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A b s t r a c t. Downward shortwave radiation is a key quantity 
in the land-atmosphere interaction. Since the moderate resolution 
imaging spectroradiometer data has a coarse temporal resolution, 
which is not suitable for estimating daily average radiation, many 
efforts have been undertaken to estimate instantaneous solar radia- 
tion using moderate resolution imaging spectroradiometer data. 
In this study, the principal components analysis technique was 
applied to capture the information of moderate resolution imaging 
spectroradiometer bands, extraterrestrial radiation, aerosol optical 
depth, and atmospheric water vapour. A regression model based 
on the principal components was used to estimate daily average 
shortwave radiation for ten synoptic stations in the Fars province, 
Iran, for the period 2009-2012. The Durbin-Watson statistic and 
autocorrelation function of the residuals of the fitted principal 
components regression model indicated that the residuals were 
serially independent. The results indicated that the fitted princi-
pal components regression models accounted for about 86-96% 
of total variance of the observed shortwave radiation values and 
the root mean square error was about 0.9-2.04 MJ m-2 d-1. Also, the 
results indicated that the model accuracy decreased as the aerosol 
optical depth increased and extraterrestrial radiation was the most 
important predictor variable among all.

K e y w o r d s: daily average solar radiation, moderate resolu-
tion imaging spectroradiometer, principal components regression 
model, estimation, Fars province

INTRODUCTION

The information of the solar radiation received at the 
earth surface and global solar radiation distribution have 
extensive applications in the architecture, agriculture and 
climate investigations, and finding an optimal place for 
construction of renewable energy sites. Performance of 
solar energy systems requires knowledge of the spatial dis-

tribution of solar radiation at the earth surface and a reliable 
methodology to estimate global solar radiation based on 
the least available data, which is a challenge in renewable 
energy planning (Kaplanis and Kaplani, 2007). Monitoring 
the earth radiation budget (ERB) is essential for improv-
ing our understanding of the earth climate and potential 
climatic changes (Change, 2001; Houghton et al., 2001). 
Furthermore, solar radiation can be a powerful player in 
local weather and climate. Point measurements of solar 
radiation are not sufficient for spatial land surface models. 
In addition, weather stations are generally located in flat 
areas so that the observations of daily average downward 
solar radiation (DADSR) tend to represent limited surround-
ing areas, which may exclude precipitous land surfaces or 
mountainous areas (Irmak and Allen, 2005; Samani et al., 
2007; Su et al., 2005). The current solar radiation products 
have fine temporal and coarse spatial resolutions that are 
not suitable for evaluating land-atmospheric interaction 
and local weather models (Kim and Liang, 2010). Due to 
the requirement for expensive equipment and the difficulty 
in sensor calibration, it is impossible to obtain solar radia-
tion from ground-based measurement at the high resolution 
spatial scale (Phakamas et al., 2013). Thus, several studies 
have attempted to estimate solar radiation (both shortwave 
and longwave) components using remote sensing (RS) 
data based on radiative transfer models which need many 
ancillary data (such as CO2, O3, CH4, temperature, cloud 
optical thickness etc.). Mueller et al. (2004) and Huang et 
al. (2012) estimated the daily average net surface short-
wave radiation (Rns) at 1 Km resolution accurately using 
a simplified radiation transfer algorithm. Kim and Liang 
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(2010) developed a hybrid method for estimating land sur-
face shortwave net radiation from MODIS data. They used 
instantaneous net shortwave radiation data as an input for 
calculating daily average net shortwave radiation. Their 
findings showed that root mean square errors (RMSE) 
varied about 2.8-4.0 MJ m-2 d-1 (Kim and Liang, 2010). 
Qin et al. (2011) used MODIS and monthly products of 
tropical rainfall measuring mission (TRMM) and the artifi-
cial neural network (ANN) method to build a mathematical 
relationship between monthly mean daily global solar radia- 
tion (GSR) and satellite data. They reported that the ANN 
method can retrieve GSR with an acceptable accuracy. 
In addition, their results showed that Yang et al. (2001) 
method performed better than both the ANN-based method 
and Japanese aerospace exploration agency (JAXA) algo-
rithm. Rahimikhoob considered both the Hargreaves and 
Samani equation and the ANN method to estimate global 
solar radiation in Ahvaz-Iran, using air temperature (Tmin, 
Tmax) and Ra as input parameters (Rahimikhoob, 2010) 
and showed that the ANN outperformed the Hargreaves 
and Samani equation in global solar radiation. Theoretical 
methods for estimating solar radiation can be expected to 
give higher accuracies than empirical methods, as the 
radiation attenuation process is considered comprehensive-
ly in the theoretical method (Huang et al., 2012). On the 
other hand, many solar radiation based on remote sensing 
studies estimated daily average component using adjusted 
sinusoidal interpolation (Bisht et al., 2005; Kim and Liang, 
2010). Other studies have attempted to retrieve net sur-
face shortwave radiation form MODIS data using only the 
solar zenith angle and the water vapour amount as the input 
parameters and mentioned that the MODIS sensor may not 
be good enough to provide daily average shortwave radia-
tion since Terra and Aqua overpass the same site only two 
times each day (Tang et al., 2006). 

