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A b s t r a c t. Rice is the chief agricultural product and one of 
the primary food source. For this reason, it is of pivotal impor-
tance for worldwide economy and development. Therefore, in 
a decision-support-system both for the farmers and in the plan-
ning and management of the country’s economy, forecasting 
yield is vital. However, crop yield, which is a dependent of the 
soil-bio-atmospheric system, is difficult to represent in statistical 
language. This paper describes a novel approach for predicting 
rice yield using artificial neural network, spatial interpolation, 
remote sensing and GIS methods. Herein, the variation in the 
yield is attributed to climatic parameters and crop health, and the 
normalized difference vegetation index from MODIS is used as an 
indicator of plant health and growth. Due importance was given 
to scaling up the input parameters using spatial interpolation and 
GIS and minimising the sources of error in every step of the mod-
elling. The low percentage error (2.91) and high correlation (0.76) 
signifies the robust performance of the proposed model. This sim-
ple but effective approach is then used to estimate the influence of 
climate change on South Korean rice production. As proposed in 
the RCP8.5 scenario, an upswing in temperature may increase the 
rice yield throughout South Korea. 

K e y w o r d s: rice yield, artificial neural network, normalized 
difference vegetation index, spatial interpolation, crop yield 
models

INTRODUCTION

There is an increasing demand for a crop yield model 
(CYM) among the policy makers and farmers in South 
Korea so as to forecast production before the actual harvest 
in the current year, as well as in the distant future under the 
cloud of climate change. Rice, which is the chief crop in 
South Korea, and also the staple food of all Koreans, regard-

less of income level, is crucial for the country’s economic 
health and perspective. Therefore, South Korean manage-
ment specialists need a simple but accurate estimation 
procedure for rice yield. Statistical CYMs are traditional 
and widely accepted techniques for forecasting the yield 
of numerous crops throughout the world (Gornott and 
Wechsung, 2016 Houseman, 1942; Rose, 1936; Thompson, 
1962). These provide a quantitative estimation of expected 
yield, in advance, based on historical statistical information 
on climate and crop yield. The two most frequently used 
datasets for CYMs are climate data and certain vegetation 
related information (Shi et al., 2013). The NDVI or nor-
malized difference vegetation index has been taken as an 
input variable in many agricultural and ecological studies 
to reflect the healthy growth of plants, as well as the soil 
conditions (Halder and Patnaik, 2010; Prasad, 2007; Sarma 
et al., 2008; Savin and Isuev, 2010). The NDVI is also very 
popular in large area crop management and yield studies 
(Bouman, 1995; Ko et al., 2015). The degree of correlation 
between NDVI and crop yield mainly depends on crop types 
and time of acquisition of NDVI data (Mosleh et al., 2015). 
Major climatic variables, used as model inputs for rice, are 
air temperature, humidity, precipitation and available solar 
radiation in various combinations (Crasta and Cox, 1996; 
Wang et al., 2014). However, the use of meteorological 
data has several implications that include the uneven spatial 
distribution of ground stations and differences in units of 
time, i.e. some are available on an hourly basis, some daily, 
others as a monthly average. Unfortunately, all the data 
necessary for modelling crop yield are seldom available 
at the same spatial and temporal scale. Moreover, diverse 
topography creates a strong micro-climatic variation in the 
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Korean peninsula that increases the requirement for proper 
data pre-processing and scaling-up techniques. Past studies 
have shown that a systematic error of ± 1oC day-1 during 
the course of a single crop cycle could lead to errors of 0.5 
to 1 t ha-1 in yield prediction by crop models (Monestiez et 
al., 2001). GIS and spatial interpolation techniques are two 
basic methods that can be used to address the issue (Priya 
and Shibasaki, 2001; Strand, 1981). The primary role of 
GIS lies in the bridging of the remote sensing derived 
vegetation indices, with ground-based information and sta-
tistical data (Nuarsa et al., 2012; Patel et al., 1991). It acts 
as an aid to extract pixel based information from remote 
sensing imagery and to homogenise the input parameters in 
terms of spatial resolution before modelling (Prasad et al., 
2007; Shen et al., 2009). Linear regression has been used 
in several past studies for CYMs. However, the main dis-
advantage of regression-based studies is their inefficiency 
to address the non-linearity in the system which is appa- 
rent in crop response to agro-climatological conditions. The 
artificial neural network (ANN) is thus considered to be 
one of the best computational methods for extracting infor-
mation from imprecise and non-linear conditions. ANN 
models are a more versatile modelling approach and allow 
designing much more complex and non-linear relationships 
without the rigorous computations and assumptions regard-
ing the distribution and interconnections of input variables. 
ANN models can also identify, as well as simultaneously 
learn, correlation patterns between input parameters and 
corresponding target values through self-adaptive training 
(Bishop, 1995; Zhang et al., 1998).

