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A b s t r a c t. Osmotic dehydration characteristics of kiwifruit 
were predicted by different activation functions of an artificial 
neural network. Osmotic solution concentration (y1), osmotic solu-
tion temperature (y2), and immersion time (y3) were considered 
as the input parameters and solid gain value (x1) and water loss 
value (x2) were selected as the outlet parameters of the network. 
The result showed that logarithm sigmoid activation function has 
greater performance than tangent hyperbolic activation function 
for the prediction of osmotic dehydration parameters of kiwifruit. 
The minimum mean relative error for the solid gain and water 
loss parameters with one hidden layer and 19 nods were 0.00574 
and 0.0062% for logarithm sigmoid activation function, respec-
tively, which introduced logarithm sigmoid function as a more 
appropriate tool in the prediction of the osmotic dehydration of 
kiwifruit slices. As a result, it is concluded that this network is 
capable in the prediction of solid gain and water loss parameters 
(responses) with the correlation coefficient values of 0.986 and 
0.989, respectively.

K e y w o r d s: artificial neural network, osmotic dehydration, 
mass transfer profile, modelling, kiwifruit

INTRODUCTION

The major source of kiwi plants is the forests of tem-
perate regions in the coasts of Yangtze River in southern 
China. Historically, in 1968, the plant was imported to Iran 
and cultivated regularly (Mohammadian, 1994). Natural 
plants, including wild and or cultivated, have been proved 
to exhibit several health benefit potentials with different 
mechanisms (Farzaneh and Carvalho, 2015); these findings 
encourage scientists to conduct more research on different 
plants. In 2008, the world harvested kiwifruit production 

has reached 1,313,827 tons, and almost 30,000 million tons 
of this amount is attributed to Iran (FAO, 2005). Osmotic 
dehydration is defined as a process in which the water 
content is removed from cells when food is placed into 
a hypertonic solution. One of the first methods for dehy-
dration of food products is sun drying; however, several 
disadvantages have been reported for this method, includ-
ing lowering the quality of the dried products; difficulties 
in controlling the dehydration process; requirement of 
a huge space for the process; and the longer time required 
for the drying process (Seiiedlou et al., 2010). Since dehy-
dration has been considered as the most substantial process 
in food product industries, discovering novel and high-per-
formance methods for dehydration requires more attempts. 
Maintenance of available nutrients in the foods and the 
water absorbency property of the products or the tender 
quality of the dried food obtained are the most widely dis-
cussed subjects by scientists in this field. Given its least 
impact on the maintenance of the resistance and quality of 
the products as well as the decreased consumption of time 
and cost of the process, the osmotic dehydration method 
has attracted the greatest attention, compared to other 
types of the dehydration processes (Rezagah et al., 2001). 
The most frequently applied components in the osmotic 
dehydration assay are sugars, salts, and/or a mix of both 
(Lazarides, 1999). Generally, it can be claimed that osmotic 
dehydration performed under atmospheric conditions cau- 
ses the least alteration in the final colour and texture and 
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as a result has the least negative effect on the final qua- 
lity of food products (Dehghannya et al., 2006). Osmotic 
dehydration could also be used as a pretreatment in most 
processes for improving the nutritional and physico-chemi-
cal characteristics of food products with minimum negative 
adverse effects (Torreggiani, 1993). Osmotic dehydration 
has been applied as a preliminary stage in a wide range 
of processes including freezing, freeze drying, and vacu- 
um drying along with drying with hot air flow. One of the 
main applications of this process is reduction of water 
activity (aw) of food to protect it against microbial degrada-
tion; since most foods contain large quantities of water, the 
application of osmotic dehydration plays an effectual role 
in transportation, packaging, and storing (Biswal and Le 
Maguer, 1989). A group of researchers investigated the effi-
cacies of three different drying methods on kiwifruit. The 
results showed that the freeze drying method needs more 
time than other methods; however, the sensory evaluation 
of freeze dried foods was better after osmotic dehydration. 
In freeze and vacuum died foods, vitamin C is protected 
more than in those treated with hot drying methods, and 
the alterations in colour and decomposition of sugar con-
tents to organic acids are the lowest (Youn and Chio, 1998). 
Another group of researchers examined kiwifruit osmotic 
dehydration as a pre-treatment process of air flow drying, 
and their results showed that the application of osmotic 
dehydration as a pre-treatment improves the physical char-
acteristics of the samples dehydrated by air flow (Alaeddini 
and Emam-jomeh, 2004). Several studies have been per-
formed on the application of response surface methodology 
(RSM) and artificial neural network (ANN) in a wide range 
of food products (Dolatabadi et al., 2016; Rostami et al., 
2014; Farzaneh et al., 2016). In this investigation, an arti-
ficial neural network (ANN) model was used for modelling 
kiwifruit osmotic dehydration. An artificial neural network 
is a set of computing elements (neurons) that are functional-
ly similar to biological neurons. This set could discover and 
show the intrinsic connections among different parameters 
without having any prior knowledge of the process (Vinod 
and Vikrant, 2002). Today, the artificial neural network 
plays an effectual role and is regarded as a powerful tool 
in prediction of process parameters. Several studies have 
been performed in relation to osmotic dehydration process 
modelling. A group of researchers have investigated the 
application of ANN in modelling of the process of mass 
transfer of pumpkin. The results show that the best configu-
ration of a neural network with one hidden layer (HL) in 
prediction of responses including solid material absorption 
and water loss is a network with the arrangement of 2-10-1 
and 2-18-1, respectively. Also, between the neural networks 
with two hidden layers (HLs) in estimating the response 
parameters, the best layouts have been determined 2-6-
6-1 and 2-22-22-1, respectively (Mokhtarian and Shafafi 
Zenuzian, 2012). Another group of researchers investigated 
tomatoes by modelling using artificial neural networks. The 

