
Int. Agrophysics, 1994, 8, 103-112 

QUANTITATIVE DESCRIPTION OF STRUCTURAL CHANGES IN SOIL AND 
PLANT MATERIALS DURING DEFORMATION 

A. Pukos 

Institute of Agrophysics, Polish Academy of Sciences, Do§wiadczalna 4, 20-236 Lublin, Poland 

A b s t r a c t. A quantitative proposition for the 
description of structural changes in three-phase media 
was proposed. Random variables were used as repre­
senting the structure and its changes. The consequences 
for both: theoretical considerations and new experimen­
tal approach were demonstrated. 
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INTRODUCfiON 

It is common that flows and deforma­
tions in agricultural materials are defined 
and measured on the surface of samples 
blocks or profiles. That is why during defor­
mation or flow the structure and its changes 
are not considered and a 'black box model' 
can be proposed only. 

The material is treated as homogeneous 
and continuous by experimentator and the 
changes of its structure during process are 
neglected. The non-linearity inherent in the 
structure of three-phase agricultural ma­
terial cannot be introduced into theoretical 
considerations. 

CONSEQUENCES OF DETERMINISTIC AND 
PROBABILISTIC METHODS IN THE 

MECHANICS OF THREE-PHASE MEDIA 

Agricultural media are composed of 
three distinct phases: solid, liquid and gas. 
All these phases have an important con­
tribution to the resulting flows and defor­
mations, i.e.: 
- solid phase creates a skeleton which 

causes that the medium behaves like a 
solid material and tends to keep its shape; 

- liquid phase is responsible for a filtration 
effects, neutral stress and time dependent 
behaviour; 

- gas phase makes a voluminal deformations 
(usually instantaneous and irreversible) 
possible, which in turn changes the struc­
ture during deformation considerably. 

Comparing the existing theories of de­
formation and flow in three-phase media 
one can distinguish four methods at the 
very first point, i.e., at the moment of de­
finition and measurement of gradients, 
stresses and strains (Table 1 ). 

•This work was supponed by the State Committee for Scientific Research, Poland uder grant No. 5 S 30603004. 
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T a b I e l. Possible methods in mechanics of three-phase media 

Method Definitions Consequences 

Deterministic Continuous homogeneous medium, stresses Linear thermodynamics of irreversible proces­
ses, Onsager's recriprocal relations, linear phy­
sical (constitutive) equations -laws of heat and 
mass flow, elasto-visco-plasticity 

approach and strains in the form of derivatives: 

fr AFDr AI 
=A~~O AS ' =A l~o TO' 

motion in 'ordinary' space x, y, z, t 

Statistical 
approach 

Discrete system of equal elements, stress and 
strain are sums for all elements: 

Statistical thermodynamics, ergodic theorem, 
non-linear statistical constitutive theory, non-li­
near flow, non-linear elasto-visco-plasticity 

f AF d AI .. 'h = n AS , = n TO , motton m p ase spa-

ce' of generalized coordinates (p, q, t ) 

Probabilistic 
approach 

Discontinuous unequal structural elements, in­
tegral stress and strain: 

Probabilistic theory formulated 'from the first 
principles' (formulated for one structural ele­
ment - pore, grain, cell - and then integrated 
for the whole structure), deterministic final 
equations 

f = J ~~ dF, d = J ~ 'motion' in the space 

of random variables (obtained experimentally) 

Stochastic 
approach 

Measurable output signals and non-measurable 
'white noise of background', discontinuous 
structure, integral stress and strain 

Stochastic processes, probabilistic final equ­
ations (probability of transition between states) 

Traditionally the first approach for the 
prediction of the response behaviour have 
been used, which is based on the continuum 
theory. This method refers to the homogene­
ous media, ignoring thereby the presence of 
the microstructure of medium. The stress 
and strain involved in the formulation of 
the main objective that govern the mechan­
ical response of a given material under 
given specific environmental conditions are 
introduced as an infinitesimaly small deriva­
tives and differentials. Then linear relations 
between forces and deformations or flows 
are formulated. 

