom lens and the sample 
(25 cm), a 35 mm scan length of longitudinal and a 80 µm 
horizontal step size parameters were preset to acquire the 
whole undistorted image of one group samples.

For each group of samples, 438 scans covering a 35 mm 
distance were acquired at an exposure time of 110 ms for 
each hyperspectral reflectance image. The hyperspectral 
imaging system had 0.15 mm/pixel spatial resolution and 
a 0.644 nm spectral interval using a 1 392 pixel camera. 
After 10 spectral binning operations, the resultant hyper-
spectral reflectance images had a 6.44 nm spectral interval 
and 94 wavelengths. Thus, a spatial block of a 1,392 438× 94 
image was created, which was represented by a 2-D image 
with x-axis and y-axis coordinate information. Another 
axis was represented by spectral information. Darkness and 
reflectance images of white Teflon were also acquired for all 
the five groups of samples and used as reference to obtain 
relative reflectance images. All the acquired images were 
completed by Hyperspectral Scanning and Image Rendering 
Software, Rev a.2.1.3 (Headwall Photonics, Inc., USA).

The MC, expressed in on a percent wet basis (% w.b.), 
was measured by the gravimetric method using a convec-
tion oven. The samples dried at different times using the 
PSMVD experimental system were placed into the oven 
(Binder FED, Berlin, Germany) at 105°C until they reached 
a constant weight (Ning, 1997). The weight was measured 
using an analytical balance (Hengping FA1104, Shanghai, 
China; ±0.0001 g). The MC was measured and MCU was 
calculated. 

The light source variation effect was corrected by 
obtaining relative reflectance images using the following 
equation:
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where TR is the relative reflectance, TS and TF are the absolute 
reflectance of the sample and of the reference (ie Teflon), 
respectively; and TD  is the dark signal for the CCD detector. 
Thus, all further analyses were conducted on the relative 
reflectance images. 

Segmentation of the maize kernels from the hyperspec-
tral image background is a key step in extracting the image 
features used to develop the prediction models. Among 
the image segmentation methods, the global threshold ap- 
proach is a traditional technique with the advantages of 
easy calculation and high efficiency. 

After the automatic segmentation of the image back-
ground at each wavelength, a large amount of spatial and 
spectral information was obtained from the true image of 
each maize kernel. Image analysis mainly aims at effective 
extraction of useful information. Considering the apparent 
changes in the surface of the maize kernels and the MC 
of the maize kernels during the drying process, mean reflec- 
tance was applied to extract and predict the MCU of the dried 
grains during the drying process. Similar to the near-infra-
red spectrum, the mean value of relative reflectance images 
(mean of the i pixel intensity in the image at each wave-
length) provides physical and chemical information on the 
samples. The mean reflectance is expressed in Eq. (2):
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where R  is mean reflectance, TR(i, j) is the relative reflec-
tance intensity of the pixel (i, j), (i =1,2 ...M, j = 1,2 ...N); 
and M, N are the number of total horizontal and vertical 
pixels for a maize kernel, respectively. 

PLSR was used to predict the MCU using the mean 
reflectance feature parameter. In this study, two methods 
were investigated including indirect prediction and direct 
prediction uniformity. In the indirect method, MC was 
adopted as a reference variable to develop the calibration 
model and the prediction value of MC was used to calcu-
late the MCU, which was investigated if one of the models 
could be used to predict the MC and MCU simultaneously. 
Two hundred maize kernels for each drying time (10, 20, 
30, 40, 50, and 60 min) were randomly divided into two 
sets: 3/4 of the samples were used for calibration and the 
remaining 1/4 was used for prediction (independent valida-
tion). The calibration sets from each drying time made up 
the whole calibration set and the prediction sets from each 
drying time made up the whole prediction set for predicting 
the MC of the maize kernels, respectively. For evaluating 
the performance of the indirect model, the MC prediction 
values of 10, 30, and 50 grains in the prediction set for each 
drying time were selected in one subset to calculate the 
MCU, respectively.

Unlike in the indirect method, MCU was adopted as a re- 
ference variable in the direct method. In order to compare 
it with the indirect model, the same amount of samples (10, 

30, and 50 grains) was selected in one subset to calculate 
the MCU as a reference, then the calibration model was 
developed using the mean reflectance spectra and the MCU 
reference directly.

For both methods, the PLSR models (ie selection of 
the appropriate number of latent variables) were deter-
mined by a full cross-validation of the calibration samples 
using leave-one-out cross validation until the root-mean-
square error of cross validation (RMSECV) reached the 
minimum. After the calibration model was developed, this 
model was used to predict the independent set of samples 
that had not been used in the calibration. The calibration 
and prediction procedure described above was repeated 10 
times by selecting a random set of samples. The average 
values of the correlation coefficient (ie RC, RCV, and RP) and 
root-mean-square error for calibration and prediction (ie 
RMSEC, RMSECV, and RMSEP) were calculated to eva- 
luate the performance of the models. The PLSR was run 
in Matlab (2009b) with PLS-Toolbox 5.0 (Eigenvector 
Research, Inc., Wenatchee, WA, USA).

