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A b s t r a c t. Ground water availability can be a major spatially 
variable factor of crop yields. In soils with the infiltration-restrict-
ing layer, ground water can be organized in the network of 
channels that conduct water laterally in wet periods and become 
water storage and water subsidy sources for plants in dry peri-
ods. The objective of this work was to quantify the relationships 
between the distances to the subsurface flow pathway network 
and corn yield for different weather conditions and nutrient 
management. Corn yield was monitored across the manured and 
chemically fertilized fields at the USDA-ARS OPE3 experimen-
tal site in Maryland. Data were collected during dry, normal, and 
above normal years in terms of the amount of precipitation from 
planting to physiological maturity. The subsurface flow pathway 
network was delineated using ArcGIS from data on topography of 
the infiltration-restricting layer found mostly at depths between 
one and three meters. The geographically weighted regression 
was used. Adjusted determination coefficients of regressions 
ranged from 0.485 to 0.655. Decrease of the adjusted determi-
nation coefficients from a dry to normal year and an increase 
from the normal to wet year was found. Factoring the subsurface 
flow pathway network influence into crop management can be an 
important component of precision farming strategies.

K e y w o r d s: subsurface flow pathways, ground penetrating 
radar, geographic weighted regression, corn yield

INTRODUCTION

Variability of crop yield within fields receiving the 
same management has long been a target of precision 
agriculture. Availability of water, radiation, and nutrients, 

as well as pressure from weeds and diseases may signifi-
cantly vary across crop fields, a variation in yields follows. 
Understanding spatial patterns of crop variability factors 
appears to be necessary to use resources efficiently and to 
improve the resilience of the farm enterprise Ground water 
availability can be a major spatially variable factor of crop 
yields. It was shown for corn that ground water depth less 
than one meter negatively affects yields, whereas higher 
yields have been recorded at intermediate (1-3 m) water 
table depths (Kahlown et al., 2005; Zipper et al., 2015). The 
portion of total seasonal evapotranspiration supplied from 
shallow ground water was strongly affected by water-table 
depth in the work of Kalita et al. (1993).

The spatial organization of shallow ground water depth 
is difficult to observe. Yoder et al. (2001) and Gish et al. 
(2002) applied ground penetration radar (GPR) and elec-
tromagnetic induction surveys at fields with loess and 
fluvial soils. They concluded that there exists a network 
of subsurface flow pathways, providing the major lateral 
flow of subsurface water, that are perched on a layer that 
restricts vertical flow. Their conceptual model was similar 
to the model developed in the research of lateral flow at the 
soil-bedrock interface. In particular, Tromp-Van Meerveld 
and McDonnell (2006) described the threshold-dependent 
occurrence of subsurface lateral flow as a “fill and spill” 
process, in which water ponding at the soil-bedrock inter-
face overfilled bedrock depressions, causing water to “spill” 
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downslope over the bedrock surface (Hardie et al., 2001). 
The spills caused the water movement through a subsur-
face network of narrow flow paths for the “channelized” 
saturated flow. As soil water contents increased, more con-
nections between subsurface ponded areas became active. 
Location of the dynamic subsurface ponds was proposed 
to be obtained from the topography of the restricting layer, 
which in turn was inferred from spatially dense ground pen-
etration radar data (Gish et al., 2002, Zhu and Lin, 2009).

Weather and nutrient management could alter the effect 
of the subsurface flow pathway network (SFPN) on spa-
tial variation in crop development and yield. In dry years, 
there should be more time periods when plants above the 
flow pathway can receive ground water subsidy, whereas 
plants that are further from the pathways would be in less 
favorable conditions. This was demonstrated in the study 
of Walthall et al. (2004), who determined the normalized 
difference vegetation index (NDVI) for corn fields, where 
subsurface preferential flow pathways were delineated, 
had higher NDVI values in the proximity of the pathways 
themselves. The efficiency of nutrients can depend on the 
nutrients mobility and soil water contents, which should 
be different at different distances from the subsurface flow 
pathway network. Currently, information on the effect of 
subsurface flow on yields remains scarce.

The objective of this work was to estimate and com-
pare effects of subsurface preferential lateral flow pathways 
on spatial variation in corn yields, with different nutrient 
management, in years of different water availability. The 
weighted geographical regression was applied to quantify 
the effect of the distance to subsurface pathways on the 
yields.