Therefore, the primary objective of the present study 
is to build an accurate rice forecasting model using ANN 
for South Korea with special emphasis on scaling up input 

variables in the light of spatial interpolation and GIS tech-
niques. An attempt has also been made to evaluate the effect 
of climate change in rice yield over South Korea. 

DATA AND METHODOLOGY

Historical records of rice production and climatological 
variables over South Korea and MODIS NDVI data were 
used to develop the yield model. Land cover data pub-
lished by the Ministry of Environment were used to extract 
paddy field areas. Topographical parameters were required 
for data pre-processing in the cases of temperature and 
solar radiation. The details of the data are given in Table 1. 
A new set of algorithms developed by Takeuchi and 
Yasuoka (2004), has been successfully used to reduce the 
effect noise in MODIS-NDVI image. In creating these, 
they had analysed MODIS spectrum data for channel 1 to 7 
using the radiative transfer simulation model and found that 
the blue wavelength is mostly subjected to the atmospheric 
effect, moreover, pixels with cloud shadow in them are 
cooler than normal pixels. These two criteria, i.e. minimum 
blue and maximum thermal criteria (TminB) were used to 
identify and modify the reflectance value of other channels 
in clouded pixels. Filtered MODIS-NDVI data and image 
(10 days composite) covering almost the whole of East 
Asia are available on the WebMODIS website (http://web-
modis.iis.u-tokyo.ac.jp). 

Four meteorological factors (temperature, rainfall, solar 
radiation and sunshine duration) were used for the present 
study. There are 456 automatic weather stations and 81 
meteorological stations continuously measuring the tempe-
rature and rainfall over South Korea. Sunshine duration and 
solar radiation data are, however, only available in 81 and 
22 meteorological stations, respectively. All the historical 

Ta b l e  1. Details of the Variable used in present study

Parameters Unit Source

Time period

Model
development Validation

NDVI NA WebMODIS 2001-2011 2012

Meteorological
data

Temperature oC

Korea Meteorological
Administration 2001-2011 2012

Rainfall mm

Sunshine hours NA

Solar radiation MJ m-2

Land cover NA Ministry of Environment NA NA

Topography NA National Geographic Information 
Institute NA NA

Rice yield kg 10-1a Korean Statistical Information 
Service 2001-2011 2012
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meteorological data were made available for the purposes 
of the study by the Korea Meteorological Administration 
(http://www.kma.go.kr). 

The land cover map of South Korea was provided by 
the Ministry of Environment (https://egis.me.go.kr) based 
on satellite imagery of Landsat, IRS and Kompsat 2 and 3. 
The data was found to be more than 95% accurate in both 
cases during on-site verification of randomly chosen sam-
ple pixels and when compared to reference data. DEM 
data for the whole country in a 30 m grid is available on 
the website of NGII (http://www.ngii.go.kr). Three topo-
graphic data parameters (slope, aspect and elevation) are 
extracted and used in the present study. 

Annual rice production data have been collected 
from each province after harvesting and published by the 
National Statistics Office on every 5th November since 
1965. The rice production data are collected over randomly 
distributed 931 thousands of sample area, each consisting 
2 ha of rice field, from all over the country. Yield data is 
provided as provincial average and presented on the web-
site of the National Statistical Office (http://kosis.kr/).