López and Batlles presented a new accurate parame- 
tric model to estimate global solar radiation under cloudless 
conditions (López and Batlles, 2014). Wang et al. (2015) 
reported that the temporal mean albedo is more important 
than the instantaneous albedo for calculation of the surfa- 
ce shortwave net radiation budget. Zhang et al. (2015) 
demonstrated that the radiation components exhibit very 
high spatial heterogeneity and are largely affected by dif-
ferent terrain orientations, slope, the cosine of the solar 
illumination angle, and atmospheric environments. Overall, 
the MODIS sensors on board the Terra and Aqua satellite 
that yield regular and frequent observation of biophysical 
variables of the entire globe have fine spatial and spectral 
resolution for studying energy balance over large areas. 
However, all of the polar orbit sensors have coarse tempo-
ral resolution. 

The main objective in the present study is to apply the 
combination of principal components analysis (PCA) and 
regression models for estimating DADSR using MODIS 
data, which has not been reported in previous studies. In 

this manner, the regression model based on the principal 
components is developed to estimate shortwave solar radia-
tion over the Fars province in Iran using the information of 
spectral bands, aerosol optical depth (AOD), atmospheric 
water vapour, and extraterrestrial radiation (Ra).  

MATERIAL AND METHODS

The satellite data were extracted from moderate resolu-
tion imaging spectroradiometer (MODIS) website (www.
modis.gsfc.nasa.gov). In this study, the following MODIS 
data were used:
–– the MOD02HKM Level1B data products provide an 
estimation of TOA radiance and reflectance, which in- 
clude the 250 and 500 m spatial resolution bands. The 
first seven spectral bands cover from 620 to 2155 nm. The 
MOD02HKM product is calibrated Earth view data at 
500 m resolution by the MODIS Characterization and 
Support Team (MCST) (Qu et al., 2006).

–– MOD04 (Level2) consists of aerosol optical depth 
(AOD). The standard MODIS aerosol land algorithm 
relies on finding dark targets; for this reason, it is unable 
to make retrievals over bright surfaces such as deserts 
(Levy et al., 2013). Since the Fars province has been 
classified as an arid/semi-arid region, the AOD was not 
made with the previous algorithm over this region. The 
AOD product includes the ‘deep-blue’ algorithm recently 
developed (collection 6.0) to get AOD over bright land 
areas. This new AOD product was used to investigate the 
effect of AOD on DADSR variations. 

