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A b s t r a c t. Root traits are fundamental for the resilience of 
plants under stress. Image-based phenotyping can provide rel-
evant datasets to reveal the underlying root traits. However, root 
phenotyping is still hampered by methodological constrains, in 
particular the extraction of root traits from images taken under 
semi-natural conditions. In this study, we thus propose a strategy 
for analysing root images from rhizoboxes. Utilizing three Vicia 
faba genotypes and two soil moisture conditions, we applied 
software tools featuring distinctive types of root descriptors. We 
determined their accuracy in terms of root length measurement, 
inference from surface-visible root axes with regard to total root 
length, inter-relation between root architectural descriptors and 
their relevance to plant transpiration. Our results show that dif-
ferent image analysis tools provide similar root length estimates 
despite specific segmentation approaches. Several root archi-
tectural descriptors are also inter-comparable. Using structural 
equation modelling, we identified the relevant phenotyping root 
traits thereby characterizing root size and branching which –
drives plant transpiration. We conclude that rhizobox systems are 
a promising platform for root phenotyping. Future developments 
in image analysis should overcome the requirement for manual 
post-processing (e.g. gap closure) and automate root architecture 
measurement thereby improving throughput and thus the range of 
rhizobox phenotyping applicability for plant breeding.

K e y w o r d s: faba bean, image analysis, rhizobox, root phe-
notyping, root architecture, structural equation model

INTRODUCTION

Functional plant traits have been recognized to be effec-
tive predictors of ecosystem function and plant growth 
strategies. In this context, root traits have gained significant 
attention in plant and soil research. Root traits such as root 
angle, specific root area, root diameter, root length densi-
ty and total root length are essential for plant productivity, 
particularly under conditions of limited resource availabil-
ity, and in turn influence the characteristics of the soil and 
ecosystem. In cropping systems, cultivars with site-adapted 
root systems are expected to enhance water and nutrient 
use efficiency, yield stability, and resilience during periods 
of climate change. 

In the context of trait-based breeding, the integration 
of root systems, however, implies two major challenges: 
i) measurement/screening of large populations to rank can-
didates according to their performance, and ii) targeting 
those traits which are most promising for further selection 
and crossing. Root systems are complex organs of various 
sizes and structures resulting from spatial and temporal fac-
tors, cellular-level processes of elongation, branching and 
bending (Hodge et al., 2009). As a consequence, plant roots 
can also be characterized by parameters measured at dif-
ferent observation scales, from composite descriptors (e.g. 
total root length or shape of the root system, Kashiwagi 
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et al., 2006, Freschet et al., 2021) to single traits (lateral 
branching number, emergence angle of laterals, Chen et al., 
2017). In addition, the different types of root descriptors 
used in comparative root studies are related to different 
classification schemes which have emerged over the course 
of the entire history of root research (branching topology, 
geometrical shape, developmental order, see Freschet et al. 
(2021) for a recent review concerning root classification 
schemes and measurement protocols). Finally, the relation-
ship between root traits and the agronomic/breeding target 
of improved drought resistance due to higher root water 
uptake is complex (Vadez, 2014). Thus, optimal measure-
ment strategies for root systems would also consider the 
linkage between root descriptors and root functionality. 

The number of root datasets has increased to a significant 
extent with the advancement of image-based phenotyping. 
Advanced methods for observing root systems non-de-
structively such as MRI imaging or X-ray tomography 
are expensive, require specialized equipment and are still 
limited in resolution at the fine root scale. Optical imag-
ing approaches, using digital cameras or a scanner, are thus 
more frequently used to identify morphological, physiologi- 
cal, anatomical and biochemical traits. Rhizobox imag-
ing is a root phenotyping approach which involves plants 
growing in soil-filled containers beyond the seedling/juve-
nile stages. This setup aims to approximate field-growing 
conditions (Nagel et al., 2012; Bodner et al., 2017). It may 
be considered to be an intermediate approach between root 
phenotyping on artificial media (filter paper, agar plates) 
and field root imaging with minirhizotrons (Johnson et al., 
2001). The roots are only partially visible - about 20-30% 
(Pfeifer et al., 2014; Bodner et al., 2018) to 75-85% of the 
total root length (Bontpart et al., 2020). The complexity 
of the data sets is increased due to discontinuities within 
the visible root system structures (Chen et al., 2019) and 
the increasing overlap of the dense mature root systems 
(Kimura et al., 1999). 