The artificial neural network (ANN) is a method which 
mimics the capacity of learning through a biological neural 
system and performs better than a regression system in 
identifying the non-linearity between variables. It finds 
relationships by observing a large number of input and 
output examples and develops a formula that can be used for 
prediction. In our study, we used a 3-layer ANN model with 
one hidden layer. The input and output layer contains nodes 
that correspond to input and output variables, respectively. 
Data moves between layers across weighted connections. 
The transfer function used here is a sigmoidal function for 
the hidden and output layers and a linear transfer function 
for the input layers. 

For comparison with the ANN model, we also used 
the same input parameters for a linear regression analysis 
through employing the following equation:

(1)

here: Yt is the rice yield for year t, β0 is the intercept, βi, is 
the regression coefficient for the Zi variable and ε is residu-
al. The estimated yield and error parameters are compared 
with the results of the ANN model. 

The Republic of Korea occupies the southern portion 
of the Korean Peninsula. It lies between latitudes 33°N and 
39°N, and longitudes 124°E and 130°E, covering a total 
area of 100,032 km2. South Korea’s terrain is mostly moun-
tainous and most of it is not arable. Slope average in South 
Korea is 14.3°, and lowland area with less than 5° of slope 
is only 28.2%. The country has a wet temperate climate 
with a distinctive seasonal trend. Cool and dry wind from 
north-west decreases the ambient temperature throughout 
the winter season, while south-east wind brings ample 

amount of moisture causing high rainfall during summer. 
Although precipitation and cloudy skies can be observed 
throughout the year, rainfall reaches the highest values 
during the monsoon months from June to September. 
Temperature reaches the lowest values during January and 
highest during July. In Korea, crop yield data are available 
at the provincial level, whereas weather data only exist 
for weather stations distributed unevenly throughout the 
country. Moreover, whereas weather data are available on 
a daily basis, NDVI data that reflect crop condition are avail-
able as a 10 day composite. During the last few decades, 
GIS and remote sensing based methods were developed for 
forecasting rice production, particularly, in Asiatic coun-
tries (Chen et al., 2011; Jing-feng et al., 2002; Rahman et 
al., 2012; Wang et al., 2010). Most of these methods were 
developed on the basis of exploiting the remote sensing 
based spectral indices like NDVI. However, many are lack-
ing in pre-processing the climatic data. Scaling up all the 
input parameters on the spatial and temporal levels is very 
important for successful modelling. Depending on agricul-
tural and climatic conditions, Choi and Yun (1989), divided 
South Korea into 19 agro-meteorological zones, which Na 
et al. (2012) modified to obtain 9 major zones as shown in 
Fig. 1. Each of these zones. consisting of several smaller 
provinces, has its distinctive weather and soil characteris-
tics. As historical rice yield data had been integrated on the 
provincial level, all the input parameters were scaled up 

Fig. 1. Agro-climatic zones of South Korea.
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for each provincial zone and then an individual ANN based 
model was generated for each of the climatic zones using 
spatial interpolation. To homogenise on a temporal level, 
average and/or summed up data for August 1 to October 
10, were used as model primary input. The time period 
was chosen based on the NDVI study described later. The 
schematic diagram of the model is given in Fig. 2. A regres-
sion based model has also been studied with the same input 
parameters to compare the performance of the ANN-based 
model. The details of the methods applied to the input va- 
riables are given below.

Due to a huge difference in the resolutions of MODIS-
NDVI (250 m) and the land cover image (30 m), in case 
of mixed pixel covering other features along with paddy 
fields, NDVI value was found to be different from the pure 
pixel with only the paddy field in it. For example, as shown 
in Fig. 3, the NDVI value of grid 1 with rice field alone is 
0.68. This is much lower than grids 2, 3 and 4 with impuri-
ties in them. Such effect can surely introduce error in the 
measurement of average NDVI. To resolve this issue, the 
pixels, with only paddy fields in them, in MODIS-NDVI 
images, were extracted using the land cover map as refer-
ence and the NDVI values of only those pixels were used 
for model development. For example, in Fig. 3, from pix-
els 1 to 5, only pixel 1 will be chosen. Next, the extracted 
pixels are analysed for noise and error. Although Web-
MODIS data is already filtered for inherent noise, there are 
fluctuations with noteworthy high and low values due to 
the presence of cloud and atmospheric turbidity. Scientists 
used a number of methods viz. Fourier-based method, 