MATERIALS AND METHODS

The study site is located at the USDA-ARS Henry 
A. Wallace Beltsville Agricultural Research Center, MD 
(near 39°01’ 44”N, 76°50’ 46”W). The 21 ha site is part 
of the Optimizing Production inputs for Economic and 
Environmental Enhancement (OPE3) study and contains 
four fields that range in size from 3.6 to 4.2 ha. Each field 
delimited by earthen berms and drains into a first-order 
stream and riparian wetland. The soils are variable, but 
the majority are coarse-loamy, siliceous, mesic typic hap-
ludults. Surface soil textures range from sandy loams to 
loamy sands. Surface slopes vary between 1 and 4%. Depth 
of the first continuous clay lens, identified using ground-
penetrating radar (GPR), ranged from 1 to 3 m (Gish et al., 
2002, 2005).

Corn (Zea mays L.) was planted on 17 April 2002, 18 
May 2004, and 29 April 2006. It was fertilized using split 
applications of N, as recommended by the University of 
Maryland. Field A also received uniform applications of 
bovine manure that was applied to the soil surface and 
incorporated prior to planting. To account for N loss, due to 
ammonia volatilization, additional N fertilizer was applied 

(~ 50 kg N ha-1) as needed at 4-5 weeks after planting, 
based on the pre-side dress nitrate test. Field B received 
34 kg N ha-1 at planting, plus an additional uniform appli-
cation of N fertilizer with the rate based on the mean 
PSNT value. Corn grain yields were acquired with a har-
vester equipped with a yield monitor and a differential 
GPS. Measurement errors resulting from the harvester 
detouring around obstacles in the fields (e.g., soil moisture 
sensors, sampling wells, and the weather station tower) 
were removed from the yield data. The weather station, 
located in Field B, recorded solar radiation, air temperature, 
wind speed, and precipitation.

The SFPN were obtained using the ‘stream delinea-
tion’ tool, from the ArcMap hydrology tool set (Jenson and 
Domingue, 1988). The input for this tool was the raster of 
the digital elevation model (DEM) of the restrictive layer, 
which was obtained by subtracting krigged depth to the 
restrictive layer from the elevations of the land surface. 
The depths and elevations were obtained from ground 
penetration radar and kinematic GPS surveys, respectively 
(Gish et al., 2005). This DEM of the restrictive layer was 
used in the ‘flow direction’ tool, in ArcMap, which gener-
ated a raster showing the direction of flow out of each cell. 
Next, the ‘flow accumulation tool’ was used which repre-
sented the accumulated flow as the accumulated number of 
all cells flowing into each downslope cell. Different flow 
accumulation thresholds (FATs) can be applied to select 
only those subsurface flow pathway networks that have 
a number of inflowing cells greater than the threshold. Each 
delineated subsurface pathway was then converted to a fea-
ture using the ‘stream to feature’ tool.

Geographically weighted regression (GWR) is a spatial 
regression technique increasingly used in spatial dataset 
analysis. GWR provides a local linear regression model, 
that accounts for the distance between locations where 
independent and dependent variables are measured. These 
distances are used to create geographical weights for the 
values of the independent variable (Fotherinham et al., 
2003). Weights decrease as the distances increase. The func-
tion that relates weights to distances is called kernel. Two 
types of kernels – fixed and adaptive – are implemented 
in ArcGIS. We used a fixed kernel, which was preferable, 
since our data points were regularly distributed rather than 
clustered, as Moran’s I statistics showed (Charlton and 
Fotherinham, 2009). The size of the area, where data for 
GWR are collected, is controlled by the single parameter 
of the function kernel. This parameter, called bandwidth, is 
found automatically, to provide the minimum of the value 
of the corrected Akaike information criterion (AICc), which 
in turn characterizes the accuracy of the GWR estimates. 
The adjusted determination coefficient, R2, was utilized to 
assess the performance of the GWR.

The GWR was ran using yield as the dependent variab- 
le, and values of the distance, from the yield data location to 
the closest portion of the SFPN, were used as the predictor 
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variable. The ‘near’ tool, in ArcMap, was used on each field 
yield data, for each year, for various FATs. The tool created 
values of the distances, which were used in GWR.

RESULTS

Cumulative precipitation was calculated for each year, 
for the period from planting to physiological maturity of 
the crop (Fig. 1). The highest cumulative precipitation 
(387 mm) was recorded in 2006 and the least precipitation 
(110 mm) in 2002. Precipitation in 2004 was (377 mm) 
near the 10- year average. The growing period in 2004 was 
much longer than in 2006, and the average amount of pre-
cipitation per day of the growing season was substantially 
larger in 2006 compared with 2004. Cumulative probability 
distributions, for each year and field, are shown in Fig. 2. 
Both weather and crop management were significant fac-
tors. Average yields were 4795, 7720, and 8724 kg ha-1 at 
the field A and 3998, 7469, and 7983 kg ha-1 at the field B 
in 2002, 2004, and 2006, respectively. The 2004 weather 
conditions caused the shape of the yield distributions to be 
qualitatively different from other years. In this year, a rela-
tively large proportion of field area had very low yields. No 
yield was recorded at about 5% of field area.