As it was shown [2-5] this theory is valid 
so far as the linear thermodynamics of irre­
versible processes together with the Ons­
ager•s relations are valid. Additional latent 
conditions have to be fulfilled (e.g., flows 
have to be laminar, potentials- parabolic, defor­
mations and gradients - mathematically small 
together with their time derivatives). 

When the structure can be well approxi­
mated by the system of equal elements (like 

in crystals, liquids and gases), it is possible 
to use statistical thermodynamics - second 
approach. These enable to define stresses 
and strains as the multiplication of effect 
for single element by the number of ele­
ments and to get some non-linear physical 
laws (constitutive equations). 

Probabilistic micromcchanics (the third 
approach) is concerned with the formulation 
of the stress-strain response but with the in­
clusion of the microstructural effects that are 
due to the inherent geometrical and physical 
properties of structured three-phase media. 
Method of stochastic processes is even 'more 
statistical' in the meaning that not only the 
state of the medium, but the physical relations 
(governing equations) are probabilistic as well. 
It is obtained using the probabilistic theory of 
transition of the system between subsequent 
states defined by the different values of the 
deterministic and random variables of state 
(e.g. theory of Markov processes). 
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QUANTITATIVE DESCRIPTION OF THE SOIL 
STRUCI1JRE USING RANDOM VARIABLES 

Most of the significant field quantities 
involved in any formulation of the material 
behaviour are by nature random variables 
or functions of such variables. They have to 
be determined experimentally. The struc­
ture is considered quantitatively using ran­
dom variables, the values of which are 
related to the geometry and strength of a 
considered materials (grains, pores, aggre­
gates, cells, fibres, etc.). 

To show this we will consider the soil 
compaction case. We propose that the soil 
structure is described by four random vari­
ables the values of which are: 

-grain and aggregate size distribution g1(Ds), 
which describes structure of solid phase; 

-pore maximal diameter distribution g3(Dp), 
deciding which soil grains or aggregates can 
enter into a given pore during deformation; 

-pore volume distribution g4(Vp), infor­
ming about the soil volume which can 
enter into a considered pore; 

-distribution of contact forces gz(j), re-
sponsible for the stress inhomogeneities. 

Let us estimate the density of random 
variable, the values of which are the diame­
ters of particles and aggregates in the ivesti­
gated soil (Fig. 1 ). Hereafter we will use the 
name 'grain' in the meaning of both: 
elementary soil particles and aggregates 
(unless the latter are destructed). We par­
ticipate the set of values of diameters into 
intervals / 1, 12, •• .In. The participation fol­
lows from the used method of measurement 
of the grain size distribution and the greater 
number of intervals the better description. 
We assume that in each interval our ran­
dom variable is uniformly distributed. 
Hence we obtain as an estimator of density 
the following function: 

where I Ik I is the length of interval, N -
number of all grains in the sample and 

{
1,Ds E l~t 

l[Ik] = O,Ds ~ lk. · (2) 

We will now introduce the second ran­
dom variable (random vector) which de­
scribes the pore diameter and length 
distribution. Analogously as with the den­
sity of grain diameter we estimate the den­
sity of this vector. Let us put that for a fixed 
pore diameter Dp the density of the random 
variable representing the pore length is esti­
mated by: 

Do m n· 1 
g 3 ' (Vp) = .L N TfJT l[IIj] (Vp) . (3) 

j=l I HJ I 

This is the first component for the ran­
dom vector (Dp, Vp) whereas the second 
component is given by the density: 

m n· 1 
g4 (Dp) = i~l N 171iT l[IIi] (Dp) . 

(4) 

In the above relations we have used the 
analogous notation as in the Eq. (1). 