Asymmetrical Gaussian function-fitting, Savitzky-Golay 
filter, and Mean Value Iteration (MVI) to reduce noise in 
NDVI imagery. Each of the above-mentioned approaches 
holds its own advantages and disadvantages (Hird and 
McDermid, 2009). Most have complex and time consum-
ing algorithms. Among them, MVI is preferred due to its 
simplicity and accuracy (Ma and Veroustraete, 2006). In 
the present study, NDVI data of ith date was replaced with 
the average of (i+1)th and (i-1)th data if it was lower than 
the average as given in the following equation, as well as 
depicted in Fig. 4:

(2)

The MVI method was used for each of the 26,198 pixels in 
each 10-day composite NDVI image from 2001 to 2012. 
The mean NDVI for South Korea increased from 0.26±0.17 
before correction, to 0.61±0.09 after applying MVI filtra-
tion. The variation of average corrected and non-corrected 
NDVI from 2001 to 2012 is depicted in Fig. 5. It is clear 
from the figure that the sudden low in NDVI is due to the 
presence of clouds. When, other noises are removed, the 
corrected NDVI becomes a better reflection of the rice cul-
tivation cycle over Korea. 

In a temperate climate, the NDVI value has been found 
to vary with the maturity of plant leaves in progressive sea- 
sons. Therefore, in many crop phonological studies, a cyc- 
lic change in NDVI value has been observed. Likewise, 

Fig. 2. Schematic diagram of model development.
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the relationship between NDVI and rice yield strongly 
depends on the acquisition time of the NDVI image (Chen 
et al., 2012). Thus, before being used as a model input, 
the NDVI over South Korea at different time periods 
was correlated with the rice yield. In South Korea, rice 
cultivation starts in spring i.e. in the middle of March, and 
seedlings are transplanted to freshly flooded fields during 
the rainy season, usually in May. Generally, the harvesting 
season starts with the beginning of October. The highest 
correlation, 0.33 with a p value less than 0.01, has been 
found with average NDVI from August 1 to October 10, 
and so it was used as one of the input variables in the ANN 
model. The NDVI integral over the growing season has also 
been successfully used as an indicator by many researchers 
in the past (Rasmussen, 1992; Tucker et al., 1980).

Temperature is one of the meteorological factors that is 
extremely influenced by the elevation. It also acts as a lim-
iting and deterministic factor in agricultural yield. Lower 
average temperatures indicate less moisture drawn out of 
the soil through evaporation, but also more extreme cold 
during winter. Lookingbill and Urban (2003), suggested 
a local model for estimating temperature changes in a com- 
plex topography. Ishida and Kawashima (1993), used the 
cokriging method to predict the changes in surface air 
temperature with elevation. In general, studies on thermal 
and radiation environment across a divergent topography 
used the DEM data (McCune, 2007). Maximum, minimum 
and accumulated temperatures from 536 stations across 
the country have been taken for our study and an altitude 
corrected map of maximum, minimum and accumulated 
temperatures were made using the spatial interpolation 
technique (Fig. 5). Initially, the measured temperature (Tm) 
was converted to sea level temperature (Tsl) using the fol-
lowing equations (Yun et al., 2001):

Tsl = Tm + (Station altitude) km × 8.1. (3)

These data were used in turn to create a sea level tempera-
ture map of South Korea by applying the Ordinary Kriging 
(OK) method. Then with DEM (altitude) data, the sea level 
temperature was again converted to corrected temperature 
or estimated temperature (Test) (Fig. 6). The process was 
applied to all three temperature variables i.e. accumulated, 
average minimum and average maximum temperatures: 

Test = Tsl – (DEM.altitude) km × 8.1. (4)

There are only 22 solar radiation measuring stations 
in South Korea. Such small number can increase the error 
when used for spatial interpolation. Therefore, to increase 
the accuracy of the available solar radiation map, an empi- 
rical model to estimate global solar radiation (GSR) from 

Fig. 3. Land-use map and different value of NDVI by ratio of 
paddy to other land cover.

