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A b s t r a c t. The effects of a pseudo-colour imaging method 
were investigated by discriminating among similar agricultural 
plots in remote sensing images acquired using the Airborne Visible/ 
Infrared Imaging Spectrometer (Indiana, USA) and the Landsat 7 
satellite (Fergana, Uzbekistan), and that provided by GoogleEarth 
(Toyama, Japan). From each dataset, red (R)-green (G)-R-G-
blue yellow (RGrgbyB), and RGrgby-1B pseudo-colour images 
were prepared. From each, cyan, magenta, yellow, key black, L*, 
a*, and b* derivative grayscale images were generated. In the 
Airborne Visible/Infrared Imaging Spectrometer image, pixels 
were selected for corn no tillage (29 pixels), corn minimum tillage 
(27), and soybean (34) plots. Likewise, in the Landsat 7 image, 
pixels representing corn (73 pixels), cotton (110), and wheat (112) 
plots were selected, and in the GoogleEarth image, those represent-
ing soybean (118 pixels) and rice (151) were selected. When the 
14 derivative grayscale images were used together with an RGB 
yellow grayscale image, the overall classification accuracy 
improved from 74 to 94% (Airborne Visible/Infrared Imaging 
Spectrometer), 64 to 83% (Landsat), or 77 to 90% (GoogleEarth). 
As an indicator of discriminatory power, the kappa significance 
improved 1018-fold (Airborne Visible/Infrared Imaging Spectro-
meter) or greater. The derivative grayscale images were found 
to increase the dimensionality and quantity of data. Herein, the 
details of the increases in dimensionality and quantity are further 
analysed and discussed. 

K e y w o r d s: agricultural fields, colours of plant body, 
correlations and dimensionality, feasible multivariate imaging, 
multivariate analysis

INTRODUCTION

The precise remote sensing of agricultural fields is 
a goal of those involved in observation thereof. As processes 
of observation, observers perform acquisition, processing, 
and analysis of data such as remotely acquired images. 

The process of acquisition has been significantly enhanced 
by increases in the spatial (Poli and Toutin, 2012) and 
spectral (Atzberger, 2013) resolution of sensors. The former 
and latter improvements were realized by high-resolution 
sensors like the one carried by the WorldView satellite and 
by multispectral sensors that have narrow bandwidths (such 
as every 5 nm), respectively. In addition to the development 
of sensors, a significant increase in the number of alterna-
tives for sensor carriers, such as unmanned aerial vehicles, 
was another major achievement that has resolved limita-
tions in data acquisition (Matese et al., 2015). Methods of 
data analysis have also been advancing and have enhanced 
the effective use of acquired data. The supervised and 
unsupervised computation of pixels from acquired image 
data is the most widely applied tool for extracting the 
information carried by acquired data (Vibhute and Gawali, 
2013). In addition to conventional pixel-based classifica-
tion, object-based classification was introduced in the 
1990s (Schotten et al., 1993). In addition to these major 
tools, there are other tools for the analysis of remote sens-
ing data. For example, the normalized difference vegetation 
index and its variations indicate the activity and health of 
plants (Petorelli, 2013).  

Compared to the above, the advancements in the pro-
cessing of acquired remote sensing data before analysis 
seem limited. To date, one of the most intensively exa- 
mined processing techniques has been the decorrelation 
of information carried by a multispectral dataset (Soha 
et al., 1976). For example, when a red (R)-green (G)-blue 
(B) true colour image is converted to an intensity-satura-
tion-hue colour image, even when changes in the intensity 
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of red, green, and blue are correlated, negligible correlations 
may be found among changes in intensity, saturation, and/
or hue. Thus, the amount of information may be increased 
by stretching the dark-bright distribution of the grayscale 
image for intensity, saturation, and/or hue (Gillespie et al., 
1986). Image fusion is another technique that enhances the 
utilization of data from agricultural fields. Image fusion 
generates a single image from multiple images (Sahu and 
Parsai, 2012). The generated image is more informative 
and complete than any of the original images for a spe-
cific objective, such as identifying fruit disease problems 
(Dubey and Jalai, 2015). 