–– the near infrared algorithm of the MODIS total percepti-
ble water product (MOD05_L2) consists of water-vapour 
column amounts (WV) over the clear area of the globe. 
The most variable gas that significantly affects down-
ward solar radiation in the atmosphere is water vapour. 
Even daily fluctuation of water vapour from 0.4 to 4.12 g 
cm-2 has been reported (Justice et al., 1991). Therefore, 
daily transmittance of the atmosphere related to water 
vapour is considered in our study.
The extraterrestrial radiation (Ra) for each day of the 

year and for different latitudes can be estimated from the 
solar constant, the solar declination and the time of the year 
by the Angstrom equation (FAO, NO56) (Adeboye et al., 
2009):

( ),sincoscossinsinG0642
cs ssra dxR ωδΦδΦω

π
+= (1)

where: Ra – extraterrestrial radiation (MJ m-2 d-1), Gsc – 
solar constant = 0.082 MJ m-2 min-1 = 1367 W m-2, 
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ωs = arccos (-tan φ tan δ) sunset hour angle (rad), (3)

φ = latitude (rad), 

δ =0.409 sin ( J – 1.39), solar declination (rad),   (4)

and J is Julian day.
The proposed methodology of estimating DADSR from 

MODIS data was applied over the Fars province, located in 
the south western of Iran, (approximately between 27.00°N 
and 32.00°N latitudes and between 51.50 and 55.50°E lon-
gitudes) with the elevation of 300 to 3500 m. The climate of 
the province is mainly arid and semi-arid with mean annual 
temperature from 10 to 24°C in the northern and southern 
parts of the province, respectively. Downward shortwave 
radiation for the period of 2009 to 2012 under clear sky 
conditions was collected for 10 synoptic stations from the 
Fars Meteorological Bureau. Ten-minute solar radiation 
values recorded by the data loggers were converted to daily 
average values.

The spatial distribution and geographical characteristics 
of the synoptic stations surveyed in this study are illustrated 
in Fig. 1 and Table 1.

The principal components analysis as an applied mul-
tivariate statistical technique is extensively used in the 
atmospheric sciences (Wilks, 2011) to reduce a data set 
containing a large number of variables to a data set con-
taining fewer new variables. These new variables are linear 
combinations of the original ones, and these linear com-
binations are chosen to represent the maximum possible 
fraction of the variability contained in the original data. 
Data on multispectral bands (and atmospheric fields) are 
often highly correlated because of material spectral cor-
relation and topography, and therefore analysis of all the 

original spectral bands is inefficient (Schowengerdt, 2006). 
The principal components (PC) is a linear transform with 
an image-specific matrix WPC over an image spectral vector 
(DN):

PC = WPC DN. (5)
This transformation alters the covariance matrix as 

follows:

CPC = WPCC WPC
T. (6)

The PCA is optimum in the sense that, of all possible 
transformations, WPC is the only one that diagonalizes the 
covariance matrix of the original multispectral image, so 
that:

Fig. 1. Spatial distribution of the synoptic stations used in this study.

T a b l e  1.  Geographical characteristic of the stations used in 
this study

No. Station Latitude 
N

Longitude 
E

Height 
(m a.s.l)

1. Eghlid 30.869 52.676 2 300

2. Bajgah 29.726 52.585 1 796

3. Kazeroon 29.607 51.665 838

4. Shiraz 29.544 52.603 1 494

5. Neyriz 29.187 54.352 1 627

6. Fasa 28.899 53.720 1 310

7. Firoozabad 28.886 52.552 1 363

8. Darab 28.790 54.296 1 095

9. Jahrom 28.483 53.517 1 080

10. Lamerd 27.364 53.203 403
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The K – eigenvalues λK are found as the K roots of the 
characteristic equation:

|C – λI | = 0, (8)

where: C is the original data covariance matrix and I is 
the (diagonal) identity matrix. The PC coordinate axes are 
defined by the K eigenvectors, ek, obtained from the vector-
matrix equation for each eigenvalue λK:

(C – λK I) ek
 = 0, (9)

which form the rows of the transformation matrix WPC,
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where: eij is the jth element of the ith eigenvector. Each 
eigenvalue is equal to the variance of the respective PC 
image along the new coordinate axes, and the sum of all the 
eigenvalues must equal the sum of all the band variances of 
the original image, thus preserving the total variance in the 
data. Since CPC is diagonal, the principal component images 
are uncorrelated and, by convention, are ordered by decreas-
ing variance, such that PC1 has the largest variance and PCK 
has the lowest. The PC result is removal of any correlation 
present in the original K dimensional data (Schowengerdt, 
2006). PC images are useful for reducing data dimension-
ality, condensing topographic and spectral information. 
Moreover, DADSR observations at ten synoptic stations 
are used to check whether the principal components regres-
sion (PCR) method can obtain satisfactory spatial variation 

of solar radiation over the Fars province. The spatial mode 
(S-mode) of PCA was used to input variables (ten variables) 
in order to spatial modelling of DADSR. In this method, in 
the first step, the raster file of extraterrestrial solar radiation 
was obtained over the Fars province for each day and then, 
MODIS products (bands 1-7, AOD and WV) were cropped 
for Fars province boundaries. In the second step, all raster 
data were used as the input files for S-mode PCA compu-
tation. Finally, the extracted S-mode PCA values for all 
stations considered the calculating regression model. The 
spatial regression model was applied to estimate DADSR 
over the Fars province.

As the significant coefficient was estimated in the 
regression model, the model adequacy was examined by 
testing whether the residuals were serially independent. 
A useful test for serial correlation of regression residu-
als is the Durbin-Watson test. The null hypothesis of this 
test assumes that the residuals are serially independent. 
The alternative hypothesis assumes that the residuals are 
consistent with a first order autoregressive process. The 
Durbin-Watson statistic (d) is:
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(11)

which: ei is the residual for case i. 
The null hypothesis of this test is rejected if the Durbin-

Watson statistic is less than the critical values for this test. 
Also, the autocorrelation function of the residual is plotted 
to reflect the statistical relationship between residuals for 
various lags. Normalized RMSE (NRMSE) and correlation 
coefficient (R2) are used to assess the model skill.

The methodology of this study is schematically shown 
in Fig. 2.  

Fig. 2. Flowchart to estimate daily average downward shortwave radiation from the MODIS data for clear sky.

eij
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RESULTS AND DISCUSSION

Extraterrestrial radiation (Ra) and MODIS retrieved 
parameters, such as the aerosol optical depth, atmospheric 
water vapour, and level1B reflectance over bands 1-7, were 
used as the candidate predictor variables for estimating 
(Rs). The correlation matrices of these ten variables were 
separately calculated for each station. The applied methods 
were explained for Bajgah station, which is a meteorologi-
cal station at the Agricultural Research Station of Shiraz 
University, and its meteorological parameters have been 
frequently used in previous works (Shirvani et al., 2015). 
The applied methods for the other stations are similar to 
Bajgah station. The upper panel of Fig. 3 shows a corre-
lation matrix of the ten variables in Bajgah station. This 
matrix indicates that the correlation coefficients between 
each two variables are high and statistically significant, and 
the highest correlation is between the reflectance in band 1 
and 4. The lower panel of Fig. 3 is the scatter plot for these 
variables, arranged in the same pattern as the correlation 
matrix in the upper panel. The close relationship between 
the used bands can be seen in Fig. 3, while each band con-
tains different information. To capture the information of 
the bands, PCA was carried out to extract uncorrelated prin-
cipal components of the bands. Principal components of the 

input predictor variables were computed based on the cor-
relation matrix. Table 2 indicates the percentages of seven 
eigenvalues, or variance of each principal component, and 
the cumulative percentages of variances that accounted for 
the principal components for all stations. For example, the 
first four principal components for Bajgah station explain 
97% of the total variance of the ten predictor variables.

