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A b s t r a c t. The presented work covers the problem of 
developing a method of extruded bread classification with the 
application of artificial neural networks. Extruded flat graham, 
corn, and rye breads differening in water activity were used. The 
breads were subjected to the compression test with simultaneous 
registration of acoustic signal. The amplitude-time records were 
analyzed both in time and frequency domains. Acoustic emission 
signal parameters: single energy, counts, amplitude, and dura-
tion acoustic emission were determined for the breads in four 
water activities: initial (0.362 for rye, 0.377 for corn, and 0.371 
for graham bread), 0.432, 0.529, and 0.648. For classification 
and the clustering process, radial basis function, and self-organ-
izing maps (Kohonen network) were used. Artificial neural 
networks were examined with respect to their ability to classify 
or to cluster samples according to the bread type, water activity 
value, and both of them. The best examination results were 
achieved by the radial basis function network in classification 
according to water activity (88%), while the self-organizing maps 
network yielded 81% during bread type clustering.

K e y w o r d s: extruded bread, acoustic emission, artificial 
neural networks, classification, clustering

INTRODUCTION

Acoustic emission analysis is an important aspect of 
food texture evaluation, as particular sound obtained during 
food crushing could convey a lot of information about final 
product acceptability. The group of food products whose 
quality is assessed on the basis of the sound emitted when 
biting is represented by products such as bread, crisps, 
chips, and some fruits and vegetables.

The importance of sound in food quality evaluation was 
first recognized by Drake (1963, 1965), who showed that 
sounds emitted during food breaking differ from each other 

by amplitude, frequency, and pitch and suggested that sound 
and vibrations accompanying mastication could be used 
to complement food sensory analysis (Dacremont, 1995). 
Vickers and Bourne (1976) concluded that during biting 
crispy food generates specific sounds of a sharp, short, 
and noisy type. Spectral analysis of these sounds revealed 
that the investigated signal included components within 
a 0-10 kHz frequency band, which suggested a hypothesis 
that the perceived crispness level is proportional to the sig-
nal amplitude registered by the instrumentation. Vickers 
and Wasserman (1979) attempted to verify the assumption 
that the sound of crushed product includes a pattern specific 
to the tested sample structure. 

Many recent studies (Marzec et al., 2007b; Ono and  
Huang, 1994; Zdunek et al., 2011a) have shown that novel 
acoustic emission (AE) techniques could bring a pattern 
recognition tool in the field of non-destructive food evalua-
tion. Tests carried out both in the case of dry (Duizer, 2001; 
Marzec et al., 2007a, 2007b) and wet (Zdunek et al., 2010a, 
2010b) farm and food products indicate that, depending on 
storage conditions, changes in mechanical parameters of 
food products could be noticed by changes in AE signal. 
What is more, differences in the signal for the same product 
type but different varieties, such as rye bread and wheat 
bread are perceived (Marzec et al., 2007b). 

Amplitude of acoustic waves (Drake, 1965), mean 
height of peaks or number of sound bursts (Edmister and 
Vickers, 1985), acoustic energy (AlChakra et al., 1996) mean 
sound pressure or acoustic intensity (Seymour and Hamann, 
1988) are the most popular acoustic parameters com- 
monly used as a measure of food crispness or crunchiness. 
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Another method of AE signal analysis is also application of 
AE descriptors such as AE counts, AE events, or AE energy 
(Marzec et al., 2007b, Zdunek et al., 2010a, 2011a).

The effect of water activity on acoustic properties of 
crunchy food was also widely studied (Dacremont, 1995; 
Primo-Martin et al., 2009). Measurements have shown that 
the intensity of emitted sound was strongly related to the 
material moistness as changes in AE signal for extruded 
flat bread along with moisture modifications were observed 
(Marzec et al., 2007b). The correlations between emitted 
sound and their turgor pressure as well as the storage tem-
perature were also observed (Zdunek et al., 2008). 