As a tool for the processing of remote sensing images, 
a pseudo-colour imaging method was recently suggested as 
a new alternative for the precise observation of agricultural 
fields (Doi, 2014). The pseudo-colour imaging method gen-
erates pseudo-RGB colour images derived from grayscale 
images for the intensity of red and green. The pseudo-
RGB colour images are converted to cyan (C)-magenta 
(M)-yellow (Y)-key black (K), and International Commis- 
sion on Illumination L*a*b* colour images. From the 
CMYK and L*a*b* colour images, grayscale images for 
cyan and the other colour components are prepared. These 
derivative grayscale images were suggested to enrich infor-
mation on the grayscale intensity of pixels (Doi, 2014). 
The evidence of enrichment is shown as the non-linearity 
(Gillespie et al., 1986) between changes in the pixel gray-
scale intensity of some derivative grayscale images and 
those in the original grayscale images for red or green (Doi, 
2014). This enrichment could result in a greater amount 
of information than that carried by the original images for 
multispectral bands. The power to discriminate among dif-
ferent objects is the most important requirement for the 
successful observation of agricultural fields (Zar, 1999). 
Thus, the enrichment of information was expected to 
enhance multispectral crop/field observation by increasing 
the power to discriminate among different objects. 

The pseudo-imaging method has aspects in common 
with decorrelation and image fusion. As in decorrelation 
(Gillespie et al., 1986; Soha et al., 1976), the pseudo-colour 
imaging method extends the dimensionality of data by pro-
ducing independent patterns of changes in the intensity of 
pixels in derivative grayscale images. Like image fusion, 
the pseudo-colour imaging method combines the original 
grayscale images for red and green, and generates a gray-
scale image for RGB yellow, which becomes a component 
of a pseudo-colour image. At the same time, the pseudo 
colour imaging method differs from decorrelation in that 
it generates pseudo-colour images that further generate 
derivative grayscale images. The pseudo-colour imaging 
method also differs from image fusion in that the latter is 
often used to improve the spatial resolution of data consist-
ing of low-resolution images by relying on an image with 
greater spatial resolution (Liu et al., 2000). In contrast, 
the pseudo-colour imaging method is used to increase the 

quantity and dimensionality of information. A unique step 
in the pseudo-colour imaging method is replacing the gray-
scale image for blue in the original RGB colour image with 
a grayscale image for RGB yellow prepared from those for 
red and green. Image fusion provides a single image that 
contains the information needed by the user. In contrast, the 
pseudo-colour imaging method generates pseudo-colour 
RGB images, from which 14 derivative grayscale images 
are generated to enrich the information provided by the 
original dataset (such as multispectral images).   

This study examined the increase in the discriminatory 
power of multispectral imaging using the pseudo-colour 
imaging method. The pseudo-colour imaging method was 
applied to the discrimination of difficult-to-discriminate 
agricultural plots in three remote sensing datasets. The 
first was a 1992 dataset from Tippecanoe County, Indiana, 
United States, acquired using the Airborne Visible/Infrared 
Imaging Spectrometer (AVIRIS). Corn plots under two 
management regimes and soybean plots were also discri- 
minated between and among. The second dataset included 
cotton, corn, and wheat plots from the Fergana Valley of 
Uzbekistan. The Fergana dataset consisted of seven images 
acquired in 2011 using Landsat 7. The third was an RGB 
true colour image of experimental rice and soybean plots in 
Toyama city, Japan. The Toyama dataset was captured in 
2012 and is publically available through GoogleEarth. The 
contribution of derivative grayscale images generated by 
the pseudo-colour imaging method was evaluated in terms 
of classification accuracy and an increase in the dimen-
sionality of dataset. For grayscale images that significantly 
contributed to the discrimination, the detailed mechanism 
is further discussed. 

METHODS

Imagery data acquired by AVIRIS in the agricultural 
area of Montmorenci in Tippecanoe County, Indiana, United 
States (Fig. 1), were downloaded from the MultiSpec web- 
site of Purdue University (https://engineering.purdue.
edu/~biehl/MultiSpec/). The AVIRIS data were acquired 
on 12 June 1992. The digital data were recorded as 220 
hyperspectral grayscale images of 145 Í 145 pixels square. 
The images were saved as TIFF data. Each pixel repre-
sented a 20Í20 m square (Tadjudin and Landgrebe, 1996). 
Among the 220 images, six were selected to prepare a data- 
set like those acquired by commercially available multi-
spectral sensors (Turner et al., 2014). The selected bands 
were blue (wavelength 479 nm, band 9), green (557 nm, 
band 17), red (657 nm, band 27), near-infrared (822 nm, 
band 46), mid-infrared 1 (1.65 µm, band 133), and mid-
infrared 2 (2.20 µm, band 190). 