The scree plot, which is the plot of the eigenvalues 
versus the corresponding principal component number for 
Bajgah station, is shown in Fig 4. This Figure indicates 
that the magnitudes of eigenvalues of the last few principal 
components are close to zero and the behaviour of scree 
plot is like a straight line. Therefore, the first seven prin-
cipal components, which carry almost all of the predictor 
information, were used in the regression models. For exam-
ple, the applied regression revealed the significant (of 95% 
level) coefficients for the first five principal components for 
Bajgah station as Eq. (12):

Rs = 28.0 + 1.22(0.05) PC1 – 0.827(0.14) PC2 + 0.914(0.19) 

PC3 + 3.14(0.21) PC4 – 4.32(0.36) PC5.
(12)

Fig. 3. Scatter plot matrix of the MODIS first seven spectral bands at the Bajgah station.
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The values given in the parenthesis signify the standard 
error of coefficient. These five coefficients were found to 
be statistically significant using the t-test. For example, the 
t-value of  0.05

1.22
 = 23 is significantly higher than the quan-

tiles of t-distribution with α = 0.05 and 84 degree of freedom 
(t0.025 (84) = 1.96). The principal components 6 and 7 were 
not significant in Bajgah station. In the ANOVA (Analysis 
of variance) table, the value of the F-statistic was 181 for 
this station, which is statistically higher than the quantile 

of F-distribution with five and 84 degree of freedom at 5 
significance level (F0.05 (5.84) = 1.96). The corresponding 
P-value of F-statistic is close to zero, which indicates that 
the fitted principal components regression model is ade-
quate for prediction of Rs. The computed Durbin-Watson 
statistic was 0.8, which is smaller than the critical value, 
indicating that the null hypothesis of Durbin-Watson test 
was accepted. Therefore, the residuals of the fitted model 
were serially independent. The autocorrelation function 

T a b l e  2.  Percentage and cumulative percentage from PC1 to PC7 variance in all

Station Variance PC1 PC2 PC3 PC4 PC5 PC6 PC7

1. Eghlid
percentage 69.0 15.8 9.4 2.4 2.1 1.0 0.2

cumulative 69.0 84.8 94.2 96.6 98.7 99.7 99.9

2. Bajgah
percentage 77.1 9.6 5.8 4.5 1.6 0.8 0.2

cumulative 77.1 86.7 92.5 97 98.6 99.4 99.6

3. Kazeroon
percentage 80.6 8.4 6.6 2.8 0.8 0.6 0.2

cumulative 80.6 89.0 95.6 98.4 99.2 99.8 100.0

4. Shiraz
percentage 82.0 9.1 4.7 1.7 1.5 0.6 0.3

cumulative 82.0 91.1 95.8 97.5 99.0 99.6 99.9

5. Neyriz
percentage 80.8 12.1 2.6 2.1 1.1 0.8 0.3

cumulative 80.8 92.9 95.5 97.6 98.7 99.5 99.8

6. Fasa
percentage 82.2 7.9 5.0 3.1 1.2 0.3 0.1

cumulative 82.2 90.1 95.1 98.2 99.4 99.7 99.8

7. Firoozabad
percentage 82.2 8.1 5.1 2.9 1.2 0.4 0.1

cumulative 82.2 90.3 95.4 98.3 99.5 99.9 100.0

8. Darab
percentage 80.1 10.2 4.2 3.3 1.3 0.5 0.3

cumulative 80.1 90.3 94.5 97.8 99.1 99.6 99.9

9. Jahrom
percentage 80.8 10.3 4.5 2.7 1.1 0.5 0.1

cumulative 80.8 91.1 95.6 98.3 99.4 99.9 100.0

10. Lamerd
percentage 82.6 7.3 6.6 1.9 0.9 0.5 0.1

cumulative 82.6 89.9 96.5 98.4 99.3 99.8 99.9
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(ACF) of the residuals for Bajgah station (Fig. 5), does not 
show any patterns. Also, Fig. 5 indicates that the residu-
als are uncorrelated for various lags. Therefore, according 
to the given results, for Bajgah station, the fitted principal 
components regression model is considered to estimate Rs. 

The scatter plot for observed and predicted Rs using the 
fitted model for Bajgah station is shown in Fig. 6. R2 and 
NRMSE values of the fitted model are presented in Table 3. 