Fig. 4. Corrected NDVI using the MVI method.

Fig. 5. Time series average NDVI before and after applying MVI.
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sunshine hours and topographic factors was introduced. 
The details of the model are discussed by Park et al. (2015). 
The average solar radiation of each province extracted from 
the map was used for model input.

Inaccuracy in the spatial distribution of rainfall data 
can also significantly increase the errors in the end results 
of a CYM. In a study, Pizza (2011) compares the different 
techniques that can be used for the spatial interpolation 
of rainfall data, and concluded univariate methods like 
Ordinary Kriging were the best for prediction. Ly et al., 
2013 reviewed different studies on spatial interpolation of 
rainfall and showed the importance of choice of interpola-
tion method. For monthly and annual rainfall, the kriging 
method was found to be superior to others (Tabis and Salas, 
1985; Abtew et al., 1993) and hence it was used in the pre-
sent study.

In order to meet the worldwide population expan-
sion, the yields of food crops such as rice need to increase 
according to the rising demand. However, the changes in 
the global climate may make this goal more challenging to 
meet. Different approaches have been employed to evalu-
ate the impacts of climate change on crop yields. In most 
cases, they have examined the effect of the future climate 
change on crop yields using a crop model and climate 
change scenarios. This approach has also been adopted in 
this study. Herein, the climatic variables of temperature, 
rainfall and solar radiation of RCP 4.5 and 8.5 are taken 
for forecasting rice yield in South Korea. In our work, 
a representative concentration pathway (RCP) of 4.5 is 
used as a stabilisation scenario and assumes that climate 
policies, like the introduction of a pricing method for 
greenhouse gas emissions, will achieve the goal of limiting 
emissions and concentrations, and, hence, radiative forc-
ing (Clarke, 2007). In contrast, an RCP of 8.5 corresponds 
to a high greenhouse gas emissions pathway compared 
to literature (Riahi, 2007), and, therefore, also represents 
the upper bound of the RCPs. The greenhouse gas emis-
sions and concentrations in the RCP 8.5 scenario increase 
considerably over time, leading to a radiative forcing of 
8.5 W m-2 at the end of the century.

RESULTS AND DISCUSSION

Due to non-homogeneity in available meteorological 
stations, the climatic variables were first subjected to spa-
tial interpolation. Mean values of each of the 137 unit areas 
have been taken as input for the ANN model. Instead of 
using one variogram model, different types of variograms 
have been tested for each variable in each year. Among 
these, the best performing model was selected based on the 
least RMSE as shown in Table 2. The highest percentage 
error has been found in the case of accumulated rainfall, 
but it is less than 25% and thus is within acceptable range. 
The larger error can be attributed to the patchy distribu-
tional pattern of rainfall over South Korea. On the other Fig. 6. Procedure of spatial distribution of temperature.
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hand, percentage error is relatively low in the case of all 
temperature related parameters. It is also noteworthy that 
the standard deviation of accumulated rainfall is more than 
50% from its national average, whereas it is only 5% in 
case of accumulated temperature. Accumulated solar radia-
tion was estimated using the sunshine based model of Park 
et al. (2015). 

The ANN model ‘build up’ steps include the creation 
of a training and testing dataset, training multiple networks 
with varied model parameters and analysing the results. 
The model was fed with data from 2001 to 2011, 70% of 
which were used for training and the remaining 30% for 
testing purposes. The training and testing data were cho-
sen automatically and randomly by machine. Data of 

Ta b l e  2. Error parameters after Kriging interpolation

Year Variogram MAPE (%) RMSE Variogram MAPE (%) RMSE

Accumulated temperature (oC) Mean maximum temperature (oC)