Image-based root phenotyping is expected to improve 
information concerning root system characteristics beyond 
classical field data (biomass, length, surface area per depth, 
specific root length/area, diameter). It provides an in-si-
tu observation methods to track the development of root 
architecture over time (lateral numbers, angles, topology, 
Downie et al., 2015) as well as root-soil interactions influ-
encing the shape of the root systems (inorganic nutrients, 
Wagner et al., 2020). These root architectural and function-
al traits are highly relevant to achieving better induction of 
potentials for  improved stress resistance: e.g., a steep root 
angle essentially drives better access to subsoil water in 
dry ecosystems (Manschadi et al., 2006), while high lateral 
branching facilitates the superior exploitation of non-mo-
bile nutrients such as phosphorous (Lynch, 2011). This is 
particularly important for legumes that have a comparative-
ly high P demand (Pang et al., 2018), while – compared to 
the fibrous root system of monocots – the root density tends 
to be lower (Haling et al., 2016). 

While image analysis has been identified as a general 
‘bottleneck’ of current plant phenotyping (Minervini et al., 
2015) which has led to many image analysis tools being 
developed over the last few decades (Lobet, 2017), this still 
holds particular true for root image analysis. For instance, 
Delory et al. (2017) compared different root length estimates 
from digital image analyses using the software packages 
WinRhizo® (Regent, Quebec, Canada) and ImageJ (NIH, 
USA) with the macro IJ_Rhizo (Pierret et al., 2013). They 
concluded that a comparison of root length measurements 
is substantially influenced by the software used due to the 
different underlying methods. Rose and Lobet (2019) com-
pared IJ_Rhizo and WinRhizo with regard to the accuracy 
of the root diameter and volume estimates at different image 
resolutions. Similarly, they concluded that both software 
and image quality have a significant impact on reported 
root measurements. In recent times, approaches utilizing 
machine-learning have been presented to improve root 
segmentation and tracking and also to overcome some of 
the problems with soil-grown root images. Indeed, in-situ 
root images can be challenging for image analysis software 
due to i) the low contrast between root and soil in the case 
of colour-based segmentation (Wang et al., 2019), ii) the 
growth in parallel and/or high overlap of root axes when 
plants are grown over longer time periods (Himmelbauer et 
al., 2004), and iii) the partial visibility of soil-grown roots 
at the imaged surface (Chen et al., 2019). 

Therefore, the utility of root phenotyping critically 
depends on analytical strategies and adequate software 
tools to extract quantitative descriptors from root images 
that capture functional traits. In particular, an imaging and 
analytical strategy should be essentially based on the rela-
tionship between root traits and a specific target function, 
e.g. improved transpiration or the nutrient uptake of crops 
under resource limiting conditions (Vadez, 2014; Chen et 
al., 2018). 

In this study, we propose a strategy for an affordable 
and comprehensive root image analysis of 2D RGB imag-
es that are typically obtained from rhizobox phenotyping 
platforms. In addition, we demonstrate the use of structural 
equation modelling (SEM) to identify key root traits related 
to water uptake/transpiration rates. We applied two soft-
ware tools for the root image analysis of rhizobox-grown 
faba bean which provide (partially) distinctive types of root 
descriptors. Our aims were i) to determine the accuracy of 
root length measurement when directly applied to RGB as 
compared to manually tracked binary images, ii) test the 
correlation between surface-visible root axes of rhizobox 
systems and total root length, and iii) assess the nature of 
the inter-relation among root architectural descriptors and 
their role in capturing the architectural fundaments of over-
all root system size and functioning. From the results of this 
study, we expect to define a set of relevant root target traits 
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with their related image processing/analyses requirements 
in order to maximize the usability of rhizobox systems for 
functional root phenotyping.  

MATERIALS AND METHODS

A rhizobox experiment was conducted at the University 
of Natural Resources and Life Sciences, Vienna (BOKU) 
at UFT Tulln to investigate the root architecture and phe-
notyping of faba bean (Vicia faba L.). The experiment was 
implemented in a controlled growth chamber equipped 
with 8 LED-lamps providing homogeneous illumination 
(450 μmol m-2 s-1). The ambient conditions were set to a rel-
ative humidity at 45%, with a temperature of 25°C during 
the day and 16°C at night, and the duration of illumination 
at 16 h light/8 h darkness.

A rhizobox phenotyping platform was used as a non- 
destructive method for imaging roots through a glass 
observation window. Detailed information concerning the 
rhizobox setup may be found in Bodner et al. (2017). The 
rhizoboxes (30 × 100 × 1 cm) were filled with field top soil 
(silt loam from a calcareous chernozem with total nitrogen 
and carbon contents of 0.19 and 3.94%, respectively) and 
a bulk density of 1.3 g cm-3 corresponding to values typically 
found in agricultural soils. The soil was sieved to a par- 
ticle size of 2 mm, removing stones and large detrital 
materials, thereby allowing for homogeneous filling. The 
rhizoboxes were positioned at a 40° angle to maximize the 
root visibility at the observation window.