RESULTS AND DISCUSSION

Table 1 shows the statistics for the gravimetric method 
measurement of MC for fresh and dried maize kernels at 
different drying times (from 10 to 60 min).

Figure 1 shows the contour segmentation result of 
representative dried maize kernels (10, 30, and 50 min) at 
a 718.2 nm wavelength.

Figure 2 shows the representative colour images of 
fresh and dried maize kernels with apparent differences 
in MC. The samples with higher MC appear smooth and 
rounded with a homogenous glossy surface. As the drying 
time increases, the MC decreases, thus causing the sam-
ples to have textured surfaces. Shrinkage also occurs as the 
maize samples lose MC. 

Figure 3 shows the representative relative reflectance 
spectra for fresh and processed maize kernels at different 
drying times (10, 20, 30, 40, 50, and 60 min). A typical 
downward peak was observed at 960 nm, corresponding 
to MC absorption. Along the increase in the drying time, 
the absorption peak gradually disappeared because of the 
MC loss. Over the full wavelength region, the relative 
reflectance for the fresh maize kernels was generally great-
er than that for the dried sample. For the wavelength range 
from 400 to 920 nm, an evident decrease in relative intensi-
ty was observed at the initial drying periods between 10 and 
30 min. Thereafter, the intensity of reflected light tended 
to increase as observed between 40 and 60 min of drying.

At the initial periods of drying, microstructural changes 
occurred on the surface of the maize kernels because of 
the evaporation of moisture in the immediate surround-
ings of the grain surface. During this initial period, vapour 
diffusion is the predominant mechanism, and the rate of 
evaporation remains constant, thus resulting in textural 

,
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changes on the grain surface going from slight to moderate, 
as observed between 10 and 30 min of drying (Fig. 2b to 
2d). However, as soon as the outer layers of the grain cells 
on the surface become ‘unsaturated’ with moisture, the dry-
ing rate falls sharply because the diameters of pores and 
capillaries decrease. This condition results in shrinkage and 
compactness of the surface microstructure. This compact 
and brittle structure of the maize kernel probably explains 
the increase in relative intensity values observed at 40 and 
60 min of drying (Fig. 3).

The indirect method, which used the prediction value of 
MC to calculate the uniformity, was analysed in this study. 
Mean reflectance spectra were used to develop the MC 
prediction model coupled with the PLSR algorithm. The 
MC prediction results are shown in Table 2. The average of 
10 calibration and prediction models for MC yielded good 
results, with RP = 0.992, RMSEP = 2.89 %. The ratio of pre- 
diction deviation (RPD), that is, the ratio of the standard 
error of performance to the standard deviation of the re- 
ference data (Huang and Lu, 2010), is an essential para- 
meter in evaluating the performance of prediction models. 
An RPD between 1.5 and 2 indicates that the model can 
discriminate low from high values of the response variable. 
A value between 2 and 2.5 indicates that coarse quantitative 
predictions are possible, whereas a value between 2.5 and 
3 or above corresponds to good and excellent prediction 
accuracy, respectively (Nicolaï et al., 2007). In this study, 
the RPD value for MC model was larger than 7.0, so these 
models can be used to predict the MC and calculate its uni-
formity further. 

For this method, a different number was selected in one 
subset for computation including 10, 30, 50 maize kernels. 
Table 3 shows the calculation results of MCU used the 
prediction values of MC. Although the average correlation 
coefficient, RP, of 10 runs increased with the increase in the 
kernel number in one subset, it was less than 0.6, and the 
RPD was only 0.5. Figure 4 shows the prediction results for 
MCU versus the actual measurements for one of the 10 runs 
for 50 maize kernels in one subset. 