The results mentioned above showing the relationship 
between AE signal and mechanical properties of crunchy 
food indicate that there might be an interest in develop-
ing automatic, objective algorithms to support the process 
of predicting the quality of crisp products and identifying 
their type or properties on the basis of AE signal parameters 
using non-classical mathematical and statistical methods. 

Artificial neural networks (ANN) are widely used in 
the field of signal classification (Aslan et al., 2008; Bishop, 
1995; Gelzinis et al., 2008; Yang et al., 2009). ANN, unlike 
traditional statistical methods, adjusts to data without the 
necessity of defining any additional function or distribu-
tion of input variables. They are also able to determine the 
probability of object membership in a group, which brings 
the possibility of using ANN as a kind of a posteriori pro- 
bability estimators (Hung et al., 1996; Isa et al., 2009; 
Kline and Berardi, 2005). It is known that ANN are capable 
of mapping the probability distribution even when a limited 
number of learning cases is applied (Hung et al., 1996). 
The ANN method started to be used also in the area of AE 
signal analysis as a tool to determine the usefulness of the 
sound signal features as predictors of sensory crispness, 
identification of wood species, and quality assessment 
(Godin et al., 2004; Pearson et al., 2007). Many a time 
ANN turned out to be more efficient than eg PCA mainly 
due to the fact that they are allotted to describe complex, 
multidimensional, and nonlinear relationships, presenting 
results in a form of low-dimensional geometrical rela-
tions and are able to customize to presented data (ANN are 
characterized by high flexibility both in the learning and 
architecture aspects).

The aim of the presented work was to cluster and 
classify extruded flat breads on the basis of AE signal deter-
minants with the use of artificial neural networks. Selected 
radial basis function networks (RBF) and self-organizing 
maps (SOM, Kohonen networks) were tested and evaluated 
in respect of their ability to recognize and classify acoustic 
samples according to bread types and/or their water acti- 
vity values.

MATERIALS AND METHODS

Commercial extruded flat bread slices purchased in local 
store were used in this work. The basic physical parameters 
of the slices are presented in Table 1. Initial water activity 
(awi) of the specimens was measured using Hygorometer 3 
(Rotronic, Switzerland) with an accuracy of +/- 0.001 of aw 
unit at a temperature of 25oC; it amounted to 0.362 for rye, 
0.377 for corn, and 0.371 for graham bread. Prior to the 
measurements, the apparatus was calibrated using saturated 
salt solutions of NaCl and LiCl. 

Extruded flat bread slices taken directly from the retail 
packages were equilibrated to various water activities over 
saturated salt solutions in desiccators for 10 weeks at 25oC. 
Three analytical grade salts were used: potassium carbo- 
nate K2CO3 (aw4 = 0.432), magnesium nitrate Mg(NO3)2 
(aw5 = 0.529), and sodium nitrite NaNO2 (aw6 = 0.648). 

Thymol crystals were placed inside the desiccators in 
order to prevent any bacterial spoilage of the samples or 
fungal activity. 

20 slices of extruded flat bread for each examined aw 
were subjected to the compression test performed with 
a Zwick 1445 loading machine equipped with an acce- 
lerometric piezoelectric sensor Bruel and Kjaer 4381V 
mounted between the moving head of the machine and 
the testing probe. As the AE sensor was fixed directly to 
the testing probe (compression plate), the direct acoustic 
contact (mechanical vibrations) with the examined samples 
was assured. The sensor was not registering stray vibrations 
conducted by the air. The compression test was performed 
for two non-overlapping fragments of each bread sample. 

