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Abstract. A five-element rheological model
was applied for analysing the stress relaxation beha-
viour of silt clay loam soil. A triaxial test was conducted
in order to determine the mechanical properties
(Young’s modulus and viscosity coefficient) of the soil.
Mathematical analysis of the model was developed and
analysed by the Finite Element Method (FEM). From
the comparison of stress relaxation curves between an
experimental and computed by FEM, it was found that
the experimental time-dependent stress relaxation
curve was in good agreement with the predicted one
from the rheological model.

INTRODUCTION

Because of complexity of soils, it was
very diffcult to explain satisfyingly certain
problems of the effect of time in vehicle-soil
interaction. Several rheological models,
composed of linear springs in combination
with linear and non-linear dashpots and
slider, have been proposed to simulate a
soil behavior under the action of sustained
stress. )

Awadhwal and Singh [1] developed a
rheological model for wet (puddled as well
as unpuddled) soil and named as Yield-
Maxwell (Y-M) model. Each of the Y-M
units in the model contains a yield element
(shear pin) in parallel with the dashpot of a
Maxwell model. The experimental stress re-
laxation curves of soil samples were com-
pared with those predicted from the model.
The observed and the predicted force were
found to be in good agreement. Murayama

and Shibata [3] proposed a model consist-
ing of a Voigt model in parallel with a
slider, whereas Schiffman [8] model con-
tained a Voigt model in series with a Max-
well model. Shu and Jiang [9] applied a
three-element Hooke-Kelvin model and a
four-element Burgers model to predict the
thrust of driving wheel of two-wheel tractor,
whilst Ji er al. [2] applied the same model to
predict the sinkages of tracked and wheeled
vehicles. Results were good in agreement
between the experiment and calculated
values. Oida [4-7] studicd a linear time-de-
pendent viscoelastic behaviour of soil which
were analysed by the Finite Element
Method (FEM). A rheological three-ele-
ment model, which is casily handled and
represents rationally the actual viscoelastic
behaviour of soil, was suggested to obtain
the rhcological constants and a constitutive
equation of soil. The time-dependent sink-
age of a rigid wheel on the soil was also
simulated by the FEM, regarding the rigid
wheel and the soil as one mechanical system
and setting the axial load of the wheel as the
load boundary condition. The author stated
that the calculated results by FEM and rhe-
ological techniquc have to be verified by the
mcasurement.

Then, it can be stated that the soil, non-
homogeneous material, can be represented
by rheological models to simulate its
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time-dependent force deformation as well
as the flow response. The information
derived from the rheological models should
contribute not only to the development of
procedures and design of equipment to al-
leviate the problems which is impeding
mechanized cultivation on wet land, but
also to the set up of total model to clar-
ify the interaction between plant root and
soil.

THEORY

In this study, a rheological model as
shown in Fig. 1(a) has been proposed to
predict the time-dependent stress relaxation
behaviour of the puddled soil. The model
consists of a spring E; parallel to a dashpot

n and another spring E; in serics with a

yicld element and these four clements are in
series with a spring E. The both subscripted
E arc elastic constants and # is the viscosity

}
E%

| %E‘ nld
V

ol (o)
(a) for 0<°yield (b) for ozcyicld

Fig. 1. Model of elasto-viscoplastic soil.

constant in the respective model. o denotes
an imposed stress at any time (¢), and ¢ is a
corresponding strain.

When a load is applied to the model and
the stress is still less than yield stress, all

spring and dashpot elements are in motion
and we called it a ‘Pre-Yield Response’.
After the stress reaches the yield value, the
yield element unlocks and the spring ele-
ment E; (in series with the yield element)

becomes an ineffective element, and we call it
a ‘Post-Yield Stress Relaxation’. Then the
model will be reduced to a three-clement
model, as shown in Fig. 1(b).