Satellite imagery data acquired by the Landsat 7 satel-
lite in the Fergana Valley of Uzbekistan were downloaded 
from the US Global Survey site (http://www.usgs.gov/). 
The Landsat 7 data were acquired on 11 July 2011. The 
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data were recorded as TIFF grayscale images for bands of 
blue (450-515 nm, band 1), green (525-605 nm, band 2), red 
(630-890 nm, band 3), near-infrared (750-900 nm, band 4), 
mid-infrared 1 (1.55-1.75 µm, band 5), thermal infrared 
(10.4-12.5 µm, band 6), mid-infrared 2 (2.09-2.35 µm, 
band 7), and panchromatic data (0.52-0.90 µm, band 8). 
In the image, a rectangular-shaped area was selected. The 
represented area was 11.25Í20 km. Each pixel represent-
ed a 30Í30 m square. The ground-truth information was 
obtained from the Central Asian Water Initiative website 
(http://www.cawa-project.net/). The grayscale images for 
bands 1 to 7 were used. 

The GoogleEarth image of the experimental plots in 
Toyama, Japan, was captured on 27 July 2012. When copy-
ing the remote sensing image from the GoogleEarth window, 
the ‘copy image’ function was used. When the image was 
copied from the GoogleEarth window, the data regarding 
the values of the red (R)-green (G)-blue (B) colour inten-
sity were retained. The image data was then pasted into 
a new file window in Adobe Photoshop 7.0. In the Adobe 
Photoshop window, a single pixel represented an area of 
82Í82 cm. The image was saved as an RGB TIFF file. 
The copied and saved image represented a 601Í1087 m 
rectangle. The ground-truth information was provided as an 
official document of the Agricultural Research Institute of 
Toyama prefecture, Japan.

For each dataset, with Adobe Photoshop 7.0 computer 
software, grayscale images for red and green were used to pre-
pare R-G-RGB yellow (RGrgbyB) and R-G-inverted RGB 
yellow (RGrgby-1B) pseudo-colour images (Doi, 2014). 
The images were saved as TIFF files in the RGB colour 
mode. In this study, the Adobe RGB colour space was 
chosen as one of the RGB colour spaces. An RGB yel-
low grayscale image was prepared by merging the R and 
G grayscale images (Doi, 2012). Each of the RGrgbyB 
and RGrgby-1B pseudo-colour TIFF images was converted 
to cyan (C)-magenta (M)-yellow (Y)-key black (K) and 
International Commission on Illumination L*a*b* images. 
CMYK images were generated using the International 
Colour Consortium profile of US Web Coated (SWOP) v2 
for digital output such as colour printing. Next, grayscale 
images that showed the intensity values of C, M, Y, K, and 
L* and the values of a* and b* were prepared (Fig. 1, Doi et 
al., 2014). Hereafter, the C, M, Y, K, L*, a*, and b* images 
are referred to as derivative grayscale images. Thus, 15 gray- 
scale images were added to the six Indiana AVIRIS or 
the seven Fergana Landsat 7 images, including the RGB 
yellow image. The original RGB image of Toyama was 
converted to CMYK and L*a*b* true colour images. Then, 
grayscale images for C, M, Y, K, L*, a*, and b* were pre-
pared in addition to a grayscale image for RGB yellow and 
the other 14 derivative grayscale images from RGrgbyB 
and RGrgby-1B pseudo-colour images, as in the case of the 
AVIRIS (Indiana) and Landsat 7 (Fergana) datasets. In this 
manner, the GoogleEarth (Toyama) dataset eventually con-
sisted of 25 grayscale images. 

These 21 (AVIRIS, Indiana), 22 (Landsat 7, Fergana), 
or 25 (GoogleEarth, Toyama) grayscale images were used 
in the experiment to compare the power to discriminate pix-
els that represent different crops/management regimes in 
the remote sensing image. Among the pixels in the image, 
the author selected pixels representing different crops/man-
agement regimes. In the Indiana image, pixels representing 
corn no tillage, corn minimum tillage, and soybean were 
selected (Fig. 1). The numbers of pixels were 29, 27, and 
34 for corn no tillage, corn minimum tillage, and soybean, 
respectively (Manian and Jimenez, 2007). Likewise, in the 
Fergana image, 73, 110, and 112 pixels were selected for 
corn, cotton, and wheat, respectively. In the Toyama image, 
118 and 151 pixels representing soybean and rice, respec-
tively, were selected.  