The compression plate was an aluminium cylinder 
probe with a radius ∅ 35 mm. Loading was performed at 
the constant crosshead speed of 10 mm min-1, and the AE 
sensor was registering the acoustic signal at the frequency 

T a b l e  1. Physical properties of extruded flat bread

Bread type
Dimension (mm)

Mass (g) Initial water 
activityheight width thickness

Rye 117.6 ± 1.4 52.5 ± 2.4 8.19 ± 0.14 7.88 ±0.18 0.362 ± 0.002

Corn 121.8 ± 0.3 53.0 ± 0.6 7.96 ± 0.43 7.39 ±0.80 0.377 ±0.004

Graham 116.3 ± 1.2 51.9 ± 0.5 8.12 ± 0.08 7.32 ±0.56 0.371 ±0.006
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range of 0.1÷15 kHz. The AE signal was transmitted form 
the sensor to a 20 dB low-noise amplifier and registered 
using a 44.1 kHz sampling sound card mounted in a PC 
computer. Program WaveSound 5 (Creative Labs., USA) 
was used to register the final AE signal. 

As the result of the measurement, a set of 16-37 sound 
samples for each bread type was obtained. Although AE 
was recorded for 15 s, only the first 10 s were subjected 
to the analysis. Finally, 365 10 s samples of the AE signal 
were obtained (Table 2). Four different parameters cha- 
racterising AE events were determined: single AE energy 
(mJ), AE counts, AE amplitude (mV), and AE duration (µs) 
defined as (Marzec et al., 2007b) using PC applications 
for sound analysis (Lewicki et al., 2009). The parameters 
were determined for each bread type in four different water 
activities: initial awi, amounting to 0.362 for rye, 0.377 for 
corn, and 0.371 for graham bread, 0.432, 0.529, and 0.648 
labelled as aw4, aw5, and aw6, respectively. The discrimina-
tion level was set on 1000 mV. Each amplitude transition 
above the discrimination level was recorded as a count of 
the AE, while the time interval that contained the group of 
the AE signal of a damped sinusoid character was recog-
nized as the AE count.

The data obtained were analyzed according to their 
ability to differentiate among three groups: in respect of 
water activity (experiment 1), bread type (experiment 2), 
and taking into consideration both water activity and bread 
type (experiment 3). The STATISTICA 10.0 application 
was used for the statistical calculations.

The correlation coefficients (Table 3) demonstrated 
no statistically important linear relation among variables, 
which leads to the conclusion that AE parameters are not 
simply connected with the bread type or water activity va- 
lues. Additionally, the dispersion figures (Fig. 1) proved 
that the calculated AE descriptors vary within the groups. In 
order to verify the above-mentioned observation, descrip-
tive statistics and cross-sectional analysis for the calculated 
determinants were performed. 

The differences in the mean values calculated with the 
use of the Welch test proved that the groups differed signifi-
cantly according to dependent variable means. However, 

T a b l e  2. Sample distribution (awi, aw4, aw5 and aw6 – water 
activities)

Bread 
type

Water activities
Σ

awi aw4 aw5 aw6

Corn 28 36 30 30 124

Graham 32 16 32 32 112

Rye 32 37 30 30 129

Σ 92 89 92 92 365

T a b l e  3. Correlation coefficients determined for accoustic 
emission (AE) parameters in relation to dependent variables

Accoustic 
emission Bread type Water activity

Bread type 
and water 
activity

Single energy -0.41 0.09 -0.36

Counts -0.36 -0.35 -0.46

Amplitude -0.59 -0.06 -0.58

Duration -0.12 0.14 -0.07
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Fig. 1. Dispersion figures for the AE amplitude according to the 
bread type.
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Levene test as well as the robust test of means equality 
(Brown-Forsythe) showed that the homogeneity of varian- 
ces was not saved, which leads to the conclusion that 
data should be analyzed using non-parametric methods. 
Accordingly, Kruskal-Wallis ANOVA (Table 4), which is 
an alternative to ANOVA for data that are not characterized 
by variance homogeneity, was used in order to check if the 
groups differed in respect of the calculated variables. The 
Kruskal-Wallis test value (H) values and high significance of 
the statistic test (p<0.05) indicate that the determined varia-
bles made a significant contribution to the differentiation of 
the groups and provided a basis for classifier construction. 