Since the indirect method yielded poor prediction 
results for the MCU of dried maize kernels, the direct 
method was researched, that is, calibration models were 
developed for describing the relationship between the mean 
reflectance spectra and MCU directly. The MCU prediction 
results for the three different numbers of samples in one 
subset are shown in Table 4. Compared with the indirect 
method, the direct method yielded better results for the cali-
bration and prediction models. The average correlation, RP, 
of 10 runs was higher by 33.6-62.8%, whereas the average 

T a b l e  1. Statistics of the MC measurements for fresh and dried maize kernels

Drying time
(min)

Max
(%)

Min
(%)

Mean
(%)

Standard deviation 
(%)

RSD
(%)

0 (Fresh) 79.51 74.46 77.36 0.98 1.27

10 71.69 61.69 66.63 1.91 2.87

20 62.03 48.74 55.66 2.59 4.65

30 44.35 27.41 34.94 3.49 9.99

40 21.49 11.19 15.67 2.53 16.14

50 12.86 7.13 9.89 1.17 11.83

60 10.15 5.95 8.32 0.65 7.81

a

b

c

Fig. 1. Contour segmentation results for dried maize kernels: 
a – 10, b – 30, c – 50 min at a wavelength of 718.2 nm.
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RMSEP values were reduced by 54.9-75.1%. The RPD was 
improved from 0.5 to 1.1, 0.5 to 1.5, and 0.5 to 1.9 respec- 
tively for the different numbers of samples. Figure 5a,b 
show the prediction results for MCU versus the actual 
measurements for one of the 10 runs for 30 and 50 maize 
kernels in one subset, respectively.

In this study, a non-destructive detection technique was 
the first attempt applied to predict the moisture content uni-
formity of materials in the drying process. Scholars have 
done valuable work in this field in recent years using the 
traditional measuring method, such as Wang et al. (2013b), 
who used the traditional method to calculate the moisture 
content uniformity. This method can calculate the drying 
uniformity, but it wastes time and energy. Wang et al. (2014) 
researched the drying uniformity in radio frequency drying 
of macadamia nuts; the results show that uniformity needs 

very strict conditions. The sample would be damaged and 
cannot be used again. Compared with the traditional measu- 
ring method (Wang et al., 2013b; Wang et al., 2014), hyper- 
spectral imaging technology has rapid, energy-saving, and 
non-destructive advantages.

This research has demonstrated that the hyperspectral 
reflectance imaging technique yields good results in pre-
dicting the MCU of maize kernels during drying. Compared 
with the indirect method, direct prediction models yielded 
superior results for MCU predictions of dried maize kernels. 
Although good prediction results for MC were obtained by 
PLSR models, poor results were obtained for calculating 
uniformity by the indirect method. The MC was an inter-
mediate variable to calculate the uniformity, and each 
prediction value had an error corresponding to the actual 
value. When more prediction values were used to calculate 

Fig. 2. Colour images of: a – fresh and dried maize kernels at 
different drying times: b – 10, c – 20, d – 30, e – 40, f – 50, and 
g – 60 min.

a

c

b

d

e f

g
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the uniformity, the cumulative error resulted in poor uni-
formity accuracy. Therefore, one model could not predict 
the MC and MCU of dried maize kernels simultaneously.

Although the models by the direct method yielded 
better results for MCU, more work has to be done to 
improve prediction accuracy. Future studies will address 
wavelength-selection approaches to identify the optimal 
wavelengths among the 94 wavelengths in order to remove 
redundant information. Moreover, future works will focus 
on the evaluation of moisture uniformity within a kernel 
using hypersectral imaging.

Fig. 3. Relative reflectance for fresh maize kernels at different drying times (10, 20, 30, 40, 50, and 60 min).

T a b l e  2. Average of 10 calibration and prediction results for MC by mean reflectance coupled with PLSR models for dried maize 
kernels

LVs RC RMSEC
(%)

RCV RMSECV
(%)

RP RMSEP
(%)

RPD

15 0.993 2.71 0.992 3.00 0.992 2.88 7.9

LVs – number of leaves, RC, RCV, and RP – correlation coefficient of calibration, cross validation, and prediction, respectively, RMSEC, 
RMSECV, and RMSEP – root-mean-square error of calibration, cross validation, and prediction, respectively, RPD – ratio of the 
standard error of performance to the standard deviation of the reference data.

T a b l e  3. Average of 10 calibration and prediction results for 
MCU calculating by MC prediction values

Number of 
maize kernel RP RMSEP RPD

10 0.324 15.17 0.5

30 0.493 11.63 0.5

50 0.521 10.96 0.5

Explanations as in Table 2.

Fig. 4. Prediction of the uniformity of maize kernels using PLSR 
models by MC prediction values for 50 maize kernels in one 
subset.
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CONCLUSIONS

1. The method using the prediction value of moisture 
content to calculate the uniformity (indirect) was investiga- 
ted by hyperspectral imaging technology in the wavelength 
range of 400 nm to 1 000 nm coupled with partial least 
squares regression models, which presents really poor results.

2. Compared with the indirect predictions of moisture 
content uniformity, direct partial least squares regression 
with mean reflectance yielded better results (RP = 0.848 and 
root-mean-square error of prediction = 2.73).

3. The research results indicate that hyperspectral reflec-
tance images over the wavelength range of 400 to 1 000 nm 
could be used to evaluate the moisture content uniformity 
of maize kernels during the drying process.
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