Subsurface flow pathway networks formed branching 
structures. An example of such structures are shown in 
Fig. 3. As the FAT increases, the branches become short-

er. The pathways tended to be denser in lower parts of the 
fields. Densities of the flow pathways were computed as 
ratios of total length per unit area of the fields; units were 
m-1. The densities depended on the flow accumulation 
threshold. The dependencies followed the inverse power 
law (Fig. 4). The flow pathways density decreased with the 
increase of FAT values. The decrease was slightly faster at 
field B compared with field A. By and large, both fields had 
similar densities for the same values of the FAT (Fig. 4). 
As the FAT increases, inspection of the dependencies, 
shown in Fig. 4, suggested that FAT values 2, 8, and 21 
would provide a clear representation of the differences in 
SFPN density.

Adjusted determination coefficients of GWR, relating 
yields to the distances from the subsurface flow pathway 
networks, are collected in Table 1. Increase in the FAT 
caused the decrease in determination coefficients. At low 
FATs the determination coefficients were relatively high 
– from 0.48 to 0.65 – and demonstrated the substantial influ-
ence of the presence of subsurface flow pathway networks 
on the yields. The increase in FAT values led to lower deter-
mination coefficients (Table 1).

The strength of relationships, between yields and 
distances to the SFPN, reflected the wetness of the year 
(Table 1). For the manured field A, the largest R2 were 
obtained in dry 2002, (except FAT 21). For the standard 
fertilizer application field B, the largest R2 were found in 
2006. For both fields the smallest determination coefficients 
were found in the normal year, 2004.

For given weather conditions, the strength of the ‘yield 
– SFPN density relationship’ reflected the nutrient man-
agement practice (Table 1). In dry 2002, determination 
coefficients decreased in the sequence ‘manure – standard,’ 
The opposite was observed in normal and wet years 2004 
and 2006, when the determination coefficients decreased in 
the sequence ‘standard application – manure.’

Fig. 1. Cumulative precipitation during corn crop vegetation period 
in 2002, 2004 and 2006.

Fig. 2. Cumulative probability distributions of yield values for the observation year across: a – field A, b – field B.

Yield (kg ha-1)

a b
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DISCUSSION

The GWR determination coefficients were highly signi- 
ficant at all years and fields. This supports the idea of a clo- 
se relation between the distance to the SFPN and yield. The 
effect of the weather on the strength of the ‘yield-SFPN’ 
relationship depended on the nutrient management. At the 
manured field A, coefficients were higher in drought year 
2002 and became progressively smaller as years grew 
wetter. This trend supports the assumption of the water 
in SFPN segments as a source of water subsidy, i.e. avail-
ability of additional water for transpiration from shallow 
ground water (Lowry and Loheide, 2010). At fields with 
the standard fertilizer application, the determination coef-
ficients increased from the drought year, 2002, to the wet 
year, 2006. A hypothetic explanation for that, is improved 

Ta b l e  1 .  Adjusted determination coefficients of geographically weighted regressions ‘distance to subsurface flow pathway network 
vs. corn yield’

Field Year Growing 
season

FAT

2 8 21

A 2002 Dry 0.642 0.655 0.557

A 2004 Normal 0.505 0.482 0.348

A 2006 Wet 0.556 0.558 0.501

B 2002 Dry 0.576 0.580 0.427

B 2004 Normal 0.526 0.538 0.398

B 2006 Wet 0.584 0.592 0.477

Fig. 3. Effect of the flow accumulation threshold (FAT) on the delineation of the subsurface flow pathway networks (SFPNs).

Fig. 4. Dependence of the density of subsurface flow pathway net-
works (SFPN) on the flow accumulation threshold (FAT).
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mobility and delivery of chemical fertilizers in the vici- 
nity of SFPN, where the chemical transport can occur both 
in saturated and unsaturated conditions of capillary fringe. 
Substantial lateral transport of solutes in soils was demon-
strated (Logsdon, 2007 for review and example). Kung et 
al. (2000) and Gish et al. (2004) observed chemical tran-
sit time decreases as soil water content increases. Kung 
and Donohue (1991) reported that solution volumes and 
chemical concentrations were more than 400% larger in the 
subsurface depression areas identified with GPR.