Variables describing three bread types in all the exam-
ined water activities were firstly standardized according to 
Eq. (1):

,
σ

xx
z ji

ji

−
= (1)

where: zij – new variable element, xij – original variable 
element, x  – a mean of original variable,  – original 
variable standard deviation. The chart was next randomly 
divided into three groups – teaching, verifying, and testing, 
and then introduced to the network input. For each expe- 
riment type, a separate network classifier was designed. 
The influence of the structure and learning parameters on 
the network working abilities was checked. The number 
of inputs was determined by the number of independent 
variables and amounted to 4. The number of hidden layers 
and neurons in each of them RBF or the neuron number in 
the output layer SOM were established in an experimental 
way, using the growth method taking into consideration the 
validation error (Castellano et al., 1997; Karnin, 1990). The 
acceptance and rejection thresholds amounted to 0.95 and 
0.05, respectively, which corresponded to the standard clas-
sification with a 95% confidence level. 

The tested RBF networks were built with one hidden 
layer and, depending on the classification problem with 4 
(experiment 1), 3 (experiment 2), or 12 (experiment 3) out-
puts. The basis function centres were subjected to update 
with the k-means algorithm application, while the basis 

functions radius σ was established using a k-NN algorithm. 
In the output layer, normalizing logistic function was 
applied, which allowed using the conjugate gradient (CG) 
as an optimization algorithm, since then the outputs could 
be interpreted as the probability of object membership 
in the class (Yang et al., 2009). The mean-squared error 
(MSE) was applied as an error.

The tested Kohonen networks were of rectangular shape 
with the output layer formed by 9, 16, 25, 36, 49, 64, or 81 
radial neurons. As recommended (Cottrell et al., 1998; 
Mulier and Cherkassky, 1995; Song and Hopke, 1996), a two- 
phase learning algorithm was applied. The first learning 
phase (rough learning) was characterized by a strongly 
decreasing learning rate and neighbourhood that allowed 
general mapping with large groups of neurons responding 
to similar data (Kohonen, 2001). In the second stage (sta-
bilizing), the network was trained significantly longer and 
constant and low values of the neighbourhood range and 
learning rate α were established. Training started with ran-
dom values of weights. The networks were taught during 
100 epochs in the first and 1 000 in the second stage. The 
learning rate decreased from 0.7 to 0.1 in the first stage, 
while during second phase it was fixed at 0.1. The neigh-
bourhood range declined from the maximum value for the 
analyzed network to 1, while in the second phase its value 
was set at 0. This approach allowed adjustment of topo-
logical maps in a way that enabled individual neurons to 
respond to small clusters built with related input cases; 
thereby SOM neurons were able to create a certain simila- 
rity class among the input data.

The selected classifiers were assessed with the classi-
fication accuracy (acc) (Eq. (2)) and overall error rate (ε) 
determined on the basis of a testing set (Eq. (3)): 

,
t

c
N

Nacc =  
   (2)

,1 acc−=ε

   
(3)

where: Nc – correctly classified cases from the testing set, 
Nt – the number of all testing cases.

T a b l e  4. Kruskal-Wallis ANOVA values according to calculated determinants

Parameter

Experiment

1  – water activity 2 – bread type 3 – water activity and bread type

H p H p H p

Single AE energy 10.2 0.0167 210.5 0.0000 237.8 0.0000

AE counts 230.7 0.0000 33.9 0.0000 297.0 0.0000

AE amplitude 9.3 0.0259 221.2 0.0000 247.7 0.0000

AE duration 99.1 0.0000 130.1 0.0000 232.8 0.0000

Effects are significant with p < 0.05. H – Kruskal-Wallis test value.
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The error made by the networks in the validation pro-
cess (vacc) was an additional measure used in classifier 
evaluation. The validation set used simultaneously with the 
teaching data acts as a cross-validation test – comparison 
of the network in terms of prediction capability for the va- 
lidation data ie comparison of classification accuracy rates. 
It should be pointed out that in the case of the Kohonen 
network the error is expressed as the distance between the 
nearest input pattern and its centre, and therefore the net-
work errors differ in terms of dimension. Additionally, for 
the SOM networks, the topological maps (two-dimensional 
image of the output layer) were also subjected to the analy-
sis. The map quality evaluation was carried out on the basis 
of the number of dead neurons (DN) – neurons, which ne- 
ver won for a given data set and are located outside neurons 
forming the cluster (Lee and Verleysen, 2002).