2012

Exponential

2.15 44.96 Gaussian 2.30 0.86

2011 2.16 44.21 Gaussian 2.45 0.92

2010 2.07 74.17 Circular 2.63 1.94

2009 2.00 43.44 Gaussian 1.93 0.69

2008 1.97 41.36 Circular 1.97 071

2007 2.13 38.24 Spherical 1.76 0.66

2006 1.75 44.15 Spherical 2.14 0.77

2005 1.96 43.32 Gaussian 1.97 0.72

2004 1.92 43.92 Spherical 2.01 0.72

2003 2.50 47.06 Circular 2.08 0.74

2002 2.35 47.93 Spherical 2.16 0.73

2001 2.20 47.15 Gaussian 2.15 0.77

Mean minimum temperature (oC) Accumulated rainfall (mm)

2012 Exponential 3.45 0.90 Gaussian 12.00 123.19

2011 Exponential 6.86 1.84 Exponential 17.92 75.89

2010 Exponential 3.39 1.07 Exponential 15.97 151.87

2009 Exponential 3.99 0.95 Exponential 13.31 47.78

2008 Spherical 3.70 0.90 Gaussian 18.90 66.54

2007 Exponential 2.60 0.71 Gaussian 13.38 127.29

2006 Exponential 3.82 0.98 Gaussian 25.38 68.19

2005 Spherical 2.85 0.76 Gaussian 15.78 97.55

2004 Spherical 3.58 0.90 Exponential 14.60 124.94

2003 Spherical 3.41 0.86 Exponential 13.83 120.77

2002 Exponential 3.72 0.89 Exponential 15.01 135.43

2001 Exponential 3.80 0.89 Spherical 15.98 57.31
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2012 were used as holdout set for model validation. The 
IBM SPSS ANN multilayer perceptron (MLP) model uses 
a supervised learning technique and has a feedforward 
architecture. MLP procedure, although it takes a longer 
time, is better equipped to find complex relationships. It 
predicts the error for each input parameters and then propa-
gates the output error backward in the network and repeats 
the process until it reaches a model of minimum error (Jain 
et al., 1996). 

In network architecture, the hyperbolic tangent method 
was used to calculate the weighting coefficient for both 
input and output layers. No lower boundary of learning rate 
was set, but the threshold of error was kept to 0.0001, with 
an error ratio 0.001. MLP with different hidden layers were 
tested, but ANN with one hidden layer showed as being 
the best procedure for each climatic zone when analysed 
in terms of required time and prediction error. All climatic 
variables have their own influence in grain yield and are 
rigorously discussed in literature (Chen et al., 2015; Deng 
et al., 2015; Krishnan et al., 2011; Yoshida, 1981), thus, the 
weighting coefficients of ANN models are different in case 
of different zones (Table 3). 

 It is clear from the table that different variables are tak-
ing the main role in influencing the ultimate production of 
rice. For example, for the mountainous region (MT), the 
rice yield is mostly influenced by minimum temperature 
and least affected by rainfall. In fact, in most of the zones, 
temperature range and minimum temperature play the 
main role in predicting yield. With advanced technology, 
the availability of fertilisers and better irrigation practices, 
the inter-annual variation of rice yield along with spatial 
gradient are less attributable to plant growth (NDVI) and 
rainfall. This is reflected in smaller weighting coefficients 

in Table 3. The results also support our approach of explor-
ing zonal models instead of one general model, otherwise 
the information about the variability in climatic influence 
would lose its importance. 

The best ANN model (Zone: EC) structure is given 
in Fig. 7. The performance results of all ANN based and 
linear regression based models are given in Table 4. The 
performance of ANN-based models are far better than lin-
ear regression-based models, although there were a number 
of studies on predicting yield using regression analysis in 
the past that had shown good results. Still, it is also a fact 
that the relationship between grain yield and climatologi-
cal conditions is hardly linear. Drummond et al. (1995) 
compares several statistical models for predicting yield and 
concludes that less complex models such as multiple linear 
regression (MLR) are not enough to explain the yield varia- 
bility. Moreover, in recent studies comparing these two 
methods, i.e. ANN and MLR, ANN has shown the better 
performance in most of the cases – as in our case (Ji et al., 
2007; Paswan et al., 2013; Yam, 2015). 