The faba bean root data used for this study were 
obtained in an experiment evaluating three cultivars (Favel 
and FB 3293 from Portugal, Jõgeva from Estonia) using 
two water regimes. The seeds were inoculated with AMF 
spores (Funneliformis mosseae BEG95, Rhizophagus intr-
aradices, and Funneliformis geosporum BEG199; Aleš 
Látr, Symbiom, Czech Republic) and a rhizobia suspen-
sion which was applied through dipping. The seeds were 
pre-germinated in darkness at 20°C in an incubator until the 
radicle emerged and grew to a length of about 2-3 cm. Then 
one seedling was carefully placed in the middle of each 
Rhizobox at a depth of 3 cm using a screwdriver and twee-
zers. Apart from using three different cultivars, variation 
in root trait expression for the development of an image 
analysis strategy was obtained by varying the water regime 
(100 and 50% plant-available water), the  rhizoboxes were 
watered every 2nd day. Every week, the rhizoboxes were 
weighed (± 1 g) and re-watered until they returned to their 
initial weight. Changes in individual rhizobox weights were 
used to calculate water loss over time. As the rhizoboxes 
were sealed with cling film to minimize soil evaporation 
and no drainage was recorded, the change in weight due to 
water loss was assumed to be equivalent to plant transpi-
ration (ml day1) and these values were added up to obtain 
the cumulative transpiration (ml). In total, 20 rhizoboxes 
were used in this study, producing three to four replicates 

per treatment (3 cultivars x 2 watering regimes), each one 
was imaged at three development stages representing two 
principal growth stages, i.e. vegetative (BBCH 12 and 14 
with two and four leaves unfolded respectively) and flow-
ering (BBCH 60). 

For imaging roots visible at the transparent surface, rhi-
zoboxes were placed into an imaging box to shield them 
from ambient light (see Bodner et al., 2017 for details). 
Images were taken using a digital camera (EOS 6D; Canon 
Inc., Tokyo, Japan) with a resolution of 3648 × 5472 pixels 
at the top and bottom positions to cover the upper and the 
lower half of the rhizobox, respectively. The PC software 
Adobe Photoshop v. CS6 (Adobe, USA) was used to merge 
the images into one RGB raw image.

Figure 1 illustrates an example of image processing and 
the analysis pipeline used to obtain quantitative root sys-
tem traits from the rhizobox images. In brief, unprocessed 
RGB images (Fig. 1A) were analysed using the commercial 
software WinRhizo Pro V.2013 (Regent, Quebec, Canada) 
based on colour segmentation (Fig. 1C). The processing of 
images via manual tracking and conversion into binary ima- 
ges (Fig. 1B) was performed in order to 1) assess the ac- 
curacy of RGB colour segmentation and 2) analyse the 
architectural traits requiring gap closure by user interac-
tion. An analysis of the binary images was then conducted 
using both WinRhizo (Fig. 1D) as well as the open source 
software RootNav v.1.8.1 x64 (Pound et al., 2013, Fig. 1E). 
anual tracking was performed using a graphic tablet (Intuos 
Pro, Wacom Europe, Germany) and the PC software 
CorelDraw X7 (Corel Corporation, Canada). 

After the final imaging at BBCH 60, the roots were 
washed from soil (following Himmelbauer et al., 2004, 
two sieves of 2 000 and 250 μm were used to minimize fine 
root loss, the technique of floatation in water was applied 
to manually separate roots from organic debris), rinsed and 
scanned using a Perfection v700 scanner (with a transpar-
ency unit, 400 dpi, grey-scale, Epson, Japan). An analysis 
of total root length (including the non-surface visible roots) 
was conducted in order to assess if surface-visible roots are 
a meaningful approximation of whole plant root systems 
– using root length as a test trait which is obtained by all 
methodologies. 

Beyond the different approaches to root segmentation 
and tracking, WinRhizo and RootNav provide different 
descriptors for a comprehensive characterization of root 
systems. Table 1 provides the respective image analysis 
parameters used here to characterize size (length, hull area, 
external path length) and branching pattern (lateral num-
ber, emergence angle, magnitude) of the root systems. The 
magnitude and external path length are descriptors from 
Fitter’s classification based on segments (links) between 
branches in a root system (Fitter, 1987). The magnitude 
captures the intensity of the branching via external links 
ending in a tip, the external path length is a size related 
parameter describing the sum of all links from the root base 
to the external links.
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A statistical data analysis was performed using the PC 
program SAS version 9.4 (SAS Institute, Cary, USA). The 
root dataset was first evaluated through the use of anal-
ysis of variance (PROC GLM) in order to determine the 
effect of the factor “software” for common root traits that 
were quantified by using different analytical strategies 
(WinRhizomanual: WinRhizo with manual tracking on binary 

images vs. WinRhizoauto: WinRhizo with automatic track-
ing on RGB images vs. RootNav: RootNav with manual 
tracking on binary images).  PROC GLM was also used to 
reveal the effect of the growth stage on the individual traits. 
In order to perform an analysis of the usability of RGB raw 
images without pre-processing to estimate the root length 
as well as the relationship between the visible surface 
(imaging) vs. the total (scanned) root length, regression 
analysis (PROC REG) was used. The relationship between 
root traits (at different developmental stages) was assessed 
via Pearson correlation analysis (PROC CORR) and visu-
alization through the use of a heat map. All traits were 
previously checked for normality (Kolmogorov-Smirnov 
test in PROC UNIVARIATE). 