For the model in Fig. 1(a), the stress-
strain relations of the model for both strain

parts (e/ and e”) can be written in general
form as follows:

"

o=FEe ando=2E¢ +1ne

Combining both equations and being
converted into the normalized form of total

strain, ¢, the equation becomes as follows:
(E+2E)o+no=2EEe+Ene (1)

where the dot represents a differential with
respect to time or it can be written as:

n . d
{1+(E+2E1)3?:] o=

[ 2EE, E

@
7 4,4
E+2E1+(E+2E1)dt:l€

or rewritten in the form of arbitrary con-
stant:

[1 +Agt-] o= [B+C%] e B
where:
A =n/(E + 2E)
B =2EE/(E + 2E;)
C=nE/(E +2E,).
Using the differential operators, Eq. (3)
may be written as:

Po=Qe¢ 4)

where: P and Q are the differential operators
and equal to 1 + 4 Bdt— andB +C % , Tespec-

tively.
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From the relation of stress tensor equa-
tion in the three-dimensional stress state,
we can split the stresses into two parts as
follows:

% Ty Tyy s 00 Sy sxy Sys
7.0 T _|=|/0s 0 s 85 S
ol Il PO Ty Yy Oy
Ty Tyz % s Sz Syz 2

The first stress system on the right-hand
side consists of equal tensile or compressive
stresses and no shear, and it is called hydros-
tatic stress. The second term is called stress
deviator. Its components are the stress devi-
ations.

Corresponding to the above stress, the
strain tensor equation is written as a matrix
and split it just as we did for stresses:

& Exy Exz e 00 e Cyy Oy
Ey &y Ey|= 380 +|y €y €
€ B & e €rs Oy

The strain tensor above has split into
one part which represents a pure dilatation
(without change of shape), and into another
part which represents a distortion or strain
deviator, that is, a change of shape at con-
stant volume.

The hydrostatic stress and strain are as

follows:

1
s=§(ax+ay+az),

1
e=—3—(£x+ey+ez). ®)

For the triaxial-symmetrical stress state
then:

s=% (0 +20) =50, +203), ©

because oy = o5 = confined pressure = o3,
and the deviatoric stresses and strains are:

1
5y =0y =85 =0y — 3(0, + 203)

2
= §(Ux - 03)’

1
sy=ay—s=ay—§(ax+203)

1
=—§(0'x—‘0'3),
_ _ 1
ex—ex~e—ex—§(ax+25y)
2
=§(£x'_€y),
e =g —e=¢ —l(s + 2¢ )
y |y y 3%Vx y

1 )
= -3¢ &)

If the viscoelastic material is isotropic, a
relation between spherical stress and strain
and that between distorsional stress and
strain are written independently as follows:

" ’

Ps=Qe,
Ps,=Qe, ®

where P”, Q”, P and Q' are differential
operators and are independent of each
other.

Substituting Eq. (7) into Eq. (8), then:

" "

P [-31- (o, + 203)} =0 B (5 + Zey)] ,

PI [% (o = 03)] = Q, [% (&x — 8y):l O

or they are written for each exand ey separ-
ately as follows:

P'Q +2PQ Yo, +

2P0 - PQ")o, =300,
®P'Q -PQ ), +

2P0 +PQ Yo, = 300%,.

Volume change is assumed to be elastic,
so that from Eq. (8):
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' "

P =1, Q0 =3K an

where K is called the modulus of compressi-
bility. And it is also assumed that the shape
variation is viscoelastic. Therefore, from

Eq. (4):

_p= a

P —P—1+Adt’

o= d 2)
Q =0=B+C4.