It is clear from Table 4 that not only did the ANN 
model predict rice yield more precisely than regression 
analysis, but a low error and high R2 also validate the 
novel approach of combining ANN with spatial interpo-
lation that is presented in this paper. Spatial interpolation 
using DEM to generate meteorological surface has already 
been tested for rice yield in South Korea and has shown 
significant improvement in yield prediction (Yun, 1999, 
2003). However, this study was lacking in two ways, it did 
not include any indicator for plant growth or health, and 
the used CYM was more complex, time consuming and 
required special experienced handlers. ANN models are 
more simple and easier to reproduce. When integrated with 

Ta b l e  3. Importance of input data according to weighting coefficients in different agro-climatic zones

Zones NDVI Acc_Rad Max_Temp Min_Temp Acc_Temp Range_Temp Acc_Rain

GI 7 3 4 2 1 5 6

SI 2 6 1 5 4 3 7

SC 6 7 3 2 5 1 4

EC 5 3 7 2 6 1 4

AP 4 7 3 2 6 1 5

MT 6 5 3 1 4 2 7

CNC 2 6 1 4 5 3 7

CNI 6 7 5 2 3 1 4

CSC 7 1 6 3 2 4 5

Weighting coefficient = high to low: 1 to 7, GI – Gyeongbuk Inland, SI – Southern Inland, SC – Southern Coastal, EC – Eastern Coastal, 
AP – Alpine, MT – Mountainous, CNC – Central Northern Coastal, CNI – Central Northern Inland, CSC – Central Southern Coastal.
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Fig. 7. Structure and yield estimation of best ANN model over EC.

Ta b l e  4. Results of ANN models and regression analysis in estimating rice yield within South Korea

Agro-climatic 
zone

Cross-validation Independent variable (2012)

RMSE MAPE R2 RMSE MAPE R2

Error parameters for ANN model

GI 20.52 3.20 0.76 20.49 3.23 0.74

SI 21.07 3.53 0.68 21.53 3.60 0.66

SC 28.40 4.64 0.58 29.57 4.91 0.60

EC 8.44 1.14 0.97 8.14 1.11 0.98

AP 6.32 0.96 0.94 6.14 0.93 0.94

MT 20.76 3.49 0.78 20.47 3.43 0.78

CNC 17.74 2.91 0.73 17.57 2.88 0.72

CNI 20.40 3.48 0.70 20.34 3.46 0.69

CSC 17.32 2.68 0.73 17.21 2.67 0.73

Error parameters for regression analysis

GI 32.75 5.29 0.39 47.15 8.88 0.29

SI 29.42 4.80 0.37 32.25 5.44 0.18

SC 34.95 5.83 0.37 59.50 10.80 0.19

EC 35.92 7.27 0.54 48.17 11.59 0.96

AP 24.71 4.29 0.19 27.17 5.40 0.002

MT 36.66 6.23 0.33 30.90 5.34 0.30

CNC 30.73 5.21 0.19 13.01 2.41 0.03

CNI 30.21 5.04 0.34 24.83 4.29 0.08

CSC 27.63 4.30 0.32 26.88 4.11 0.01

MAPE in % and RMSE in kg 10-1 a.

Measured yield (kg 10-1 a)
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remote sensing-GIS based methods, such statistical meth-
ods are seen to be more accurate (Prasad, 2007; Sarma, 
2008; Savin and Isaev, 2010). The percentage error is lowest 
in the Alpine zone and highest in the Southern Coastal 
zone. Moreover, the regression coefficient is highest in the 
case of the Eastern Coastal zone. 

The impact of global climate change on agriculture 
has been studied extensively for various crops at many 
different scales (Dhungana et al., 2006; Fu et al., 2016; 
Kurukulasuriya and Shane, 2013). However, relatively few 
studies have focused on rice, the foremost food crop in Asia. 
Tow field-based crop models ORIZA and SIMRIW predict 
a decrease in rice yield with an increase in temperature and 
an increase in yield when only the carbon-dioxide level 
becomes raised (Kim et al., 2013; Vaghefi et al., 2013). The 
present model is thus run with two standard climate change 
scenarios (RCP4.5 and RCP8.5) to evaluate the effect on 
rice production. Changes in different climatic parameters in 
South Korea, according to the two scenarios, are depicted 
in Fig. 8. 