In order to highlight the direct and indirect pathways 
relating to the visible root imaging/phenotyping traits with 
their functional role in plant water uptake (transpiration), 
a structural equation model (SEM) was designed using 
PROC CALIS. It was hypothesized that root functionality 
(transpiration, obtained from changes in rhizobox weight) 
as an overall target, e.g. for stress resistance breeding, is 
driven by the overall extent of the root system (i.e. total 
living root length, living roots based on bright colour). The 

Ta b l e  1. Root parameters derived from different image types 
(binary: manually tracked binary images: RGB: unprocessed 
RGB images; Scan: roots washed free from soil and images from 
roots scanned with a flatbed scanner) that are available from image 
analysis using the software WinRhizo and RootNav, respectively

Parameters Software
Binary, RGB, Scan

Root length (cm) WinRhizo, RootNav
Binary

Hull area (cm2) RootNav
Number of lateral roots (N) WinRhizo, RootNav
Average emergence angle (°) WinRhizo, RootNav
Magnitude (N) WinRhizo
External path length (N) WinRhizo

Fig. 1. Processing and analysis of faba bean rhizobox images taken at developmental stages 12, 14 and 60. A – original RGB images, 
B – binary images from manual tracking of the RGB original using CorelDraw X7, C – colour-based classification of root axes using 
WinRHIZO, D – WinRHIZO root analysis of manually tracked binary images, and E – RootNav analysis of manually tracked binary 
images. 
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extent of the root system is driven by size related (hull area, 
external path length) and branching related traits (lateral 
number, angle, magnitude) as obtained from root pheno-
typing/imaging. SEM models with different possible paths 
connecting the variables (including the paths between root 
traits measured at vegetative and generative stages) were 
fit to the dataset. Among these models, the best one was 
identified using a set of statistical indicators. The rec-
ommendations of Schermelleh-Engel et al. (2003) were 
followed to combine different indicators (in this case: 
Standardized Root Mean Square Residual, Goodness-of-Fit 
Index, Bentler Bonett Normed and Nonnormed Fit Index) 
in order to reliably assess model fit and identify the best 
performing model to relate root phenotyping traits with 
plant functionality. 

RESULTS

The root parameters measured at three developmental 
stages with WinRHIZO and RootNav differed significantly 
(Table 2). The traits obtained from manually tracked bina-
ry images were the lateral root number, emergence angle, 
hull area (RootNav) and lateral number, emergence angle, 
magnitude and external path length (WinRHIZO). The 

length was determined using binary and RGB images as 
well as washed/scanned roots at the end of the experiment 
(BBCH 60).

Overall, the two vegetative growth stages did not differ 
significantly (and were thus averaged for subsequent anal-
ysis), while all parameters except the root angle changed 
to a significant extent between the vegetative and flower-
ing growth stages. In addition, those parameters obtained 
with both sets of software (lateral root number, angle of 
emergence, root length) revealed the differences in their 
segmentation/measurement approaches for the architectur-
al description in particular (lateral root number, emergence 
angle) and at later for the developmental stages (BBCH 60). 

With regard to root length, that was determined using 
both manually tracked binary and RGB raw images, the 
values obtained from colour-segmented images did not 
differ significantly from the values of binary images at 
vegetative stages, while at the flowering stage the differ-
ences were significant. Differences in root length estimates 
between manually tracked images using either WinRhizo 
or RootNav were greater than the differences between auto-
matically segmented RGB images. 