RESULTS AND DISSCUSION

A vast number of studies have been published with 
a view to characterizing and predicting the effects of water 
activity on food crispness and related acoustic properties 
(Saeleaw and Scheleining, 2011). The study of the acoustic 
properties of extruded bread and other crispy foods in rela-
tion to its water content is complex because these properties 
are affected by several extra factors in addition to the frac-
ture properties of the crispy food surface, as pore size for 
example (Primo Marin et al., 2009; Salvador et al., 2009).  
Nevertheless, it is generally accepted that the number 
of acoustic events is strongly affected by the water acti- 
vity and increasing aw causes a decrease in the number of 
acoustic events (Gondek et al., 2006; Primo-Martin et al., 
2009). As the number of sound events is correlated nega-

tively with the water content, a range of analyzed water 
activities was selected to ensure maintenance of crispiness 
of the extruded bread (Marzec et al., 2007b). 

The present study is aimed to show the ability of ANN 
models to classify extruded flat bread stored in different 
experimental conditions on the basis of the acoustic emis-
sion descriptors. The two approaches shown were based on 
self-organizing maps (SOM) and a multilayer perceptron 
(MLP). These two networks are known for their cluster-
ing (SOM) and classification capabilities (MLP) despite 
the fact that they have different learning strategy. The com-
parison of the two models and their topologies was based 
on selected statistical indices. The results obtained are dis-
cussed in detail below. 

To the best of our knowledge, no data have been 
published about application of ANN for instrumental cha- 
racterization of the acoustic emission descriptors for not 
only crispy breads, but any food products, and we are una-
ble to relate our results to the studies of other researchers. 

Table 5 shows teaching, validation, and testing rates as 
well as errors for each of the data groups depending on the 
number of neurons in the output layer (RBF) and output 
neurons (SOM). It is known that an increase in the number 
of output neurons/neurons in the hidden layer causes an in- 
crease in teaching, validation, and testing rates but to a cer-
tain point, after which the values mentioned begin to fall. 

Simultaneously, the error values decrease to the mini- 
mum and start to grow after crossing the optimal param-
eters. This is connected with overlearning – the network 
over-fits the learning points, which is accompanied by 
unstable behaviour for data not presented during the learn-
ing (the network does not have the ability to generalize). 

T a b l e  5. Teaching, validation, and testing rates and errors for chosen RFB and SOM networks

Network
type

Neurons in hidden 
layer /Number of 
output neurons

Rate Error

teaching validation testing teaching validation testing

Experiment 1(water activity)

RBF 35 0.90 0.86 0.88 0.20 0.25 0.24

SOM 16 0.78 0.70 0.77 1 191 1 514 1 763

Experiment 2 (bread type)

RBF 23 0.88 0.85 0.87 0.26 0.26 0.41

SOM 25 0.84 0.84 0.81 667 709 683

Experiment 3 (water activity and bread type)

RBF 55 0.92 0.78 0.67 0.13 0.18 0.18

SOM 25 0.54 0.48 0.52 1 000 1 110 1 166
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Due to that fact, networks with maximum teaching, vali-
dation, and testing rates and minimum error values were 
considered as optimal.

The main purpose of designing a classifier was to ob- 
tain a tool that would allow fast and reliable identification 
of previously unknown data. Artificial neural networks 
applied in the area of classification on the basis of the AE 
signal determinants were assessed in respect of their ability 
to recognize and classify bread samples according to water 
activity values (experiment 1), bread type (experiment 2), 
or both of them (experiment 3). 

The best recognition rates (acc) were achieved for the 
RBF classifier, which was able to correctly identify 88% 
from data that had not been presented previously. SOM 
achieved recognition rates at a level of 77%. 

