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Abstract. Thispaperis acontinuation of the work on
the new approach to the packing problems of randomly em-
bedded granular material proposed by G6zdz and Pictrow.
In previous paper a quantum mechanical approach (QMA)
to packing was introduced and 2- and 3-dimensional pa-
cking experiments for circles (spheres) were generated on
this basis. Packing fractions were calculated to test the
ability to build 2- and 3-dimensional beds with correct pro-
perties. In this paper we continue testing the QMA model.
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INTRODUCTION

Applying the QMA approach, we are able
to generate 2-dimensional and 3-dimensional
packings of spherical and other shapes of
grains. To check the properties of the packing
we calculate packing fraction and the radial
distribution function. We check the structures
by analysing pictures of beds (sections of beds
in a 3-dimensional case)and by analysing the
density function in arbitrarily.

To determine characteristic functions, we
generated packing of 20000 equal spheres for
the 2- and 3-dimensional cases. Some of these
functions are defined, in principle for infinite
media. It requires removing the effect of the
spheres that are on the edges of the bed. For

example, for 20000 spheres in a 2-dimensional
vessel with the baselength of 100R (R-radius of
sphere) there are approximately 600 spheres in
the four edges of the vessel, thus a deviation
from the average value is about 3%.

CHARACTERISTICS OF THE STUDY MATERIAL
2-dimensional packing

Packing fraction

For 2-dimensional structures, the bonds of
the packing fraction are not exactly determined.
Especially the structure of random loose
packing is not sufficiently known. From
literature we know [2], that random packing
occurs in the range of packing fraction from
0.82 to 0.89. In our research we obtained
structures with packing fractions from 0.821 to
0.890, so we can generate a full range of
2-dimensional packings. The value of the
packing fraction depends on the values of
parameters in the computer programme descri-
bing the strength of the interaction potential [4]
and the parameters in method for energy mini-
malisation.
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InFig. 1 we can see the domain structure of
the packing. The interior of the domain has an
almost hexagonal structure. Within the domain,
coordination number is about 6. Most of the
packing consists of regions with a coordination
number of about 4 (square packing) with
numerous bridge structures. Locally these
regions show low values of packing fraction and
a decrease in the average packing fraction
calculated of this bed. An average number of
contacts for the whole bed is 4.4. For smaller
vessels the average number of contacts is lower
because the number of marginal-spheres is
larger than the number of spheres forming a
core in this case.

Functions of radial distribution

For the 2-dimensional packing two diffe-
rent types of radial distribution function were
obtained. The first one, Frl, is defined as an
average density of the probability of finding a
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Fig. 1. Packing of 2000 circles in the container.

center of any sphere at the distance » from the
center a fixed sphere. The maxima of this
function indicate the distances from the
n-th-class neighbours, where n is a number of
maxima. For a regular crystalline packing the
maxima of the Fr1 function are well defined.
For example for a 2-dimensional close packing
(hexagonal) the first maximum is observed at
the distance @ =2R (a is the lattice constant,
R-radius of sphere) from any sphere. There are 6
neighbours at this distance. The second maxi-
mum is at 2R +3=3.46R away from any sphere
and the number of these 2nd-class neighbours is
also equal to 6. For square lattices the number of
Ist-class neighbours is 4 at a distance 2R and the
number of 2nd-class neighbours is 4 at a
distance of 2R +/2~2.83R from any sphere.

Inrandom 2-dimensional beds we observed
(Fig. 1) areas with different structures, especial-
ly hexagonal and square lattices. Therefore the
Frl in random packing is only statistical fun-
ction (Fig. 2).
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Fig. 2. Radial distribution function Fr1 (a) and Fr2 (b) in the 2-dimensional case.

To draw this function, we need to divide the
probability on any portion of distance by its
average r due according to the formula (a2) to
obtain the probability density. Therefore the
function does not increase with an increasing
radius.

One may calculate another type of radial
distribution function (Fr2). It is defined as the
average probability density of finding a point
belonging to any sphere at a distance » from any
sphere. The Fr2 function is shown in Fig. 2.

Force values and force directions
at contact areas

Our method of description of granular
materials allows us easily to assign forces to
contacts areas. This is an important chara-
cteristic needed for further considerations of
mechanical properties. In Fig. 3 one can see the
forces in the state without stress. The lengths of
arrows are due to the forces values.

Fig. 3. Contact forces.
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To calculate the forces we used a known
formula:

F=-VV,

where V is the gradient operator and V is an
interaction energy function proportional to the
value of spherical overlap [4].

Isotropy of density

One of the methods of analysing the
structure of material is a determining its density
along any line or plane. This allows to establish
the domain structure of a 2-dimensional ma-
terial and its lack in the 3-dimensional case [8].
The method allows us to observe planes or lines
distinguished by the method of pouring, e.g., for
the cone pouring we are able to distinguish a
line at the maximum angle of pouring. In this
direction local density is more homogeneous
than in any other directions. An example of the
density function for suitable material packing is
shown in the Fig. 4.

3-dimensional packing
Packing fraction

The value of the packing fraction for
random loose packing in a 3-dimensional case is
0.58. For the close packing the fraction is 0.63
[2] up 0.67 [1]. Our simulations provided us
with beds with packing fractions covering the
whole range. It was observed, that packing
fraction depends strongly on the ratio of lengths
of container edges to the spheres radius. Somc
results relevant to this problem were obtained
by Scott [6]. In our case we found, that the
length of container edges equal to 70R is still too
small to obtain a stable structure, i.e., a small
increase or decrease in the lengths of these
edges changes the packing fraction signifi-
cantly. This problem requires further investi-
gations and more computation.

Function of radial distribution

Similarly, we determined a 71 function for
the 3-dimensional packing (Fig. 5).
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Fig. 4. Packing of 50 circles and local denisty along the line
z=17.
Its maxima for regular close packing fcc
are: 1st for = = R for 12 neighbours, 2nd for
V2

%z2.83R (6 neighbours). For the bcc structure

the first maximum is at a distance of 2326 =2R
and the second is at %zl}lR for 8 and 6

neighbours, respectively. Finally, for the sc
packing, the first maximum at a distance of 2R is
for 6 neighbours and the second (12 neighbours)
is at 24/2R =283R. For granular materials we
have 3.3-3.5R in the case of the second
maximum [1].

10

8

2 4 6 8 10

Fig. 5. Radial distribution function Fr1 in the 3-dimesnional
casc.
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CONCLUSIONS

From the characteristics shown above we
conclude, that the QMA packing model seems
to be a good and quite general method to obtain
packings with desired parameters. In future we
plan to determine other useful characteristics
such as contact distribution functions which
will enable us to determine mechanical pro-
perties of the material. Flexibility of both the
theoretical and numerical methods within this
approach allows us to consider more realistic
problems than it is possible with other methods

APPENDIX

For a 2-dimensional case an average den-
sity over any area S in polar coordinates is:

ds f’zfgzp(r,a)rda dr
)=fp _hTa
S S

<p>(r

(al)

where Sis an area of circle with the radius 7, p (7,
a) a local density. In the discrete form, which is

helpful for the numerical calculations we arrive
at:

22 PAaAr _s > pAaAr' (@2)
ar? r r
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