Then Eq. (10) becomes:
(Q + 6KP)o, + 2(Q — 3KP)o, = 9KQo, ,
(Q — 3KP)o, + (2Q + 3KP)o, = 9KQey.
(13)

In order to obtain the equation of stress
relaxation when the strain &, changes like a
unit step, Eq. (13) should be subjected to
the Laplace transformations. That is:

(Q + 6K P)5,+2(0 — 3K P)o,=9KQOF, .
14

Substituting P=1+As, O = B + Cs,
& = &/s and G3=03/s
into Eq . (14), then:

[(B+Cs)+6K(1+As)]5,+2[ (B + Cs) —

- 2 £ as)
(1+ As)] 2 = 9K(B + Cs),

or
~ 9K(B + Cs)e,
% = 5[(6KA + C)s + (6K + B)] —
2[(C — 3KA)s + (B — 3K)]o,
S[(6KA + C)s + (6K + B)] -

(16)

Taking a partial faction and an inverse
Laplace transformation technique, the
stress relaxation equation will be obtained
as follows:

~ 3EE,
%= |TE+G-20E.T *

i/

[E+ (3 - 2v)E]

3E% 2 u@@—2v)
G- {E+(G-E.t | =¥
E + 4‘VE1
{(E+(3-2vE}
[E + (3 - 2)Eq]
3E(L-—2)e > 7G-2)
G-2) {E+ (3 -2)E;} |
an

where: v - Poisson’s ratio, z - elasped time ().
In order to obtain the rheological con-
stants (E, E; and u) the triaxial compression
test of soil block was done as explained in the
following section, and the time dependent
stress relaxation curve was drawn as Fig. 2.

stress 0

time ¢

Fig. 2. The time-stress relaxation curve.

Selecting three elasped times, the stress
values on the stress relaxation curve were
obtained as follows:

Om = T (1=0)

3E 4v

_ (18)
=B-mEt3—)

o =0y (I = @)
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3EE, N
“E+ (B -2E, *
E + 4E; 19) [ X ®©
= A AN O
E+(3-2v)E; 73’
Orai NIl

Om1 = Ox(t=t1) ~ Ix(t=w)

[E+(3-2)Eq]
[ g% G-y 1

G-W{EFTG-2E)| =X~

- [B+(3-2v)Eq]
3E(1—w)e 2 nG-2) 1
G-2){E+QB-2E] |53

(20)

Then the rheological constants can be
obtained from the equations above.

1
E = g [(B = 2)oy, — 4vo3]

[ — 20)op — 4v0] (0, = 03)
350 -2) ©On—-0)

1=

_2[(B —2v)oy — 4vag) (o, — 03)

7 On—0;| "
3e,(3 - 2v) (0 —0p) In [ J

Om1
(21
METHODS

Test apparatus

The triaxial compression test was con-
ducted to determine the values of rheologi-
cal parameters which define the strength
and stress-strain-time characteristics of the
soil subjected to a shear strain combined
with compression. This device, shown in
Fig. 3, consists of a confining chamber and a
loading ram unit. The miniature load cells
were used at the top and bottom platens in-
side the chamber. The axial displacement
was measured with a linear variable dif-
ferential4sgnsformer (LVDT) attached to
the loading ram. The cell pressure was

@
o
. (3} " ) |
I Triaxial cell
water in water out
]
Slminmelcrl |
Y
Z_J\
gy S—

Cloon

Multi-channel recorder
Fig. 3. Triaxial test apparatus. 1-soil specimen, 2-upper
load cell, 3-lower load cell, 4-O-ring seals, 5-cell fluid,
6-loading ram unit, 7-pressure gauge, 8-linear variable
differential transformer, 9-volume meter.

monitored by a fluid pressure transducer.
During the test, the volume change of the
test sample was measured by the water dis-
placement and a photo-array system con-
nected to the test chamber. The radial
confinement of the sample was done with
water under air pressure. The pressure sup-
ply unit consists of an air compressor con-
nected with pressure measuring gages,
precision pressure regulators and control
valves.