Ta b l e  2. Parameters from a root dataset of faba bean (three cultivars, two watering regimes) at vegetative (BBCH 12, 14) and flower-
ing (BBCH 60) growth stages quantified by different image analysis approaches: RootNav: manually tracked binary images evaluated 
by RootNav, WinRhizomanual: manually tracked binary images evaluated by WinRhizo, WinRhizoauto: automatically tracked RGB images 
and washed/scanned roots evaluated by WinRhizo. Cumulative transpiration is included as a functional trait related to differences in the 
root systems. Different lowercase letters indicate significant differences between the growth stages for the single traits, different upper-
case letters indicate significant differences between software for the common traits (Tukey HSD with p<0.05, n = 20, mean (standard 
error)). See text for details

Parameter BBCH 12 BBCH 14 BBCH 60

RootNav

Root length (cm) 345.0 (56.0) aA 598.1 (102.6) aA 3574.3 (238.3) bA

Lateral number (N) 46.0 (5.7) aA 65.5 (7.4) aA 297.8 (20.6) bA

Emergence angle (°) 70.8 (1.8) aA 67.3 (1.1) aA 65.0 (1.6) aA

Hull area (cm2) 377.7 (51.7) a 611.0 (59.5) a 2436.2 (131.5) b

WinRhizomanual

Root length (cm) 225.2 (31.0) aA 352.9 (39.4) aA 1879.2 (98.6) bB

Lateral number (N) 8.7 (1.1) aA 7.8 (1.3) aB 52.2 (6.9) bB

Emergence angle (°) 51.0 (1.2) aA 51.4 (1.0) aB 54.6 (0.6) aB

External path length (N) 547.7 (94.4) a 888.2 (129.8) a 6617.7 (1086.0) b

Magnitude (N) 60.4 (6.7) a 85.1 (10.3) a 320.4 (19.1) b

WinRhizoauto

Root lengthRGB (cm) 237.0 (41.5) aA 388.4 (62.1) aA 2542.9 (240.8) bC

Root lengthscan (cm) – – 9897.9 (797.1) D

Cumulative transpiration (ml) 597.3 (292.6)
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Figure 2 shows the regression of root length as deter-
mined from manually tracked binary images with reference 
to automatically segmented RGB images at the vegetative 
and flowering stages. 

In all cases (vegetative and flowering stages, both sets 
of image analysis software), there was a significant rela-
tionship between the manually and automatically tracked 
root length. Using WinRHIZO, i.e. the same length mea-
surement approach for both manual tracking and automatic 
colour segmentation respectively, an overestimation of root 
length from automatic RGB image segmentation may 
be observed for both growth stages (slopevegetative = 1.12; 
slopeflowering = 1.99). Comparing RootNav-measured binary 
images with RGB automatic segmentation in WinRHIZO, 
the length values obtained with RootNav were higher, par-
ticularly at the vegetative stage. The R2-values between 
the RootNav vs. RGB length estimates at both stages were 
lower (R2

vegetative = 0.84, R2
generative = 0.57) compared to the 

values obtained when measuring both image types with 
WinRHIZO (R2

vegetative = 0.88, R2
generative = 0.71). 

The surface-visible roots of rhizobox phenotyping plat-
forms represent a certain fraction of the entire root system. 
Inference concerning the plant root system based on rhi-
zobox images thus assumes a the existence of a significant 
relationship between the visible root axes and the total root 
system. The prediction of mature root systems from early 
stage phenotyping would furthermore require a significant 
relationship between phenological growth stages. 

On average, the visible root fraction at the flowering 
stage – when the rhizoboxes were emptied and the total root 
length was measured after washing and scanning – consti-
tuted about 27.7±11.1% of the total root length (depending 
on the image analysis method used). Image analysis derived 
root lengths at the vegetative stage were 12.2±7.1% of the 
flowering stage root length. 

The relationship between surface-visible (vegetative 
and flowering stage) and scanned total root length is shown 
in Fig. 3. The results demonstrate that, independent of the 

root analysis software and image type (binary and RGB), 
the relationship between the visible and total root length is 
significant at the same growth stage (flowering), with the 
highest R2 value obtained for the colour-based WinRHIZO 
root length determination. Inference concerning total root 
length from the early, vegetative stage at flowering, howev-
er, was not feasible. 

Analysing the inter-trait relationship between root sys-
tem parameters may indicate a link between “higher-level” 
root traits such as root length or hull area and underlying 
traits such as the lateral number or emergence angle. The 
results of a correlation analysis between the measured 
parameters (Table 2) are shown in Fig. 4. 

Generally, a more significant relationship between mea-
sured traits was found at the vegetative growth stage (31) 
as opposed to the flowering stage (18). The only parameters 
with values at the vegetative stage that scaled up towards 
the flowering stage was the lateral root number determined 
by WinRHIZO. The number of lateral roots at the vege-
tative stage was also related to the flowering stage root 
length.

For one particular set of software, the RootNav-derived 
parameters of root length and lateral root number were sig-
nificantly correlated at both stages, and with the hull area 
at the vegetative stage only. WinRHIZO descriptors of root 
length, number of axes and magnitude correlate signifi-
cantly at both stages, while angle, axis number, length and 
magnitude are only related at the vegetative stage.