The grayscale intensity profiles of the pixels were 
analysed using the pixel analysis software, MultiSpec 3.3 
(Purdue Research Foundation), to examine the improve-
ment of classification accuracy by the inclusion of the RGB 
yellow and 14 derivative grayscale images in addition to 
the original AVIRIS, Landsat 7, or GoogleEarth images. 
Using the statistical software SPSS 10.0.1 (SPSS Inc.), 
principal component analysis was also performed to ana-
lyse the data structure on the grayscale intensity profiles 
of the selected pixels for the 21 (AVIRIS), 22 (Landsat), 
or 25 (GoogleEarth) grayscale images. Using the SPSS 
software, the kappa statistic and its significance were also 
determined.  

RESULTS AND DISCUSSION

With the six AVIRIS images from Indiana, discriminat-
ing among the three groups of pixels was relatively more 
difficult (Table 1) than that with all 21 images. Bandos et 
al. (2009) have previously demonstrated the difficulty in 
discriminating among these pixels using linearity-based 
computation. Using the six images, the overall accuracy in 
the classification of all 90 pixels was 74%. This unsuccess-
ful discrimination seems to be attributable to the negligible 
crop canopies at the time point of the image data acqui-
sition on 12 June 1992. In the region, soybean is planted 
from May to mid-June (Boyer et al., 2015) whereas corn 
is conventionally planted in May (Schenk and Barber, 
1980). When the image was captured, the plants were so 
small that the differences in leaf colour contributed to the 
discrimination only slightly (Fig. 1). Due to the undevel-
oped canopies, the discrimination had to rely largely on soil 
profiles. Even in a single plot, the profiles of pixels repre-
senting soil can vary more than those of crop leaves (Todd 
and Hoffer, 1998). This soil-caused intra-plot variation in 
each of the plots is believed to have made the discrimination 
difficult (Fig. 1). The discrimination was more successful 
with the derivative and the RGB yellow grayscale images, 
resulting in 94% overall accuracy. The value of the kap-
pa statistic improved from 0.612 (substantial agreement, 
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T a b l e  1. Classification of the selected pixels representing different crops/management regimes in the AVIRIS (Indiana) image 
(Fig. 1) based on the grayscale intensity profiles of the pixels. Combinations of the six AVIRIS grayscale images and all 21 grayscale 
images are compared in terms of classification accuracy

Grayscale 
images
used

True crop/management Classified crops/management

Total Accuracy 
(%)

Overall 
accuracy* 

(%)

Kappa 
statistic 
(kappa 
significance 
as p value)

Crop
Mana- 
gement 
regime

Corn

Soybean
No tillage Minimum 

tillage

Original six 
grayscale 
images**

Corn
No tillage 18   6   5 29   62 74 0.612

Minimum tillage   1 20   6 27   74 (1.49Í10-16)

Soybean   2   3 29 34   85

All 21 
(original six, 
RGB yellow, 
and 14 
derivatives)

Corn
No tillage 29   0   0 29 100 94 0.917

Minimum tillage   1 26   0 27   96 (6.68Í10-35)

Soybean   3   1 30 34   88

*Overall accuracy – sum of properly classified pixels (white characters in the black cells) for the three crops/management among 
the total number of selected pixels (90) (Fig. 1, bottom left); **grayscale intensity representing reflectance for blue, green, red, nea- 
rinfrared, and mid-infrared 1 and 2.

T a b l e  2. Best combinations of grayscale images for classification of the selected pixels in the AVIRIS (Indiana) image (Fig. 1) based 
on differences among crops and crop management regimes