There is actually no significant trend that is observ-
able in the case of solar radiation as well as precipitation. 
Obviously, temperature shows a remarkable rise with time 
especially in case of scenario 8.5. However, increasing 
temperature acted differently in different agricultural zones 

in influencing rice yield as seen in Fig. 9a. Still, the trend 
is not statistically significant in many cases. The influence 
of precipitation and solar radiation nullifies the effect of 
increased temperature, and, therefore, the forecasted yield 
as shown in Fig 9b is almost random rather than showing 
an increasing or decreasing pattern. Yet, in the long term, 
a decreasing trend in rice production can be observed in 
the case of scenario 4.5. Furthermore, a higher increase in 
minimum temperature and accumulated temperature can 
increase the rice production of the country - as observed in 
the case of scenario 8.5. Similar to the past studies (Lee et 
al., 2012), we saw that changes in yield are more effective 
in the eastern part of the country than in other regions. 

It should be underlined that the effect of enhanced CO2 
is not considered here, which can complicate the forecast-
ing system. It is very difficult to anticipate the effect of 
climate change in any biological system. This is because its 
interaction with the physio-chemical environment is exten-
sively complex and hard to reproduce (Kurukulasuriya and 
Shane, 2013; Perkins, 2010). Still an attempt is made here 
to do so via ascertaining, albeit in an oversimplifying man-
ner, if there is a statistical relationship between climate and 
crop production - if only to view a glimpse of the future 
and take necessary steps to adopt to the changes. So far, 

Fig. 8. Changes in input parameters from measured average according to RCP4.5 and RCP8.5 scenarios.

Fig. 9. Trend of rice yield in different agricultural zones  (a) and forecasted average yield for the whole country in the case of climate 
change scenarios 4.5 and 8.5 (b).
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although random, it can be said that increasing temperature 
at a higher rate may have a positive effect on future rice 
production in South Korea.

CONCLUSIONS

1. In the present study, ANN-based localised models 
have been developed to estimate rice production within 
South Korea. The main feature of our study is the com-
bination of the spatial interpolation technique with the 
statistical crop model. 

2. Scaling-up all climatic input is very important for 
the precision of model output specifically for countries like 
South Korea that feature high topographical variability. In 
addition to the complex terrain, spatial variation in soils, 
climate and management practice is far more complex in 
South Korea than in other major rice producing areas of 
the world. Hence, instead of one general model, the whole 
country is divided into 9 agro-climatic zones, and specific 
regional models were developed for each zone. Two major 
issues, inhomogeneity in climate and uneven distribution 
of the weather stations are addressed using GIS techniques. 

3. Again to eliminate noise, the NDVI value of pixels 
with only paddy fields in them were chosen for study, and 
then again, the NDVI data of each of these pixels for each 
10 days composite from 2001 to 2012 are analysed and 
treated using the MVI method. 

4. Thus, when designing the model, every precautions 
has been taken to reduce the sources of noise and error 
in each input variable and in the full model development 
procedure. The efforts were reflected in the low percent-
age error and the high correlation between observed and 
modelled rice yield. It also justified the validity of the novel 
approach presented in this paper in forecasting the yield. 

5. There is a growing concern among the scientific com-
munity, as well as in in the farming community and the 
general population about the influence of changing climate 
on growth and production of major world crops such as 
rice. Scientists argue, however, that with adapting mecha-
nisms like alternative management practice and developing 
or shifting to new crop genotypes can reduce the effect of 
climate change on agricultural production. Still, it is a pre- 
requisite to have an idea of the pathway of changes in 
the future before incorporating any adaptive practice. 
Therefore, the present model is used against the future cli-
mate change scenarios 4.5 and 8.5 to predict the changes 
in rice yield over South Korea. According to our model, 
higher temperature as postulated by scenario 8.5 may have 
a positive effect on rice yield within South Korea. 

6. While the model was seen to be successful for the 
present study, for prediction of yield with changing cli-
mate, more improvement in methodologies is required. The 
model should include more sophisticated issues such as soil 
characteristics and changes in CO2 level when it comes to 
forecasting yield for the far future. 
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