Several root traits were highly correlated between the 
two image analysis programmes. Examples where there 
were significant correlations at both developmental stag-
es highlight the consistent relationship between root traits 
derived from the two sets of software are: root length, num-
ber of axes and magnitude (WinRHIZO) with root length 
and lateral number (RootNav), and root length (WinRHIZO) 
with hull area and emergence angle (RootNav). Root angles 
originating from either set of software were either nega-
tively (vegetative stage) or not (flowering stage) correlated.

Fig. 2. Regression relationship of faba bean root length from manually tracked rhizobox images determined using RootNav and 
WinRHIZO, and automatically segmented RGB-images determined using WinRHIZO at the: a – vegetative and b – flowering growth 
stage. 

a b
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Fig. 3. Relationship of total root length determined after harvest (software: WinRHIZO) with the visible root length phenotyped at 
an early growth stage (vegetative) and at the same growth stage (flowering) – quantified using manually tracked binary (software: 
RootNav, WinRHIZO) and automatically segmented RGB-images (software: WinRHIZO).

Fig. 4. Heat map showing the relationship (Pearson correlation coefficients) between faba bean root system traits at two principal 
growth stages (vegetative, flowering) using WinRHIZO and RootNav (*p<0.05, **p<0.01, ***p<0.001).
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Path analysis provides an approach to reveal causal 
pathways between the parameters in a dataset. In this case, 
the application of path analysis mainly aimed to 1) unrav-
el key traits captured by rhizobox imaging that underlie 
total root length (from washed/scanned sampling after final 
imaging) and 2) relate traits that constitute a root system 
to plant transpiration as a key functional descriptor in the 
context of root studies. Figure 5 shows the resulting path 
model obtained from the dataset.  

The path model links the vegetative stage with the 
flowering stage root system characterization, which in turn 
underlies the total root length (i.e. including the non-visi-
ble part during rhizobox imaging) and thereby drives root 
water uptake (transpiration).

The model is composed of determined root imaging 
parameters (from WinRHIZO and RootNav) that are con-
sidered to be lower-level constitutive traits (lateral root 
number, hull area, magnitude, external path length). The 
determined (manifest) parameters are grouped into two 
types of latent variables, i.e. branching and size descrip-
tors. The magnitude (WinRHIZO) and lateral root number 
(RootNav) were considered to shape branching, while size 
was related to the external path length (WinRHIZO) and 
hull area (RootNav). Among the branching parameters, the 
root angle (from both sets of software) did not show any 
significant relationship with the branching descriptor (data 

not shown) and was therefore omitted from the final mod-
el. The final (exogeneous) predictor variable is cumulative 
plant transpiration. Furthermore, the branching descriptor at 
the vegetative stage did not show any significant pathways 
relating it to the other model components (data not shown). 
Therefore, this part of the model was excluded. In contrast, 
the vegetative growth stage size descriptor is linked to 
a significant extent to the flowering stage size descriptor. 
The two latent variables at the flowering stage (i.e. compos-
ite branching and size descriptors) are both related to each 
other to a significant extent and contributed to the factors 
resulting in total root length. Total root length finally relates 
to the exogenous variable of cumulative transpiration. In 
spite of its complexity, particularly through the inclusion 
of a vegetative-to-flowering stage relationship, the model 
had a satisfactory overall fit (cf. model fit indices in Fig. 5).

In general, the direct links between the manifest vari-
ables and the latent composite descriptors were more 
significant as compared to the paths linking the single mod-
el components (vegetative stage size  flowering stage 
size  flowering stage branching  total root length  
transpiration). Overall, the model reveals how the size and 
branching-related traits of the root system, as measured 
through image-based root phenotyping, scale towards the 
functionality of the root system for plant water uptake 
(transpiration). 

Fig. 5. Path model of single root imaging traits (grouped according to size and branching-related traits) and their relationship with: 
1) total root length (washed/scanned) in terms of comprehensive high-level root system characteristics and 2) plant transpiration as 
a key target variable of functional root phenotyping. Numbers along straight arrows show the standardized path coefficients, while 
numbers on curved arrows show standardized variances (*p<0.05, **p<0.01). 



IMAGE ANALYSIS STRATEGY FOR RHIZOBOXES 265

DISCUSSION

With the advance in root phenotyping applications, 
analysis and trait extraction from images has become 
a major bottleneck in the process. This is particularly 
the case with rhizobox-based phenotyping platforms, the 
analysis of comparatively complex images of mature root 
systems, where only part of the entire root system is vis-
ible, prevents the wider application of these semi-natural 
systems. For length measurement, partial visibility (in 
this study 26.2% of the entire root length; for comparison: 
32.4% in the faba bean rhizobox experiment of Belachew 
et al. (2018)) may be considered less problematic. In gen-
eral, there is a significant relationship between visible and 
total length in rhizobox experiments (in this case R2 = 0.52, 
p<0.001 for colour-segmented visible length and total 
length at the flowering stage; in comparison: R2 = 0.76-0.79 
for chickpea and a slightly thinner 6 mm rhizobox system 
used by Bontpart et al., 2020). Thus, rhizobox phenotyping 
systems can be reliably used to make quantitative com-
parisons between root systems for different purposes such 
as genotype ranking in root breeding studies. For the soil-
base systems, however, an accurate segmentation between 
the foreground (root) and background (soil) without the 
need for manual tracking would substantially increase 
the throughput of the technique and the range of practical 
applicability.