Sensitivity analysis of the regression model to the 
input variables was performed to choose the best predictor 
among all, such that one variable was removed from ten 
predictors and then principal components regression was 
reconstructed using all remaining predictors. The results 
indicated that Ra is an important variable among all and 
the lowest R2 and highest RMSE were produced when this 
predictor was removed, such that the estimated NRMSE 
was between 7 and 10.4. The results also indicated that 
the AOD and water vapour had the greatest influence on 
the calculated DADSR, such that the estimated NRMSE 
was between 3.5 and 7.8, when one of these predictors 
was removed from the candidate predictors. For example, 
in Eghlid station, inclusion of AOD and WV as inputs to 
the proposed model reduced the error to 4.5%, while the 
model performance showed an error equal to 7.6% without 
considering these two variables. Without applying PCA, 
the ten predictor variables were separately used in the 
stepwise multiple regression for each station. The results 
showed that the RMSE (~1.3 – 2 MJ m-2 d-1) of this regres-
sion is higher than the principal component regression. For 
example, the R2 and RMSE of the fitted multiple regression 
without applying PCA were 0.9 and 1.5 MJ m-2 d-1, respec-
tively, for Bajgah station. Therefore, the regression based 
on principal components predicts Rs better than regression 
based on original variables (Table 4).

Fig. 4. Scree plot of Bajgah station components.

Fig. 6. Scatter plot of the observed versus predicted Rs in Bajgah 
station.

Fig. 5. Autocorrelation function of the residuals for: a – Bajgah, 
b – Darab, c – Fasa, and d – Shiraz.
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T a b l e  3.  Summary of statistical parameters of the stations 
used in this

No. Station R2

R
M

SE
 

(M
J m

-2
 d

-1
)

NRMSE 
(%) M

B
E

(M
J m

-2
 d

-1
)

1. Darab 0.96 0.99 3.7 0.00

2. Eghlid 0.95 1.14 4.46 0.00

3. Fasa 0.96 0.90 3.30 0.00

4. Firoozabad 0.91 2.04 6.16 0.00

5. Jahrom 0.93 1.00 4.71 -0.045

6. Kazeroon 0.86 1.72 7.83 0.00

7. Lamerd 0.88 1.50 5.92 0.010

8. Neyriz 0.96 0.99 3.88 0.00

9. Shiraz 0.92 1.30 5.41 0.00

10. Bajgah 0.92 1.31 4.69 0.00
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The presented results of RMSE of principal components 
regression (PCR) is compatible with the results of Kim and 
Liang, 2010, who estimated daily shortwave net radiation 
with RMSE of 2.8-4 MJ m-2 d-1, for the seven SURFRAD 
sites using the Tang et al. (2006) method (Kim and Liang, 
2010; Tang et al., 2006).  

Figure 7 illustrates that the difference between Ra and 
global received radiation at the earth surface (Rs) increases 
when the atmospheric transparency decreases due to the ef- 
fect of aerosols and water vapour and vice versa. Figure 8 
shows the scatter plots of the estimated radiation versus 
ground observation using PCR for each station. Also, the 
time series of estimated DADSR versus observed data in 
Fasa station (low RMSE) and Firoozabad station (High 
RMSE) are shown in Fig. 9. The results show that the per-
formance of the model is increasing when AOD with high 
variation was used within the model. For example, the mean 
and standard deviation of AOD in Lamerd (Firoozabad) 
station were 0.76 (0.71) and 0.48 (0.48), respectively.

Variations of the atmospheric transparency due to AOD 
variations can affect the performance of the solar radiation 
models.

To validate our spatial method, Fig. 10 shows compari-
sons of the DADSR estimated from MODIS observation 
and in situ measurements at 10 synoptic stations over 
the Fars province during the studied period. The RMSE 
between estimated and measured values is 2.3 MJ m-2 d-1 in 
all stations. In this figure, we see that, generally, DADSR 
estimated from MODIS data is in good agreement with that 
measured in situ. The NRMSE at individual stations using 
the fitted model for all stations was estimated between 8.2 
in Fasa station and 20 in Firoozabad station, indicating that 
the errors have increased in comparison with the given 
errors for the individual model in Table 3. 