Experiment procedure

A silt-clay-loam soil was prepared in
the laboratory by an air drying, pulverized
and passed through a 2 mm sieve. The
sample was re-processed to obtain the re-
quired moisture contents by spraying
atomized water with mixing and stirring by
hand, and then sieved for an uniform dis-
tribution. The material was kept in air-tight
plastic bags to get the equilibrium condition
of desired moisture contents for several
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days. About 200-350 g portion of the ma-
terial was then poured into a 50 mm
diameter cylindrical mold. According to the
standard test of the soil, the sample was
compacted in three layers of approximately
equal thickness. The number of blows to
compact the soil was varied with the re-
quired density. The sample was extruded
into a split mold and the ends were trimmed
with a wire trimmer to the required size of
about 50 mm diameter, 100 mm long cylin-
drical sample.

The soil specimen with a thin rubber
membrane with grid line was fixed to and it
was confined by the pressure, o3 in the cell
fluid. An axial load was applied to the sam-
ples by means of a loading ram, which had a
good sliding fit with the hole drilled
through the top of the cell, so that the
pressure could be maintained in the cell
during axial loading without significant
_leakage of cell fluid. By using a stepping
motor with driver and controller unit, the
axial force could be applied to the loading
ram either at the controlled stress test or at
the controlled strain test.

RESULTS

The experiment was conducted to
determine the characteristic property of the
soil sample under a constant deformation,
i.e., under a stress relaxation test. The com-
pressive force was applied to the sample at
a certain deformation (2-4 mm). The defor-
mation was kept constant for about 60-950
seconds. The force signals at the top and
bottom of the specimen, deformation, con-
fined pressure, volumetric change and the
time-dependent strain change were simulta-
neously plotted out by a multi-channel data
recorder as shown in Fig. 3. The output of
stress relaxation was recorded until it at-
tained to almost constant.

Fig. 4 shows an example of the result of
stress relaxation test of the soil specimen
with 44.02 % moisture content at various
soil densities. After the load was applied to
the specimen and the deformation was

100

80

60

40 K density = 1.654 gm/cm3
density = 1.481 gm/cm3

" K y 8

4 6 8 10 12 14 16
Time (sec)

Fig. 4. The stress relaxation curves of the soil sample with

different soil densities and 44.02 % moisture contents.

maintained at a constant level, the axial
stress decreased rapidly until the elapsed
time reached to 5 seconds. After that the
stress still apparently decreased in accord-
ance with the time. The sample was un-
loaded when the stress relaxation became
constant or slightly decreased. The variation
of density also affected to the result of the
stress relaxation. The higher density caused
the higher value of axial stress to maintain
the constant deformation.

In the case that the soil moisture was var-
ied (Fig. 5), test results showed interesting as-
pects. When the moisture content of the
sample increased, the soil is likely a satu-
rated material and difficult to shrink or to
become more dense after the load was ap-
plied. This is because all pores are filled
with water and the soil cannot be com-
pacted any more. Then the soil particles will
flow to the other ways, causing the lower
stress is needed to maintain the deforma-
tion. The phenomena of the stress relaxa-
tion were also similar to the results which
occurred in the lower moisture content
tests.

Axial stress (kPa)

density = 1.216 gm/cm?

18 20

Measured rheological parameters

The rheological constants of the model, E,
E; and n have been evaluated from Eq. (21),
utilizing the data of oy, o, 03, o1, v and &,
from the triaxial test which was described in
the previous section.

The Young’s modulus, E was plotted
against the soil sample density for each soil
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Fig. 5. The stress relaxation curves of the soil sample with
different soil densities and 57.25 % moisture contents.

moisture content. A statistical analysis of
the data revealed an apparent linear rela-
tion (r=0.91) between the value of E and
the density. Examples of the results were
plotted in Fig. 6 together with regression
lines. It was observed that, for the results
from the samples at 44.02 % moisture con-
tent, there was a sharper increase in the
Young’s modulus E than the sample at
5725 % when the density increased. For
example, there was an increase in E of 0.3
MPa for the sample with 44.02 % while the
sample with 57.25 % gave that of 0.12 MPa
for each 0.1 g cm™ increase in density. :

In the case of the Young’s modulus Ey,
it was found to be correlated with soil spe-
cimen density, as shown in Fig. 7. There was
an overall increase in Young’s modulus, E;
of 0.2 MPa for each 0.1 g cm™ increase in
density of the sample at 44.02 % moisture
content. While the result from the sample
at 57.25 % showed 0.08 MPa increase in E;
foreach0.1g cm™ increase in density.