The software used in this study for root analysis 
(WinRhizo and RootNav) differed with regard to the auto- 
matic segmentation algorithms used (WinRhizo: threshold-
ing, RootNav: expectation maximization classification) and 
the semi-automatic root tracking applied according to the 
different root orders (WinRhizo: multi-criterial (e.g. diam-
eter, link numbers) pre-selection + manual post-processing; 
RootNav: low-cost path detection between base and tip + 
manual post-processing). Our results showed that concern-
ing root length there was a significant correlation between 
the RootNav- and WinRhizo-derived data sets, i.e. both 
segmentation and tracking approaches provided similar 
results. With the increasing complexity of the root systems 
(between the vegetative and flowering stages), root length 
prediction from automatic segmentation algorithms, how-
ever, increasingly deviates from manually tracked images. 
This is probably related to a higher degree of root over-
lap and root axes growing in close proximity to each other, 
thereby introducing further bias in length measurement 
(Kimura et al., 1999; Himmelbauer et al., 2004).

However, when aiming to dissect root systems into their 
constitutive architectural traits (mainly branching frequen-
cy, emergence angle and the bending of lateral roots) image 
analysis requires the continuity of the single root axis from 
base to tip to be tracked (Leitner et al., 2014). Currently 
there is no software solution available for the automatic gap 
closure of root axes partially hidden in the substrate as is the 
case in rhizobox phenotyping systems. Recently Chen et al. 

(2019) proposed the application of a neural network based 
algorithm to improve gap closure in different imaging tasks 
involving partially hidden thin structures. In addition, track-
ing complex (large size, frequently branching) root systems 
becomes increasingly uncertain and error-prone with a high 
number of overlapping axes (Kimura et al., 1999). 

Therefore, the acquisition of architectural traits from 
rhizobox images (the number of lateral roots of a differ-
ent order and their branching angles) still largely depends 
on manual tracking. On average, the time required to track 
a flowering-stage root image (cf. Fig. 1B, BBCH 60) is 
50 to 70 min. Even for the manually post-processed, gap-
closed binary images single axis tracking by the software 
required further user-correction in the case of complex 
root systems with a high degree of overlap, further reduc-
ing throughput and the precision of image analysis. Thus, 
image pre-processing and correction for in-depth root 
architectural analysis still constitutes the main throughput 
constraint when aiming for a comprehensive architectur-
al description of mature root systems grown in soil-based 
phenotyping systems.

However, dissecting global root system descriptors (root 
length) into their constitutive components which determine 
shape and structure is considered crucial to advancing the 
cause of targeted root management (via breeding or agro-
nomic practices) as constitutive root architectural traits are 
less variable (lower genotype x environmental interaction) 
as compared to more adaptive global descriptors (Collins 
et al., 2008). Hodge et al. (2009) categorized root architec-
tural descriptors into two types: shape-parameters related 
to the spatial location of roots and soil volume foraging 
(angle of emergence, hull area), and also structural parame-
ters which are defined as constitutive building units (lateral 
root number). The image analysis tools applied in this study 
provided common architectural descriptors (lateral root 
number), while others were based on different concepts 
(hull area in RootNav; topological traits in WinRhizo based 
on Fitter, 1987). 

Lateral root number correlated to a significant extent 
between the two software packages at both the vegetative 
and flowering stages. The software-specific descriptors 
(hull area, magnitude, external path length) showed sig-
nificant relationships with the lateral root number and root 
length, thus providing a link between the branching pattern 
and size. 

Different outcomes between RootNav and WinRhizo 
were found for root angle, with an absence of or even 
slightly negative (in the case of the vegetative stage) cor-
relations. We consider that quantifying the emergence angle 
of laterals from parent root axes as a descriptor of root sys-
tem shape is challenging as it strongly depends on fitting 
a straight line (tangent) to a bending root axes. The coeffi-
cient of variation in root angles was lowest among all of the 
measured root parameters (between 5.9 and 10.2%). This 
may indicate a lack of sensitivity in angle measurement 
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were closely inter-dependent, while the link/path between 
total root length and plant water supply (transpiration) was 
mainly driven by the size descriptor.  