Hence we obtain the following estima­
tor for the density of the considered random 
vector which describes the two-parametric 
pore size distribution: 

gs = (Dp ,Vp) = g4 (Dp) g ~ (Vp). (5) 

Let F
0 

denotes the mean external force 

on the soil surface, which is assumed to be 
the same in all directions for simplicity. The 
mean force in the contact point of any two 
grains is [4]: 

f. - (6) , ( 18F0 ]2<3 
m - n(EDs)l (1 +pmin) 

where E Ds is the mean diameter of soil 
grain (aggregate) and pmin - the minimal 
final microporosity. The latter can be calcu­
lated from the experimental characteristics 
in the following way: 

The volume of the measured pores (e.g. 
bigger than 0.2 ,urn in diameter) is substrac­
ted from the soil volume and the calculated 
porosity of a rest soil 'matrix' is defined to 
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a 

---- --f= t'(1-p)-C 

b c 

Shearing force (f) 

•• f=O 

d e 

Fig. 1. Cross section through a sample of locss and qualitative description of its structure: a -sample cross section, 
b- pore cross section (Os -grain diameter, Dp- pore diameter), c- conta;;t of grains (r -external force), d- mole­
cular layers (11, 12, 13,- molecular distances), e- energy barrier (Eqs (9) and (10)). 

be Pmin· As it was shown in (4], this porosity agine soil as a 'Swiss Cheese': 

is almost constant for a given external stress soil=measured pores+soil with micropores. 

F
0 

versus time. This means that we can im- (7) 
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Only the first term in the right hand 
side of the above equation is changing for a 
constant external stress and it is responsible 
for the compaction effect, whereas the se­
cond term is increasing with the increasing 
stress walue. 

There is no possibility of measurement of 
the intergranular forces and contact surfaces 
at present, as the size of the soil grains and 
aggregates changes within the range from 
some tenth of micron to centimetres and even 
decimetres for clods. However, one can see 
that this forces are fairly different in the ex­
periment reported by Drescher [1 ], (Fig. 2). 

The circles represent pills (cylinders) made 
of elasto-optical material placed between 
two horizontal glass plates in a plane stress 
state. Forces between pills were determined 

from the interference pattern in polarized 
light. The direction of lines between centres 
of circles represent the direction of forces, 
whereas their thickness - the value of this 
forces. One can see, how hardly this forces 
can be assumed parallel and equal. 

MOTION OF SOIL GRAINS INTO A FIXED PORE 

We will regard the force causing the vi­
scous (time-dependent) motion of the grain 
as the difference between the external force 
f and the intergranular dry friction pf 
together with the cohesion C (Fig. 1): 

/=f(1-f.l)-C. (8) 

Dry friction depends on the resultant force 
perpendicular to the direction of motion, 

Fig. 2. Photoelastic vizualization of intergranular forces after Drescher [ 1). 
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viscous friction - on the tangent resultant 
force and cohesion is represented by the 
constant mean value. 

For the mathematical simplicity we are 
assuming that the forces are equal in all di­
rections without lost of generalization. It 
can be easily written in three-dimensional 
vectorial or tensorial representation. Ap­
plying the theorem about distribution of 
function of random variable the density off 
is obtained in the form: 

(j) = (L + _f_) t (9) gz gz 1-,u 1-.u 11-,u 1 · 

We will understand, that the negative 
value off means that such stress does not 
cause any displacement. As one can calcu­
late the probability of such event is of the 
order of w-25 for typical soils. That is why 
instantaneous deformations are mostly irre­
versible, which could not be explained by 
any theory of visco-elasto-plasticity. 

From physical considerations and ex­
perimental results presented in papers [2-5) 
we will assume the equation of motion of a 
soil grain into the pore in the form: 

X = A exp ( Bf) t (10) 

where X is the grain displacement, A, B -
constants of statistical non-linear viscous 
motion dependent on soil structure - espe­
cially water, clay and humus content, and t 
denotes time. Hence we have the analytical 
condition for the entrance of a soil grain 
into a pore: 

A exp (Bf)t >0. (11) 

This condition gives us the lower 
boundary for the set of stresses causing the 
corn paction: 

h (A,B,t) = max { -l~Ar,o}. (12) 

The function h(A,B,t) implies the follow­
ing fact. There exists tstop such that the corn­
paction stops for a given stress and that time 
tstop is independent on stress. This is the cru-

xial effect for both: verification of the new 
micromechanics of soil and practice. 