Data in Fig. 8 indicated that the visco-
sity coefficient 7 linearly increased with an
increase in density of soil specimen. The ef-
fect of the chosen elasped time for calcula-
tion was also shown in the same figure. As
the chosen elasped time increased, the vis-
cosity coefficient decreased gradually. These
results were shown for both 44.02 % and
57.25 % moisture contents.

moisture content
3 ® 4402%
0O 57.25%

Young's modulus, E (MPa)

0 T T |

I L1 12 13 14 15 16 17
Density (gm/cm3)

Fig. 6. Relationship between Young’s modulus £
and density.

-3 ] moisture content
@ 4402%
] O 5725%
g
< 9
m
_g B ®
B
E 14
A ®
@ n-
0 = 3 il —

1 L1 12 13 14 15 16 17
Density (gm/cm?3)

Fig. 7. Relationship between Young’s modulus E1
and density.

Mathematical analysis

As the author presented, the model was
divided into 2 parts. Then, in order to apply
this model to the prediction of stress relaxation
behaviour, the mathematical analysis of each
part should be done individually as follows.
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moisture content
O 44.02% and =1 sec

10 W ® 44.02% and (=2 sec o
O 57.25% and t=1 sec /7
W 57.25% and t=2 sec rd

Viscosity coefficient, 1 (MPas)

1 11 12 13 14 15 16 17
Density (gm/cm?)

Fig. 8. Relationship between viscosity coefficient # and
density.

For the case of Pre-Yield Response
(0 < oyi)

Applying the Laplace transform to Eq.
(8), then
Ps=Qe,
5. = (22)
Ps =Qe,.
On the other hand, for the complete

elastic body, which is a special case of rheo-
logical body:

s=K(e, + e+ €,)=3Ke,

s, = Gy =2Ge_, (23)
where K - coefficient of volumetric elas-
ticity, G - shear modulus.

Comparing Eq. (23) with Eq. (22), the
following correspondence can be done:

r

Ke2,

5 @9

By the above replacement the equation for
the complete elastic body becomes perfectly
the same as the Laplace transformed equation
for the rheological body. Equation (24) is
called the correspondence principle be-
tween the elastic and rheological problems.
In other words the plane problem for the
elastic body can be changed to the plane
problem for the rheological body, using the
correspondence principle. First, equations
of Young’s modulus, E and Poisson’s ratio, v
correspond to the following equations of
Laplace transformed differential operators:

1}

9KG 3

E= @~
3K+G 2P0 +QP

Vv = 3K - 2G <« }i.rg_u_ Q_;P_H ® (25)
23K+G) 20 +QP

The relationship of the two-dimen-
sional stress-strain for a complete elastic
material can be presented by the following
equations:

o, = £ 2(.9+v.ey),
1-v
E
0y=—2(vsx +ey),
1-v
Tyy = Gyy- (26)

Instead of E and v, using the corre-
sponding Laplace transformed differential
operators, the rheological stress-strain rela-
tionships are written as follows in Laplace
transforms:

F' (ﬁ’é” + Zé'ﬁ”)ax _

O(ePD +0F % + FT -0 i),

}_)f (ﬁ’a” + Zali”)ax _
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OIFD +0F % + 0PD - 0P )51,

- él 12 27
P Ty = __Z_XX @7
Substituting

P=1+As,0 =B+Cs, P' =1and

0" =3K into Eq. (27), and assuming that
the deformation of the model is varied like a
unit step function, then & = & /s and gy =¢yfs.
Then:

[BKA + 2C)s + (3K + 2B)]o, =

(B + Cs)

o [{(6KA +C)s + (6K + B)} ss—"] +

[{(31(,4 - C)s + (3K — B)} fsx }
[(3KA +2C) s + (3K + 2B)]5, =

(B + Cs)

[{(GKA +C)s + (6K + B)} ]

- _!B'*'CS!?_XX (28)
XY_2(1+AS) s

By the inverse Laplace transformation

. A _1 E
technique and substituting K = 3T=2

into the equations above, Eq. (28) becomes
as follows:
4EE\{E+ (3 —2v)E}
%= |(E + 2E)) {E + 2E,(3 — )}

E+2El
t
T+

EZ e_
2E + 2E7)
E+2E;(3—4v)
3% 16-W)
G- {E+2E,G = |7

t

2EE, (E + 4Ev)
(E+2E){E —2E,(3 - 4v)} ~

E+2B;
+

E2 e_
2E+2E)°
_ E+2E,(3-4) .
3E%  10-%) 29
20 = W) {E+2E,(3 - )T %y

or it is written in shorter form:

o, =a; &t alzey . (30)

And also oy and Tyy are written easily as

follows:

O'y = alzsx + auey N

2 E+2E1
EE, B2 —1y
Yy = |E¥2E, YV 2EF2E)®

=337y - 3D

Thus, the equation of stress relaxation
of the 5-element model in the two-dimen-
sional stress state in the case of visco-elastic
deformation is as follows:

9% a;; a, 0 24
o t= 3, 2, 0 LA (32)
Tay 0 0 ay Ve

The equivalent stress of homogeneous
material in two-dimensional stress state is
expressed as follows:

2 3 2 2 2 (33)
o —j(ox +o, +2rxy).
For the case of Post-Yield Stress Relaxa-
tion (o = oy;)

The relations of stress and strain of the
model can be concluded in this case as fol-
lows:

d d
[E+E)+nglo=[EE +Eqi]e,
(34
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or
A+4, o=@ +c e, s
1g 2= B T g e 39

where:
Ay =4/(E +Ey),
By = EE{/(E + Ey),
C1=nE/(E+Ey).
Substituting the expressions of above
constants into Eq. (27), we obtain the equa-

tions of oy, oy and 7,y as follows:

EE, {2E + E;(3 — 2)}

O = [(E YED)E+E G-y T
E2 B E+ El :
—_—— 771 +
2E T Ey)
3E*

2(3 — 4v) {E + 2E,(3 — 4v)}

E+E;(3—4v)
e n(G-) ]ex+

EE, {E + 2vE;}
[(E +E){E+E3-4)}
‘ _B+E
1 4

E2
2E+E)°
3E?
23 — ) {E + E,(3 — &)}

E+E;(3-4)

e TG

= bllex + blzey . (36)
oy can be written easily as follows:
o, = bi,e, + bney. 37

Shear stress 7yy is obtained similarly:

By = I:Z(E +E,) 2E+E)

E+ El
= t
e L1 ]YXy

= b33 yxy . (38)

Therefore, the equation of stress relaxa-
tion of the three-element model in the two-
dimensional stress state becomes as follows:

% by, b, 0 &
oy b=|by by 0 & 1. (39)
o] 107 0 byl |

A Finite Element Method (FEM), is ex-
pected to be the most powerful tool to solve
soil stress and deformation problems under
complex boundary conditions. Usually basic
equations should be formulated by the in-
cremental method and the FEM is also
based on it. The relation between nodal
force increments Af and nodal displace-
ment increments Au is linear as follows:

Af= K] Au,

where [K] is called as the stiffness matrix.

The components of this matrix change
in accordance with the mechanical states of
soil in the process of soil deformation. Equ-
ation (32) or Eq. (39) is used to build the
stiffness matrix. The procedure for predict-
ing the time-dependent stress relaxation is
shown schematically in Fig. 9.