Number of 
grayscale 
images 
combined

Best combinations of grayscale images

Inter-crop/management distance*

Corn no tillage-
corn minimum 
tillage

Corn no 
tillage-soybean

Corn minimum 
tillage-soybean

1

RGrgbyB K 0.85 1.33 0.22

RGrgbyB Y 0.17 0.53 0.17

Green 0.03 0.10 0.03

2

RGrgbyB Y, RGrgbyB K 1.93 1.35 0.90

RGrgbyB K, RGrgby-1B Y 1.53 1.38 0.49

RGrgbyB K, RGrgby-1B b* 1.17 1.39 0.31

3

Near-infrared, RGrgbyB Y, RGrgbyB K  1.95 1.48 0.96

Mid-infrared 2, RGrgbyB Y, RGrgbyB K  2.01 1.35 0.95

RGrgbyB Y, RGrgbyB K, RGrgby-1B K 2.14 1.68 0.94

4

Near-infrared, mid-infrared 2, RGrgbyB Y, RGrgbyB K  2.10 1.52 1.24

Near-infrared, RGrgbyB M , RGrgbyB Y, RGrgbyB K  2.00 1.73 1.15

Near-infrared, mid-infrared 1, RGrgbyB Y, RGrgbyB K  2.07 1.50 1.12

*The greater the distance, the more powerful the discrimination power for the combination of grayscale images.
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Viera and Garrett, 2005) to 0.917 (almost perfect agree-
ment). The p value also showed a marked improvement of 
2.2Í1018-fold. In the improvement of the discrimination, 
some derivative grayscale images were found to have 
contributed significantly (Table 2). For example, RGrgbyB 
K and RGrgbyB Y grayscale images were the largest con-
tributors. The contribution in discriminating among the pixel 

groups was obviously due to an increase in the dimension-
ality of the dataset on the grayscale intensity profiles of the 
90 pixels (Table 3). 

Among all 21 variables, RGrgbyB K and RGrgbyB Y 
were the greatest contributors to the second principal com-
ponent, and the original six AVIRIS variables contributed 
heavily to the first principal component and only slightly 

T a b l e  3.  Structure of data on grayscale intensity profiles of the 90 selected pixels in the AVIRIS (Indiana) image (Fig. 1, bottom 
left) revealed as eigenvectors and other statistics of principal components 

Direct source of 
grayscale image

Grayscale image in which 
grayscale intensitywas read 
to profile the 90 selected 
pixels

Principal component* (variation explained and eigenvalue)

1 2 3 4

(70%, 14.8) (12%, 2.46) (7%, 1.49) (3%, 0.73)

Original AVIRIS data

Blue          0.85** -0.21 0.18 0.20 

Green (G) 0.98 -0.17 -0.04 0.09 

Red (R) 0.93 0.04 0.33 0.15 

Near-infrared 0.85 -0.16 -0.02 -0.07 

Mid-infrared 1 0.69 0.10 0.25 -0.48 

Mid-infrared 2 0.74 0.11 0.38 -0.17 

R and G grayscale 
images of the original 
AVIRIS data

RGB yellow 0.96 0.23 0.04 -0.06 

RGrgbyB pseudo-
colour image

Cyan 0.97 0.03 0.20 0.07 

Magenta 0.98 -0.15 -0.14 0.00 

Yellow 0.60 0.77 -0.21 0.06 

Key black 0.42 0.78 -0.19 0.22 

L* 0.99 -0.08 0.04 0.09 

a* -0.65 0.51 0.55 0.00 

b* 0.81 -0.49 0.06 0.25 

RGrgby-1B pseudo-
colour image

Cyan 0.88 0.20 0.35 0.18 

Magenta 0.95 -0.06 -0.27 -0.03 

Yellow -0.70 -0.55 0.26 0.24 

Key black 0.66 -0.35 0.15 -0.39 

L* 0.98 -0.13 0.05 0.09 

a* -0.75 0.16 0.63 0.07 

b* 0.97 0.21 -0.02 -0.04 

*The most significant four principal components are listed, **eigenvector.
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to the second. This contrast indicates an increase in the 
dimensionality provided by the RGrgbyB K and RGrgbyB 
Y grayscale images that improved the discriminatory pow-
er by providing additional minor but significant measures 
(de Sena et al., 2000; Doi and Sakurai, 2004). The minor 
principal components usefully indicate differences among 
similar pixels that are hard to discriminate based on the six 
AVIRIS variables that have strong linear correlations to 
one another and with the first principal component. Thus, 
the data structure is simple, based on the six variables only 

(Table 3). Table 3 and the visual appearance of the images 
in Fig. 1 indicate the differences between the RGrgbyB and 
RGrgby-1B pseudo-colour images. These differences sug-
gest further opportunities to find differences among similar 
pixels by utilizing the pseudo-colour models. 