There may be several reasons why the GWR R2 are 
only moderately high. First, the procedure of localization 
of SFPN does not provide the information about the water 
storage in specific pathway segments. Therefore, the clos-
est segment is not necessarily the most important source of 
water subsidy. Second, there are unavoidable errors in the 
pathways location that are related to the noise in GPR data. 
Zhang et al. (2014) demonstrated that this noise increases 
as the water contents increase, i.e. one has relatively higher 
noise closer to the pathway segment. Third, it is probably 
not accurate to assume that water from a SFPN is constantly 
available based on the plants demand during the whole veg-
etation  period. Data in Fig. 1 show that precipitation events 
bring large amounts of water, but occur relatively rarely 
during the growing season. Therefore, periods should occur 
when soil water is available all over the field and when even 
the deepest pathways do not contain water because of a long 
drought. Influence of SFPNs on crop yields will depend on 
the duration of these periods and the growth stage of plants 
during these periods. Finally, the method, used in this and 
Gish et al. (2005) papers, relies on the FAT parameter. This 
parameter determines how many grid cells must drain into 
a cell for it to be designate as part of an SFPN location. 
This parameter does not quantitatively define what the 
actual volume of water is in a specific cell (or in neighbor-
ing cells). Therefor the distance to SFPN, per se, may not 
be the only useful predictor of yields.

As soon as the DEM, of the restrictive layer, is deter-
mined from GPR data with spatial analysis tools, methods 
other than GWR can be applied to research the relationship 
between crop yields and SFPNs. These various statistics will 
characterize this relationship.  Gish et al. (2005) utilized 0 
to 5, 5 to 10, and 10 to 15 m buffers around the subsur-
face pathways, to determine the strength of the influence 
of the pathways on corn yield. They used the same GPR 
dataset and ArcGIS tools as we did in this work, applied 
block kriging to 1998, 1999, and 2000 yield data, at two 
scales, and estimated yields, within the buffer bands that 
covered 85% of the field. The ‘yield-SFPN’ relationship, 
based on the listed buffers, was demonstrated to be strongly 
dependent on the distance to the SFPN itself at 85% of the 
field area. Yet another analysis type suggested by Gish et 
al. (2005) consisted in relating the depth to the restrictive 
layer to yields. These authors found a well-defined para-
bolic relationship between yields and depths for two dry 

years (1998 and 1997). Other data analysis approaches may 
rely on the ground water flow within the network, which is 
not defined solely by the two-dimensional representation of 
the network via the number of cells draining to each other. 
The quantitative information about flow transport in SFPN 
provides more information about ground water subsidies 
across the field.

It is difficult to define exactly the resolution of the 
SFPN that provides better predictions (Table 1). Networks 
built from cell draining a large number of other cells 
(FAT = 21), do not contain enough information to estab-
lish a relationship between yields and distance to pathways. 
The SFPN segments are simply too rare to affect large num-
ber of cells. The decrease of the FAT and the corresponding 
increase in the density of subsurface pathway networks cre-
ates better coverage of the fields (Figs 3, 4) and therefore 
provides more information to analyze the ‘yield-SFPN’ 
relationship. However, the increase of the network density 
can potentially include network segments with low water 
storage and therefore lead to some questionable conclu-
sions about the ‘yield-SFPN’ relationship.

We realize that comparison of the nutrient management 
effect on ‘yield-SFPN’ relationship is not accurate, since 
the subsurface flow pathway networks can be different 
across fields A and B. We  estimated several metrics of the 
networks. Dependencies of pathway length, per unit area, 
on the cumulative flow threshold were similar for the two 
fields (Fig. 4).

The effect of close subsurface pathways on yield is 
probably not limited to the water subsidy.

Since plants close to SFPN segments experience bet-
ter development year after year, soil structure and root 
residues should eventually become more favorable for both 
plant development and yield. This aspect of the pathways 
presence may constitute an interesting avenue of research. 
Modeling study of Soylu et al. (2014) indicated that the 
impact of ground water on surface energy and water bal-
ances could be more important than previously recognized. 
These authors demonstrated that corn plant phenology, 
emergence, and root development can be substantially 
altered by shallow ground water.

Shallow ground water or perched water above the re- 
strictive layer may strongly affect the spatial distribution 
of crop yields. When such ground water fills a network 
of channels, the information, from such channels, can be 
a useful component of the knowledge about the crop yield 
variability sources.

CONCLUSIONS

1. Digital elevation model of the shallow infiltration-
restricting layer was developed for two adjacent fields 
using the ground penetration radar survey and high-resolu-
tion DEM of soil surface.
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2. Subsurface flow pathways were delineated from this 
DEM using the ArcGIS hydrologic algorithms.

3. Application of the geographically weighted regres- 
sion revealed relatively strong (0.505 ≤ R2 ≤ 0.642) rela-
tionships between corn yield and distances to subsurface 
flow pathways.

4. Compared with the normal precipitation year, the 
relationships were stronger in the wet year, when the sub-
surface pathways could prevent overwetting, and in the dry 
year when the pathways could serve as a temporary water 
storage and.
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