A FEM mesh, as shown in Fig. 10,
which represented the half plane with a unit
thickness of soil block, had 200 mm width
and the height of 800 mm for this analytical
region. This region was divided into 32
triangular elements with 27 nodes. A con-
stant deformation was applied only in y-di-
rection. The confined pressure of 0.4 kg f
cm or equivalent to the force of 313.9 N
was applied along the length of the sample
in x-direction. By the assumption of uni-
form distribution of this force along the
right side of FEM mesh, then the forces ac-
ting on node numbers 6, 9, 12, 15, 18, 21,
and 24 are 39.24 N each and at the node
numbers 3 and 27 they are only 19.62 N
each. As the displacement boundary condi-
tions, only the bottom point of the centre
line of soil block, node number 25, is fixed.

(#0)
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Boundary condition oil properties
- deformation of Young's modulus, E
sample Poisson's ratio, v
- confined pressure Ejandn
Elapsed time
=0
Form elements’
stiffness matrices
Formulation of FEM
goveming equation
Solution of
equations

i

Evaluation of soil
- deformation

- slresses

Fig. 9. The flow chart of Final Element Method
program.

The other nodes on the centre line can
move freely in y-direction but not in x-direc-
tion. The other nodes on the bottom line
except node number 25 can only move in x-
direction.

Comparison between calculated and
measured stress relaxation curves

From the results of the computation
above, the rheological constants are then
utilized to predict the time-dependent
stress relaxation curve of the sample by
using the FEM program. The results from the
calculation by FEM are shown in Fig 11.
Example of the results in this figure shows
the comparison analysis between the com-
puted stress by FEM and experimental cur-
ves of stress relaxation for soil specimen

= 10cm >f= 10cm >
Ti OFTST ™71
. ’ @ . @@ . . Axial load
e 9 g 3 ¥
" ® 8
10 n 12 p - J
" ’
13@ 14 ‘ 15 E g Scm diameter
v
= Y4 HoYZL F
®@| /@
P 20@. 21 Fr
B :
P YA OVAE F _g
®, @ 1
HE WA B

Nodes and elements numbering

Fig. 10. Analytical model for Final Element Method.

with 1.622 g ecm™ of density and 52.25 %
moisture conteni. From this figure it would
be clear that the use of this rheological
modelling and FEM program to predict the
force or stress was successful from good
agreement with the observed results.

Density = 1.622 gayem3

'sratio =05
Young's modulus E = 0.822 MPa
Young's modulus E, = 0.516 MPa

Moisture content = 57.25 %
100

= R —— Experimental

§ 801\ a®  Computed by FEM
2 Q\F n= 2.49 MPas

E \5\5‘6*6-A—H—A—‘—A—A-A—n—A—A—A—‘-A
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Fig. 11. The computed by FEM and experimental stress
relaxation curves of the sample with 52.25 % moisture
content.
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There are, however, a little different
values between the modelling and experimen-
tal curve. This would be caused by the as-
sumption of constant viscosity coefficient.
However, such a little error would be ne-
glected in the practical work. For the other
soil densities and moisture contents, the re-
sults also show a reasonably satisfactory predic-
tion of the time-dependent stress relaxation
behaviour of the triaxial test samples.

CONCLUSIONS

The rheological constants, Young’s mo-
duli, E, E; and viscosity coefficient () are

linearly correlated to the specimen density.
The results of rheological constants for
high moisture content material showed
lower value than in low moisture content.
The viscosity coefficient was also affected
by the elasped time, as an increase in elasped
time caused a decrease in viscosity coeffi-
cient.

The load deformation and time-depend-
ent stress relaxation behaviour of paddy soil
can be represented by the proposed five-ele-
ment rheological model. The experimental
stress relaxation curves of soil samples
were compared with those predicted by the
FEM, using the model and found to be in
good agreement.
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