In the discrimination among plots of the three crops 
in the Landsat 7 image of the Fergana Valley, the derivative 
grayscale images improved the discrimination (Table 4). 
The overall classification accuracy increased from 64 to 
83%. The kappa statistic and its significance also markedly 

T a b l e  4. Classification of the selected pixels representing different crops in the Landsat 7 (Fergana) image based on the grayscale 
intensity profiles of the pixels. Combinations of the seven Landsat 7 grayscale images and all 22 grayscale images are compared in 
terms of classification accuracy

Grayscale images used True 
crop

Classified crops

Total Accuracy 
(%)

Overall 
accuracy* 

(%)

Kappa statistic 
(kappa 

significance 
as p value)Corn Cotton Wheat

Original seven grayscale 
images**

Corn 33 26 14   73 47 64 0.450

Cotton 28 61 21 110 64 (1.65Í10-27)

Wheat   9   8 95 112 73

All 22 (original seven, red-
green-blue yellow, and 14 
derivative images)

Corn 61   4   8   73 82 83 0.736

Cotton   8 85 17 110 87 (1.80Í10-70)

Wheat   5   9 98 112 80

*Overall accuracy – sum of properly classified pixels (white characters in the black cells) for the three crops / total number of selected 
pixels (295); **grayscale intensity representing reflectance for blue, green, red, near-infrared, thermal, and mid-infrared 1 and 2.

T a b l e  5.  Classification of the selected pixels representing different crops in the GoogleEarth (Toyama) image based on the grayscale 
intensity profiles of the pixels. Three combinations of grayscale images are compared in terms of classification accuracy

Grayscale images used True 
crop

Classified crops

Total Accuracy
(%)

Overall 
accuracy1 

(%)

Kappa statistic 
(kappa 

significance 
as p value)Soybean Rice

Grayscale images for red (R), 
green (G), and blue (B)

Soybean 88 30 118 69 74 0.483

Rice 39 112 151 79 (1.91Í10-15)

Grayscale images for RGB, 
CMYK, and L*a*b*, 2

Soybean 87 31 118 74 77 0.532

Rice 31 120 151 80 (2.66Í10-18)

Grayscale images for all 25 
colour components

Soybean 107 11 118 87 90 0.797

Rice 16 135 151 93 (4.11Í10-39)
1Overall accuracy – sum of properly classified pixels (white characters in the black cells) for the crops / total number of selected pixels 
(269); 2grayscale images for the intensity of R, G, B, cyan (C), magenta (M), yellow (Y), key black (K), and L* and the values of a* 
and b* as components of the true color GoogleEarth image.
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improved from 0.450 to 0.736 and from 1.65Í10-27 
to 1.80Í10-70, respectively. When the original seven 
Landsat 7 images were used, the corn and cotton plots 
were especially difficult to discriminate. This difficulty 
was thought to be caused by the vigorously growing green 
leaves of the crops at the time point of image acquisition 
on 11 July 2011 (Asia Development Bank, 2013). This 
difficulty was largely circumvented by using the deriva-
tive grayscale images. Analysing the GoogleEarth dataset 
on the Toyama experimental plots also resulted in a simi-
lar and significant improvement (Table 5). When the only 
grayscale images for the intensity of red, green, and blue 
were used, the overall classification accuracy was 74%; this 
was slightly improved to 77% by using 10 grayscale ima- 
ges for RGB, CMYK, and L*a*b* as components of the true 
colour image. With the 10 grayscale images, the changes in 
the values of the kappa statistic and its significance were 
also slight, compared to the AVIRIS (Indiana) and Landsat 
7 (Fergana) datasets (Tables 1, 4). However, when 14 deri- 
vative grayscale images were used together with an RGB 
yellow grayscale image, the classification accuracy sig-
nificantly improved. The involvement of all 25 grayscale 
images resulted in an overall accuracy percentage of 90% 
(Table 5). The kappa statistic also improved from 0.483 
(R, G, and B grayscale images only) to 0.797, and the sig-
nificance improved 4.64Í1023-fold. The discrimination 
between soybean and rice plots was expected to be difficult 
because of the weather condition, with obviously visible 
interference by clouds. Another expected disadvantage 
was that the number of original grayscale images was only 
three. Despite these limitations, the derivative grayscale 
images generated by the pseudo-colour imaging method 
aided in the discrimination significantly.  