experimental data were modelled by ANN and the results 
obtained showed that the neural network model predict-
ed the experimental data more accurately (Dolatabadi et 
al., 2016; Movagharnejad and Nikzad, 2007). In another 
research, the moisture content of bananas was studied in 
the process of osmotic dehydration through two methods 
of networks and a genetic algorithm. The results indicated 
that the application of neural networks with 7 and 10 nods 
in the first and second hidden layers, respectively, predicts 
the moisture content with a higher correlation coefficient 
value (R2=0.94) (Mohebbi et al., 2011).

The main aim of this investigation is to predict the 
quantity of water loss and solid gain by application of dif-
ferent functions of the artificial neural network, and deter-
mination of the most appropriate arrangement of neurons 
through kiwifruit osmotic dehydration process.

MATERIALS AND METHODS

The kiwifruit Actinidia deliciosa species was purchased 
from a local market in Gorgan-Iran, sugar has been pro-
vided from Karaj company, and filter paper number 1 was 
ordered from Whatman. An oven (Binder-Germany), bal-
ance with the precision of 0.001 g (sartorius-Germany), and 
fridge (Arj-Iran) were also used in this investigation.

The samples were stored in a fridge at a temperature 
of 6°C until the experimental day. The analysed kiwifruit 
samples showed initial moisture contents of 86.67% (W/
Wm) based on the moisture weight, the moisture content of 
the samples was detected with the AOAC method (1990) 
released under No. 931-04. The dehydration process was 
performed by placing the samples in an oven at a tempe-
rature of 105 ± 0.5°C until reaching to a constant weight 
(AOAC, 1990).