In order to express the probability of 
the event that the soil grain gets into a pore 
we need the following preparations: 

-it is natural to assume that the size dis­
tribution of grains belonging to the 'pore 
surface' is the same as that in the whole 
sample; 

-it is also natural to assume that the grain 
cannot enter into a pore when its 
diameter is higher in value than that of 
the considered pore; 

-it is well known and established in many 
experiments that the larger pores are 
more susceptible for the destruction dur­
ing deformation. To take it into consider­
ation qualitatively we will propose that 
the probability of grain motion into a 
pore described by the parameters (Dp,Vp) 
is proportional to (Dp, Vp). 

The latter assumption means that the 
strength of a pore decreases proportionally 
to its maximal cross section or 'surface', 
which one can imagine as the force flux in 
the pore. 

Let D stands for a random variable the 
values of which are the diameters of par­
ticles entering into a pore. The random 
variable can have 'mass at 0 point', i.e., 

P{D=O}=:::O (13) 

which means that there is no grain entering 
into a pore. D can take the other values, 
which belong to the interval (Dsmin, Dp). In 
this interval D appears to be a continuous 
variable with the density: 

g6 (Ds ,Dp,Vp,Vpf,t) = 

(14) 

where Dp, Vp, tare parameters,[ is defined 
above and c3 depends onfm· 
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THEOREM ABOUT THE NORMAL 
DISTRIBUTION OF SOIL COMPACTION 

For every soil grain moving into a pore 
we construct a random variable the value of 
which is its diameter Ds. These random 
variables are independent and identically 
distributed as D which means that the 
grains appear independently into a pore. It 
is to be stressed that we are considering one 
pore with the fixed parameters Dp, Vp for a 
constant mean stress f m· 

Knowing the diameter of grain we can 
determine the value of its volume. Applying 
the forementioned theorem about the dis­
tribution of function of random variable, 
the distribution of a new random variable 
V(Dp,Vp) can be obtained. This variable takes 
values equal to the volume of grains ente­
ring into the pore. The same consideration 
as for the grain diameter gives us a set of 
random variables describing the volume of 
entering grains. The random variables D are 
independent and identically distributed also. 

In order to express the final volume oc­
cupied by soil grains in the pore we will now 
determine the number of grains which are 
able to get it. It is the number denoted by 
N(Dp, Vp): 

N (Dp,Vp) = [V::; (1-pmin)] (15) 

where Vp is the volume of the pore, VEDs­

the volume of the mean grain, Pmin - the 
minimal final porosity of the compacted soil 
with micropores (Eq. (7)) and the square 
bracket [ ) stands for the Entire function. 

It is obvious that the minimal porosity 
Pmin decreases with the increasing force fm 
and it can be measured from the pore size 
distribution. 

Let vi be a sequence of independent 
identically distributed random variables and 
let V has the same distribution function as 
Vp. The random variable defined by: 

SN(Dp,Vp) = VI + Vz + ... + Vn 

describes the final volume occupied by the soil 

grains in the fixed pore (Dp, Vp) for the 
constant mean force f m· Using the central limit 
theorem [5) one can prove that SN(Dp,Vp) is 
asymptotically normal distribution (N): 

SN(Dp,Vp) = 

N (ESN(Dp, Vp), aSN (Dp, Vp)) . (16) 

Usually it is assumed that the intergranular 
stresses or displacement are asymptotically 
normal distributions. We have proved that 
the sum of the soil volumes entering into a 
fixed pore can be approximated by normal 
distribution, which is very usefull for further 
statistical considerations. 