Structures of the Landsat 7 (Fergana) and GoogleEarth 
(Toyama) datasets are shown in Table 6. The datasets are 
similar in that, for the first principal components, the abso-
lute values of eigenvectors for the derivative grayscale 
images are comparably large, compared to those for the 
original grayscale images of the Landsat 7 and GoogleEarth 
data. This indicates that the derivative grayscale images 
played important roles in the discrimination, and that the 
information provided by them was not secondary and 
minor but was major and powerful. The significant contri-
bution of the derivative grayscale images was evidenced by 
the great increase in the significance of the kappa statistic 
for the Landsat 7 and the GoogleEarth datasets (Tables 4, 
5). In terms of changes in the kappa statistic and its sig-
nificance, the derivative grayscale images generated from 
the Landsat 7 and the GoogleEarth datasets improved 
the discrimination more significantly than in the case of 
the AVIRIS dataset on the Indiana site (Tables 1, 3). The 
grayscale images that contributed most significantly to the 
discrimination among the plots of the Fergana Valley or the T 
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Toyama experimental fields are listed in Table 7. Again, 
several derivative grayscale images were found to be the 
best to discriminate among/between the plots. 

To further investigate the effects of derivative gray-
scale images on the increase in the dimensionality and 
quantity of information, RGrgbyB K and RGrgbyB Y 
grayscale images of the Indiana site were prepared in com-
bination with grayscale images for standard RGB yellow 
(Fig. 2). Standard grayscale intensity gradients indicating 
the intensity values of 0 (complete black), 50, 100, 150, 
200, and 255 (complete white) for redness and greenness 
were merged to prepare 36 RGB yellowness standard grids. 

Correlations between the grayscale intensity of RGB yel-
lowness and changes in the grayscale intensity among the 
36 grids for RGrgbyB K, RGrgbyB Y, redness, and green-
ness were compared in terms of information overlapping in 
a diagram (Fig. 3). As the intensity of greenness and redness 
has a strong correlation with RGB yellowness (Doi, 2012, 
Fig. 3), linear relationships are seen among them (Figs 2 
and 3). In contrast, the changes in the grayscale intensity of 
pixels in the RGrgbyB K and RGrgbyB Y images in Fig. 2 
were quite different from those in the grayscale intensity of 
the R and G images in Fig. 2. It is evident that the patterns 
of the changes in the grayscale intensity of pixels in the 

T a b l e  7.  Best combinations of grayscale images for classification of the selected pixels in the Landsat 7 (Fergana, Uzbekistan) and 
GoogleEarth (Toyama, Japan) images based on spectral differences among crops

Dataset Number of grayscale 
images combined Best combinations of grayscale images