To apply the osmotic dehydration process, the kiwifruit 
fruits were first sliced in a lateral way (the fruits were placed 
and fixed in a straightforward shape) then sliced from left- 
to right-hand sides with an appropriate cutter to reach 
a thickness of slices equal to 5 mm. In other words, we tried 
to cut slices with the same thickness to obtain uniform and 
reliable results. In the experiment, the priority is applica-
tion of kiwifruits with a medium size and firm texture. The 
osmotic solution was prepared using sugar (Sucrose) with 
four different concentrations. Osmotic solutions at four dif-
ferent temperatures (30, 40, 50, and 60°C), four different 
sugar concentrations (35, 45, 55, and 65 (ºBrix)) within 
various immersion times (starting from 15 min to maxi-
mum 300 min (in total, 9 different times were determined) 
until reaching constant weight regarding the concentration 
of the solution) were designed. Afterwards, each piece of 
kiwifruit was weighed and immediately immersed into the 
solution; after dehydration, the samples were taken out of 
the solution, and washed with distilled water, and placed on 
a filter paper for absorption of the surface water. Then the 
samples were weighed for the second time. To determine 
the moisture content and dry matter, one sample was placed 
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in the oven at a temperature of 105 ± 0.5°C until reaching 
constant weight. In the experiments, the proportion of the 
mass of the slices to the osmotic solution was adjusted 1 on 
10 (proportion 1/10). The release of water content and the 
solid gain were detected based on the weighing at different 
phases including prior and after osmotic dehydration and 
after drying in the oven with Eqs (1) and (2), respectively:
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where: water loss (WL) and solid gain (SG) express solid 
uptake (gain) (%) and water withdrawal (loss) rate (%) 
values, respectively, S0 indicates the quantity of the solid 
prototype (g), St presents the quantity of the dehydrated so- 
lid material (g), m0 is the initial mass of the sample (g), and 
mt expresses the mass of the dehydrated sample (g) (Chenlo 
et al., 2006).

For modelling with the artificial neural network, SPSS 
program version 19 (released in 2011) was used. The 
designed network was a multilayer perceptron network 
(MLP) in which the input layer consists of three parameters 
(concentration of osmotic solution (y1), osmotic solution 
temperature (y2), and immersion time (y3)) and the output 
layer consists of two parameters (solid absorption (x1) and 
dehydration (x2)). Therefore, the artificial neural network 
model was developed based on three inputs and two out-

puts. Figure 1 presents a schematic structure of the neural 
network of perceptron optimization of an artificial neural 
network obtained by studying the layout of the network and 
assessing of the correlation between the experimental data 
obtained and the output of the neural network (predicted 
values). To optimize the artificial neural network, diffe- 
rent parameters, such as the number of the hidden layers, 
number of neurons in each hidden layer, and output activa-
tion function, as well as the learning rate and momentum 
coefficient values should be evaluated. In order to find the 
best configuration, 1-2 hidden layers with 1-37 neurons 
in each, a learning rate of 0.4, a momentum coefficient of 
0.9, and sigmoid logarithm activation (Log-sig) functions, 
e indicates Neper coefficient value (e = 2.718) (Eq. (3)) and 
hyperbolic tangent (tanh) activation (Eq. (4)) in the hidden 
layer and output were used: 
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In order to model the neural network, the first data was 
divided into two parts, 70% of the data was considered for 
the training and the remaining (30%) was considered to 
evaluate the network. In total, 161 runs (three replications 
in each run) were selected to evaluate the applied neural 
network. The numbers of the were been obtained based on 
the preliminary tests performed by the authors and analysis 
of the results of the investigations performed previously by 

Fig. 1. Scheme of a neural network (concentration of osmotic solution (y1), osmotic solution temperature (y2), immersion time (y3), solid 
gain (x1), and dehydration (x2)) with the arrangement of 3:12:12:2.

 12 nodes of activation function of tanh for each hidden layer

,
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(Tavakolipour and Mokhtarian, 2012, 2013). In the afore-
mentioned investigations, 70% of the data for training and 
30% for testing were selected; therefore, regarding the pre-
liminary tests performed to select reliable models in this 
investigation and the data obtained in the previous investi-
gations, this pattern was selected in this study. To compare 
the efficiency of the neural network in prediction of the 
flooding parameters under investigation, the mean relative 
error (MRE) and correlation coefficient between the expe- 
rimental and predicted values were detected based on Eqs 
(5) and (6), respectively:
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where: PANN indicates the predicted value for the output 
parameters of the network, Pexp presents the values of the 
experimental data obtained and N expresses the number of 
observations (Mokhtarian and Shafafi Zenuzian, 2012). 