EQUATION FOR ALL PORES AND GRAINS 

We have investigated the voluminal 
changes in one pore as dependent on the 
four independent random variables describ­
ing the soil structure (Ds, Dp, Vp,j), time t, 
as well as the mechanism of dry and viscous 
friction (A, B, u, C). 

We can calculate now which part of the 
volume of the pore (Dp, Vp) is filled with 
the soil grains. From the Eq. (16) we obtain 
the mean volume of particles which entered 
into this pore in the time t for the fixed 
mean force f m: 

ESN(Dp,Vp) = N (Dp,Vp)EV(Dp,Vp)Dp· 

2fm 

lc3ifm) J gz(f)df. (17) 
h(A,B,t) 

We have used Eq. (14) and the term N(Dp, 
Vp) was substituted by its value for the mean 
diameter Dp and mean volume Vp and the 
mean volume of the pore equals: 

E [V (Dp, Vp)] = 

~ J (Ds)3 g1 (Ds) d (Ds). (18) 
Dsmin 

We can calculate now which part of the pore 
(Dp,Vp) was filled by grains during the time t: 
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--------------------------------------------------------------

V Dp,VP _ N (D p, Vp) E [V (Dp,Vp)] DP 
t - 2 

(~np) 1 

_ ~ N (D p,V p) E [V (Dp,Vp)] 
-3 Dp 

To construct the process for all pores 
(Fig. 3) we have to take initial volumes for 
all pore fractions from the experiment [5] 
and to integrate the equations for all dis-

mean true oontact orce m 
distribution of conCoct forces g2(f) 

Fig. 3. Scheme of the integration for soil deformation. 

tributions: grain diameters, pore diameters 
and volumes as well as for all intergranular 
forces. We will limit our calculations for the 
diameters higher than 0.2 urn which is justi­
fied by some experiments [5] and gives a 
reasonable simplification of calculations. 

Roughly speaking V0k denotes the initial 

total volume of all pores such that DpE //0k. 

The fraction 

SN(Dp,Vp) 
Vp 

(20) 

determines which part of the pore volume 
has been filled. Combining this with the 
pore distribution expressed by the density 
gs(Dp, Vp) and the initial volume of fraction 
Vok and integrating for all distributions of 
random variables we obtain the following 
equation for the mean pore volume filled by 
the grains in time t: 
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where C3(/m) is the constant of normalization 
which can be calculated from the oondition: 

f g2 (f) df -+l when t .... oo • 

It has the form: 

Vt 
C3 if m) = -----,-----,-

V pk 
EDs (l-pmin) 

Vt 
--------------..-N.-. (22) 

f E V(DpJ) g4 (dp) d (dp) ~ 
Dp Ellk Dp Nk 

In this equation Nk is the number of grains 
entering into the 'mean' pore from the k-th 
fraction of pores. The difference between 
the total initial pore volume Vok and the 
total final pore volume is the measured 
change of the sample volume Vt. 

The final equation was compared with 
experimental characteristics for several soils 
(Fig. 4) with a good agreement. 

Similar considerations are made for the 
deformation of plant cellular or fibrous ma­
terial. In this case the structure is described 
quantitatively by random variables the 
values of which are sizes related with the 
cell or fibres properties respectively. 

CONCLUSIONS 

It is no accident then that the classical 
mechanics has not been able to establish a 

functional formulation of physical relations 
(constitutive equations) and, in order to ob­
tain their linearity it has restricted itself to 
formulate local relations (linear theories of 
plasticity and viscoelasticity, linear laws of 
diffusion, water flow, heat flow). 

To recognize the structure of the three­
phase agricultural materials it is necessary to 
introduce an integral condition between 
forces and flows or deformations respectively 
together with a quantitative measure of struc­
ture in the form of random variables. 

As it was shown in [2,4], the probabilistic 
equations obtained in this way can be reduced 
to the deterministic non-linear relations, 
which can be further reduced to the linear 
equations for small gradients, deformations, 
flows and their time derivatives. 
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