In considering this trait-function link and the above-de-
scribed throughput challenges to obtain architectural traits 
from rhizobox images (manual gap closure), we sug-
gest that rhizobox datasets should focus on visible root 
length and hull area which provide robust descriptors with 
meaningful (empirical) relationships to root functionality 
(transpiration). Rather than compromising on throughput 
(one of the aims of modern phenotyping) with a specif-
ic phenotyping approach (such as rhizoboxes) by using 
a laborious manual image post-processing, data links 
across phenotyping systems should be studied. In this way, 
the advantage of realistic growth conditions (substrate and 
growth duration) in rhizoboxes could be combined with 
certain architectural details from approaches specifical-
ly targeting these traits (germination paper seeding root 
screens, Gioia et al., 2017). Also, for this purpose, path 
analysis might provide an appropriate empirical approach 
to highlight such cross-platform relationships. In line with 
this course of action, each phenotyping system has its spe-
cific parameter set and thereby defines the image analysis 
software (or combination of software) to be used. Overall, 
the application of SEM could better connect datasets from 
different (phenotyping system-specific) environments and 
between (software-specific) root traits, thereby providing 
a successively more comprehensive picture concerning 
root system characteristics and functionality.

CONCLUSIONS

1. Imaging the visible length of root axes on the sur-
face of soil-filled rhizoboxes as a semi-natural phenotyping 
system and using automated analysis of the obtained RGB 
images provides a reliable estimate of total root length. 
Different segmentation approaches between roots and soil 
provide similar results, while inference from early devel-
opmental stages towards mature root length is not possible.  

2. The measurement of root architecture traits requires 
the manual post-processing of images to close the gaps of 
the visible root axes. Different types of architectural traits 
provided by software tools are inter-comparable. 

3. Combining root size and branching descriptors 
obtained from rhizobox phenotyping can be used to pre-
dict plant functionality (transpiration). Structural equation 
modelling can be used to reveal which traits are essential 
to obtain root phenotyping datasets to infer which  plants 
would have an effective uptake of soil resources.

4. The automatization of image processing, with par-
ticular reference to gap closure and single axis tracking of 
crossing roots, is essential to enhance the throughput of 
rhizobox phenotyping systems for providing root archi-
tecture datasets obtained under semi-natural growing 
conditions. 

(but also low genotypic and/or environmental effects, 
which, however, is unlikely considering the results of stud-
ies concerning variability in root angle among genotypes 
and the response to nutrients (Trachsel et al., 2013). 

Hull area provides an alternative descriptor to root angle 
which also captures the space occupation of the root sys-
tem. Several studies have shown hull area to be related to 
a significant extent to root length and rooting depth (Bodner 
et al., 2019), which was also confirmed in this study. At the 
vegetative stage, the number of lateral roots was essentially 
shaping the hull area. At the flowering stage, however, the 
occupation of space described by the hull area is beyond the 
number of lateral roots, becoming a more complex function 
of elongation and the bending of the single root axes. 

Overall, the inter-relation among root traits demon-
strates that the key architectural trait shaping the 
automatically captured composite traits of root length and 
hull area is the lateral root number. While the spacing of lat-
eral root primordia along a parent axes has been reported as 
a genetically constitutive trait, the emergence of the lateral 
root interacts with the soil environment (water, P, N avail-
ability; Dubrovsky et al., 2009). Creating more advanced 
(semi-automated) image analysis tools for determining the 
lateral root number based on root-based phenotyping sys-
tems (extracting visible axes with a minimum length from 
the whole root system image and counting their lateral 
numbers in order to obtain a representative average esti-
mate) therefore has a high degree of significance for root 
system breeding for the purpose of improving adaptation to 
resource limiting environments.   

The functional relationship between single root traits 
and root functionality (root water and/or nutrient uptake) 
is complex, as it not only involves root architecture but 
also physiology and anatomy (root membrane transport-
ers, root xylem hydraulics; Vadez, 2014; Freschet et al., 
2021). In addition, the overall allocation pattern of assim-
ilates between shoot and root is closely interrelated with 
resource availability and extraction (Foxx and Fort, 2019). 
We therefore suggest the use of path models as an empirical 
approach in order to reveal the links between single con-
stitutive root traits (as potential breeding targets), global 
root descriptors (mainly root length as a trait measurable 
in the field, e.g. for validation purposes) and the targeted 
functions at plant level such as transpiration (measured by 
weighing in this case) or nutrient uptake. There was a weak, 
but still significant relationship between the vegetative 
and flowering stage root size, but not with the branching 
structure. Thus, for faba bean, upscaling from the early 
vegetative root screens to mature root size seems feasible 
(in contrast to monocots; Watt et al., 2013), although over-
coming linear scaling might also still be advantageous for 
dicots (Zhao et al., 2017). The path model highlighted that 
the latent variables describing the size and branching pat-
tern (and integrating the single constitutive imaging traits) 
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