RESULTS AND DISCUSSION 

In this study, a combination of different layers of 
neurons with different activation functions was used for 
modelling the perceptron neural network. A neural network 
with one hidden layer with 1 to 25 neurons was random-
ly selected and the ability of the network in prediction of 
kiwifruit osmotic parameters was estimated. For train-
ing the perceptron network, a learning algorithm of error 
post propagation was used. In this method, the calculation 

is performed from the network input to the network out-
put. Then, the error values were detected and considered 
to the previous layers and the weight vectors are gradually 
modified from the last layer to the first layer in order to 
get the minimum value of the prediction error (Mohebbi 
et al., 2011). The results of the optimization of perceptron 
neural networks with logarithm sigmoid activation function 
(Log-sig – Log-sig) and hyperbolic tangent (tanh) together 
with the obtained layout in different modes are shown in 
Figs 2-5. Figure 2 shows the values of relative error in the 
number of neurons in the prediction of the solid absorp-
tion response value. The investigation of the results of the 
multi-layer perceptron neural network together with loga-
rithm sigmoid activation function with one hidden layer 
indicated that the arrangement of 3-19-2, ie a network with 
3 inputs, 19 neurons in the hidden layer, and 2 outputs, 
shows the best result in prediction of the solid gain and 
water loss parameters. Also, the results of the neural net-
work with two hidden layers along with a driver function 
of sigmoid log indicated that this network could predict 
the quantities of the solid gain and water loss with 19 and 
22 neurons respectively in the first and second hidden 
layers with the coefficient of determination of 0.955 and 
0.962, respectively. On the other hand, the results of neu-
ral networks with activation function of hyperbolic tangent 
showed that the neural network with the configuration of 
2-16-16-3 had the best result in the prediction of the solid 
gain (SG) so that the network was able to estimate the solid 
gain through the process of osmotic dehydration of kiwi-
fruit with a regression coefficient of 0.984. The results of 
water loss predicted by the activation function of hyperbo- 
lic tangent also showed that the application of this function 
in the neural network with 22 neurons in the first hidden 
layer provides the best results (Table 1).

Fig. 2. Changes in the relative error value in prediction of solid gain with changes in neuron number.
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Fig. 3. Changes in the coefficient of determination value in prediction of solid absorption with changes in neuron number. Legend as 
in Fig. 2.

Fig. 4. Changes in the relative error value in the prediction of water decreases with changes in neuron number. Legend as in Fig. 2.

Fig. 5. Changes in the coefficient of determination values in prediction of water loss with changes in neuron number.  Legend as in Fig. 2.
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The results of the comparison of different applied mo- 
dels of neural networks for prediction of kiwifruit osmo- 
tic dehydration characteristics are shown in Table 1. As 
clarified, both functions used in modelling by the artificial 
neural network (ANN) have shown higher abilities in the 
prediction of the effectiveness of the osmotic dehydration 
characteristics of kiwifruit. The coefficient of the deter-
mination for neural network models is higher than 0.978. 
However, the perceptron neural network model with acti-
vation function of sigmoid logarithm with 19 neurons in 
the first hidden layer was selected as the most appropriate 
model to predict the characteristics of the osmotic dehy-
dration of kiwifruit due to its higher correlation coefficient 
(R2) and the minimum relative error (MRE) values. Based 
on the tests performed in this investigation, the authors 
found out that the application of activation functions with 
the arrangement of 3-19-2 for both of the responses in 
the Logarithm-sigmoid design and 3-16-16-2 and 3-22-2, 
respectively, in SG and WL in the Hyperbolic-tangent 
design exhibited the highest reliability. The results of this 
investigation are in agreement with the results obtained 
in some similar research including synthetic prediction 
of mass transfer in the process of osmotic dehydration 
of pumpkin and modelling of water absorption of wheat 