Validation accuracy (vacc), which is regarded as a test 
if the network has high generalizing skills, reached a level 
of 86 and 70% for RBF and SOM, respectively (Table 6). 

On the basis of the results obtained, it could be con-
cluded that for both the RBF and SOM networks the group 
with aw6 was the easiest to be recognized (Table 7).

The topological map (Fig. 2) designed for SOM shows 
that neurons corresponding to water activity values are 
arranged in a manner allowing linear separation of regions 
responsible for particular water activity. 

The recognition rates (acc) amounted to 87% for the 
RBF classifier and 81% for the SOM network. Rye bread 
proved to be the most complicated to be classified in both 
cases (Table 6). 

T a b l e  6. Classification statistics for the RBF and SOM networks while classifying according to water activity values (experi- 
ment 1), bread types (experiment 2), and both of them (experiment 3) 

Network

Experiment 1
(water activity)

Experiment 2
(bread type)

Experiment 3
(water activity and bread type)

acc (%) ε (%) vacc 
(%)

verror/
DN acc (%) ε (%) vacc 

(%)
verror/

DN acc (%) ε (%) vacc 
(%)

verror/
DN

RBF 88 12 86 0.25 87 13 85 0.26 77 23 70 0.2

SOM 77 23 70 0 81 19 84 2 52 48 48 1

T a b l e  7. Classification statistics for the RBF and SOM networks while classifying according to water activity values (experi- 
ment 1), bread types (experiment 2), and both of them (experiment 3) and classification correctness in the examined groups calculated 
for the testing set (awi, aw4, aw5 and aw6 – water activities)

Network Classification correctness

Experiment 1 (water activity)

awi aw4 aw5 aw6

RBF 91 71 92 100

SOM 74 80 55 100

Experiment 2 (bread type)

graham corn rye

RBF 86 97 79

SOM 83 82 80

Experiment 3 (water activity and bread type)

graham corn rye

awi aw4 aw5 aw6 awi aw4 aw5 aw6 awi aw4 aw5 aw6

RBF 89 33 100 50 60 73 100 89 90 67 83 64

SOM 57 33 27 80 100 29 100 100 80 50 0 10
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As mentioned above, the number of dead neurons (DN) 
was used for evaluation of the Kohonen network. Table 6 
shows that the DN value in experiment 2 reached 2, which 
corresponds to 8% of the network resources (for a network 
with 25 output neurons in total) and has no effect on the 
network working abilities. The topological map (Fig. 3) is 
not as clear as in experiment 1, but regions assigned to par-
ticular bread types could also be distinguished. Only one 
neuron was not labelled properly – a single neuron respon-
sible for the graham group was located in the corn bread 
area (Fig. 3 marked with a circle). 

For experiment 3, the values of the recognition rates 
decreased significantly to 77% for RBF and only 52% for 
SOM, which means that the SOM network was not able to 
accomplish the task with satisfactory results (Table 6). The 
highest correctness was achieved for samples that had aw5 or 

aw6 and were derived from corn bread. The validation accu-
racy for the SOM network reached only 48%, which points 
to a conclusion that the network was not taught properly. 

The training graph shows that, during validation, the 
network was not able to stabilize the error level (Fig. 4); 
therefore, it did not adapt correctly to the input data. The 
most probable cause of that was the insufficient number of 
teaching cases compared to the solved issue. The network 
was supposed to differentiate 12 groups based on the 120 
teaching and 120 validation cases, which apparently was not 
enough to realize the clustering process with satisfactory 
results. Due to the fact that SOM achieved unsatisfactory 
results, only the RBF classifier was subjected to the analysis.

On basis of the results presented in the confusion matrix 
(Table 8), it could be concluded that the wrongly recog-
nized samples were incorrectly classified only in terms of 
one parameter: bread type (c, g, r) or water activity (awi, aw4, 
aw5 and aw6), while 2 of them were incorrectly classified in 
relation to both of analyzed factors – caw4 as gaw5 and raw5 
as gawi (Table 7 on the light grey background). 