Landsat 7 (Fergana, Uzbekistan) 1 RGrgbyB K

Red

RGrgby-1B b*

2 RGrgby-1B M,  RGrgby-1B L*

Mid-infrared 2, RGrgbyB b*

Green, RGrgby-1B M

3 Green, Thermal, RGrgbyB L*

Thermal, RGrgby-1B M, RGrgby-1B L*

RGrgbyB b*, RGrgby-1B M, RGrgby-1B L*

4 Green, RGrgbyB C, RGrgbyB M, RGrgby-1B b*

RGrgbyB b*, RGrgbyB M, RGrgby-1B K, RGrgby-1B b*

Green, Thermal, RGrgbyB L*, RGrgby-1B M

GoogleEarth (Toyama, Japan) 1 a*

RGrgby-1B K

RGrgbyB C

2 Blue, RGrgby-1B Y  

Key black, RGrgby-1B Y

Blue, RGrgby-1B b*

3 Key black, RGrgbyB K, RGrgby-1B Y   

Blue, RGrgbyB K, RGrgby-1B Y

Blue, RGrgby-1B M, RGrgby-1B b*

4 Blue, RGB yellow, RGrgby-1B C, RGrgby-1B Y   

Key black, RGB yellow, RGrgby-1B C, RGrgby-1B Y

Blue, RGB yellow, RGrgby-1B Y, RGrgby-1B K
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RGrgbyB K and RGrgbyB Y images compensated for the 
difficulty in detecting changes in grayscale intensity in the 
original R and G images (Fig. 2). RGB yellow is a colour 
shown as a sum of the intensity of redness and greenness. 
Because redness and greenness are known to describe 
a large portion of changes in the colour of a plant body 
(Parsons et al., 2009), the range of change in RGB yellow 
(Fig. 2, bottom left) should express the colours of most 
plant bodies. Therefore, the RGB colour model should 
have worked as long as changes in the intensity of redness, 
greenness, and blueness had linear correlations with impor-
tant changes in the colour of plant organs, soils, and other 
objects in agricultural fields. However, as indicated by the 
above results (Tables 1 to 7), the linearity cannot always 
be expected. Rather, in this study, the discrimination was 
improved by the unique changes in the grayscale intensity 
of the derivative grayscale images (Fig. 3). The advantage 
of the derivative grayscale images is the independence of 
the changes in the pixel intensity from those in the original 
AVIRIS, Landsat 7, and GoogleEarth images (Doi, 2013, 
Hayes and Sader, 2001). Even when grayscale changes in 
the original grayscale images are linearly correlated, as in 
the case of the AVIRIS Indiana data (Table 3), the deriva-
tive grayscale images that have non-linear relationships 
with the original changes offer more chances to detect other 
patterns of spectral changes. Hence, the non-linearity was 
advantageous to the detection of changes in the images to 
be analysed, as demonstrated in Figs 2 and 3 (Fig. 4). 

The derivative grayscale images were demonstrated to 
enrich the information carried by the AVIRIS, Landsat 7, 
and GoogleEarth datasets. The applicability of the pseudo-
colour imaging method was previously reported through 
the observation of a rice canopy using a commercially 
available anti-theft surveillance camera (Doi et al., 2014). 
This example and the cases of the AVIRIS, Landsat 7, and 
GoogleEarth datasets indicate the general applicability of 
the pseudo-colour imaging method to improve discrimina-
tion among difficult-to-discriminate objects in agricultural 
fields. Computation hardware and the architecture for the 
analysis of remote sensing data are currently develop-
ing rapidly and with a variety of computation algorithms 
(Bhojne et al., 2013). Furthermore, various remote sensing 
sensors and instruments to carry these sensors are becom- 
ing more commercially available. In addition to improve-
ments in spatial and spectral resolution in remote sensing, 
significant improvement in temporal resolution is under-
way as various real-time remote sensing tools are entering 
the market (Ehsani et al., 2012; Verhoeven, 2009). The 
pseudo-colour imaging method is highly feasible because 
a computer and free software such as GIMP are all that is 
needed to enable users to take advantage of the pseudo- 
colour imaging method. Therefore, under the aforemen-
tioned technological circumstances, remote sensing users 
may easily combine various remote sensing tools and the 
pseudo-colour imaging method. 

Fig. 2. Standard color intensity gradients (left) and corresponding 
image of the AVIRIS (Indiana) image (right) shown as grayscale 
images for selected color components of the true color RGB and 
the RGrgbyB pseudo-colour models.

Fig. 3. Relationships between changes in the grayscale intensity
of the standard grids of red (R)-green (G)-blue (B) yellow (Fig. 2, 
bottom left) and those for R (), G (), and derivative grayscale 
images for yellow (Í) and key black () (Fig. 2, right) as com-
ponents of the RGrgbyB pseudo-colour image shown in Fig. 1.

Fig. 4. Non-linearity among significant principal components 
helps discrimination among difficult-to-discriminate objects by 
reflectance observation. In this schematic diagram, the solid () 
and gray () symbols indicate samples are hard to discriminate 
based on their principal component N scores, but they are clearly 
distinguished based on their principal component N’ scores.

True colour
 Pseudo colour

Fig. 2
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CONCLUSIONS 

1. The pseudo-colour imaging method increased the dis-
criminatory power of multispectral imaging and enhanced 
the discrimination among pixels representing similar and 
hard-to-discriminate agricultural plots. 

2. The improvement was attributed to some of the 14 
derivative grayscale images derived from pseudo-colour 
images. 

3. The increases in the dimensionality and quantity of 
information were important intermediate results that pro-
vided the improvement in the discrimination.  

4. The fundamental strength of the pseudo-colour 
imaging method is attributed to: a) non-linearity among 
changes in the grayscale intensity of pixels in some deriva-
tive grayscale images; thus b) the patterns of changes in 
the derivative grayscale images do not correlate with those 
in the original grayscale images of the AVIRIS, Landsat 7, 
and GoogleEarth datasets.  

5. The general applicability of the pseudo-colour imag-
ing method was demonstrated by examining the method 
for the discrimination of pixels representing different agri-
cultural plots in the AVIRIS, Landsat 7, and GoogleEarth 
images. 
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