with perceptron neural network and radial basis function 
performed by (Kashaninejad et al., 2009; Mokhtarian and 
Shafafi Zenuzian, 2012). In other words, the interpretation 
of the figures (Figs 2-5) indicates that, in the response of 
SG (Figs 2-3), the relative errors obtained in the activation 
functions of the logarithm-sigmoid and hyperbolic-tangent 
with the arrangement of 3-19-2 and 3-16-16-2 exhibited 
the lowest values; in contrast, the correlation coefficients 
obtained between the experimental and predicted values 
are the highest in the aforementioned arrangements for the 
each of the activation functions. In turn, as presented in 
Figs 4-5, in the response of WL, the arrangement of 3-19-2 
and 3-22-2 in the activation functions of logarithm-sigmoid 
and hyperbolic-tangent, respectively, demonstrated the 
lowest relative error (MRE) and the highest regression 
coefficient (R2) (Figs 4-5 and Table 1). 

As shown by the data obtained (Figs 2-5), mostly for 
both of the responses with an increase in the neurons in the 
hidden layers in the range of 4-22, the values obtained for 
the relative errors and correlation coefficients are decreased 
and increased, respectively. In other words, the predicted 
values with the activation functions with 1 or 2 hidden lay-
ers within the range of 19-22 neurons are the most reliable 
for both of the responses using hyperbolic tangent function 
and Log-sig functions.

T a b l e  1.  The results of comparison of suggested artificial neural networks in prediction of osmosis characteristics of kiwifruit

Activation function Statistical parameter SG WL

Logarithm-sigmoid (Log-sig) Coefficient of determination 0.986 0.989

Relative error 0.00574 0.00624

Arrangement 3-19-2 3-19-2

Hyperbolic-tangent (tanh) Coefficient of determination 0.984 0.978

Relative error 0.0110 0.0155

Arrangement 3-16-16-2 3-22-2

Fig. 6. Correlation coefficient between the experimental value and predicted values obtained by the perceptron neural network (testing 
values) of: a – water loss (WL) and b – solid gain (SG) parameters with activation function of sigmoid logarithm.
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The diagram of model sensitivity predicted by the per-
ceptron neural network design along with the activation 
function of sigmoid logarithm versus the experimental va- 
lues for the best configuration (3-19-2) of both of the outputs 
(responses) are represented in Fig. 6. The perceptron neural 
network model showed that the data are randomly distribu- 
ted around the regression line with the correlation coeffi-
cient higher than 0.985, which represents higher accuracy 
of the investigation of neural network in prediction of the 
characteristics of kiwifruit osmotic dehydration. Figure 6 
shows the correlation coefficient between the experimen-
tal values obtained in the experiments and predicted values 
achieved by the artificial neural network (ANN) as well.

CONCLUSIONS

1. The applied network for the optimization of the selec- 
ted parameters water loss and solid gain of kiwifruit was 
the multi-layer perceptron. The results showed the best per-
formance of optimization with the activation function of 
hyperbolic tangent in the configuration of 3-16-16-2 and 
3-22-2 for the solid gain and water loss responses, respec-
tively, and for the activation function of sigmoid logarithm 
3-19-2 and 3-19-2 for the solid gain and water loss respon- 
ses, respectively. 

2. The comparison of the different functions showed 
that the activation function of the sigmoid logarithm is 
more precise in prediction of the mass transfer parameters 
of kiwifruit than hyperbolic tangent function in offering the 
minimum relative error and the maximum coefficient of the 
determination values. 

3. The selected network was able to predict the quantity 
of solid absorption and water loss of kiwifruit with the cor-
relation coefficients of 0.986 and 0.989, respectively.
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