As shown in Table 3, the error of the model in Lamerd 
and Firoozabad station was large. On the other hand, the 
mean and standard deviation of AOD in Eghlid station were 
the smallest (0.16 and 0.20, respectively), and the esti-
mated DADSR shows good agreement (in Lamerd station, 
the annual mean of AOD was 4.5 times that of Eghlid sta-
tion). Figure 11 shows daily average global radiation over 
the Fars province in 4 clear sky days of separate months in 
2011.

Developing and modelling spatial variations of daily 
average solar radiation via satellite data is one of the recent 
challenges in remote sensing studies. This study focused 

T a b l e  4.  Statistical variables before and after applying PCA on regression model

Stations

R2 RMSE (MJ m-2 d-1) NRMSE (%)

original 
variables PCA original 

variables PCA original 
variables PCA

Bajgah 0.90 0.92 1.50 1.30 5.36 4.65

Darab 0.96 0.97 1.30 0.99 3.99 3.66

Fasa 0.94 0.96 1.08 0.86 4.15 3.30

Eghlid 0.86 0.95 1.93 1.12 7.55 4.38

Shiraz 0.91 0.93 1.40 1.29 5.83 5.37

Neyriz 0.94 0.96 1.15 0.98 4.51 3.84

Fig. 7. Comparison between difference of the Ra and Rs (Ra-Rs) and: a – AOD and b – WV over the Bajgah.
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Fig. 8. Comparison of the estimated and observed daily average downward shortwave radiation (MJ m-2 d-1) in the surveyed stations. 
Normalize RMS Error percent show the accuracy of the estimation.
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on the estimation of daily average downward shortwave 
radiation using MODIS products as model input. Besides, 
the combination of the principal components analysis and 
regression models was used to estimate DADSR with-
out any ancillary data. Principal components regression 
improved the prediction of Rs in comparison with the 
regression based on the original variables. Many current 
studies used a complicated algorithm for estimation the 
received surface solar radiation. The current study used 

the multivariate statistical methods to estimate the daily 
average surface shortwave radiation adequately with con-
sidering the atmospheric effects on the solar spectrum. The 
used statistical methods could predict shortwave accurately 
with RMSE less than ~ 2 MJ m-2 d-1 which is less than pre-
vious attempts. We acknowledge that the proposed method 
does not involve any complex radiative transfer model. 

CONCLUSIONS

1. Principal components analysis appeared to be useful 
technique to reduce a data set containing a large number of 
variables. Therefore, it can be widely used for modelling 
many ultispectral sensor data especially moderate resolution 
imaging spectroradiometer. In addition, some techniques 
such as principal components analysis should be taken into 
account before applying regression models when the pre-
dictor variables are highly correlated. 

2. Extraterrestrial radiation water vapour, and aero-
sol optical depth are important factors for prediction of 
received solar radiation at the earth surface and the sea-
sonal variation of these parameters can considerably affect 
the performance of local radiation models.

3. Average downward solar radiation was skilfully esti-
mated and the results indicated good agreement with field 
measurements at ten synoptic stations with NRMSE lower 
than 10% in all stations.

Fig. 8. Continuation.

Observed DADSR (MJ m-2 d-1) Observed DADSR (MJ m-2 d-1)

P
re

di
ct

ed
 D

A
D

S
R

 (M
J 

m
-2
 d

-1
)

     Jahrom   Lamerd

  R2   R2
% %

R
ad

ia
tio

n 
(M

J 
m

-2
 d

-1
)

a

R
ad

ia
tio

n 
(M

J 
m

-2
 d

-1
)

b

Fig. 9. Time series of the estimated versus observed of DADSR in: a – Fasa and b – Firoozabad stations, respectively during study 
period.
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d-1) using all station data.
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4. The daily average downward solar radiation variabi- 
lity was mainly dependent on the annual variation of aero-
sol optical depth. The annual mean of Aaerosol optical 
depth in the southern parts of the Fars province was 4.5 
times higher than that in the northern part.
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