The results presented above indicate that one or more 
of AE determinants were characteristic for another group. 

In order to verify the parameters of significance dur-
ing the classification process, sensitivity analysis was 
performed (Table 9). The basic measure of the network sen-
sitivity was the error ratio obtained for the data set without 
a single variable and the error obtained with a complete set 
of variables. The greater the error after the variable rejec-
tion was the more sensitive to the lack of this variable the 
network was. A ratio close to or less than one indicates that 
the rejection of the variable has no effect or improves the 
network quality. The conducted analysis revealed that the 
AE count parameter was the most crucial determinant for 
all the three classifiers. 

Fig. 2. Topological map for clustering according to the water 
activity (awi, aw4, aw5, aw6 – water activity values).

Fig. 3. Topological map for bread type clustering (c-corn, g-gra-
ham, r-rye). The circled neuron was labelled as responsible for 
graham; however, it was placed in the corn cluster.

Fig. 4. SOM training graph for teaching and validation data set 
used in experiment 3 (clustering in respect of water activity and 
bread type).
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CONCLUSIONS

1. The performed test proved that acoustic emission sig-
nal processing allows determination of useful parameters, 
on the basis of which clustering and classification of farm 
and food products could be conducted. 

2. The determined parameters of accoustic emission: 
single energy, counts, amplitude, and duration proved 
to be key variables while clustering or classifying food 
samples on the basis of the accoustic emission signal; how-
ever the number of accoustic emission counts was the most 
important. 

3. The number of accoustic emission counts influenced 
the classification process to the highest degree and had the 
greatest contribution to the differentiation of the groups  
along with accoustic emission amplitude, which was indi-
cated to be the second most important.

4. The artificial neural networks applied in the classifi-
cation process correctly recognised over 70% of samples 
although they were not able to classify samples according 
to both the bread type and water activity value. However, in 
our opinion, classification of bread according only to water 
activity is much more important than to the bread type since 
the bread type is usually easier to control. 

T a b l e  8. Confusion matrix considering activities and bread types for the RBF classifier (c – corn, g – graham, r – rye, awi, aw4, aw5 
and aw6 – water activities)

Breads and 
water activity 
groups

cawi caw4 caw5 caw6 gawi gaw4 gaw5 gaw6 rawi raw4 raw5 raw6

cawi 3 0 0 0 0 0 0 0 0 0 0 0

caw4 2 7 0 1 0 0 0 0 0 0 0 0

caw5 0 1 7 0 0 0 0 0 0 0 0 0

caw6 0 2 0 7 0 0 0 0 0 0 0 1

gawi 0 0 0 0 7 0 0 0 3 0 1 0

gaw4 0 0 0 0 0 1 0 0 0 0 0 0

gaw5 0 1 0 0 1 0 6 0 0 0 0 0

gaw6 0 0 0 0 1 0 0 4 0 0 0 5

rawi 0 0 0 0 0 0 0 0 7 0 0 0

raw4 0 0 0 0 0 2 0 0 0 3 0 1

raw5 0 0 0 0 0 0 0 0 0 3 5 0

raw6 0 0 0 1 0 0 0 4 0 0 0 4

T a b l e  9. Significance of accoustic emission (AE) descriptors in the classification process for the RBF classifier. Ranks show impor-
tance of variables in accordance with the ratio value

Experiment Descriptor Single AE energy 
(mJ) AE counts AE amplitude

(mV)
AE duration

(µs)

1 
(water activity)

Ratio 1.144 1.982 1.685 1.279

Rank 4 1 2 3

2 
(bread type)

Ratio 1.107 1.253 1.244 0.697

Rank 3 1 2 4

3 (water activity 
and bread type)

Ratio 1.076 4.128 1.632 1.041

Rank 3 1 2 4
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5. The results obtained have shown that artificial neu-
ral networks might be applied in the area of farm and food 
products classification as well as recognition of their physi-
cal properties on the basis of accoustic emission signal 
parameters.
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