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A b s t r a c t. The aim of the paper is to discuss, on the basis 
of the recent scientific literature, the potential of mycorrhizae 
as an important biological factor supporting crop production. 
Mycorrhizal symbiosis is a multifunctional phenomenon, there-
fore it should play an important role in sustainable and organic 
agriculture, but it is still underused. The article focuses on the 
influence of mycorrhizae on nutrient uptake by plants, as well as 
exploring the importance of mycorrhizal fungi in promoting plant 
growth and improving yield quality. Mycorrhizal fungi are fac-
tors which limit plant stresses, thereby indirectly contributing to 
a reduction in the consumption of agrochemicals. The results of 
many studies show that mycorrhizal symbiosis plays an important 
role in essential ecosystem processes by regulating the microbio-
logical relationships in the soil, thereby creating a permanent soil 
structure and protecting it from air and water erosion. The detailed 
functioning and regulation of these mycorrhizosphere processes 
and their significance for plants are widely described in the scien-
tific literature, however, the use of mycorrhizae in agriculture is 
still insufficient. Particular attention should be paid to the poten-
tial benefits of mycorrhizae in sustainable agriculture, as well as 
for ecological and safe plant production.
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INTRODUCTION

Xenobiotic pollutants accumulate in the environment, 
i.a. as a result of the application of agricultural chemicals. 
Agrochemicals become a part of the food chain regard-

less of the origin and type of pollutant that enters the soil 
(Kowalik, 2001). The uncontrolled leakage of contami-
nants into food poses a great threat to consumer health. 
Chemicals which are used in agriculture are a significant 
source of the ecological stresses encountered by plants, as 
they can block their enzymatic systems, and contribute to 
physiological changes, which is often associated with tissue 
and cell death (Saladin and Clément, 2005). Also, pesticide 
treatment contributes to the development of resistance to 
pesticides which is harmful to the environment in practice 
(McDonald and Linde, 2002). It is therefore, an important 
strategy to promote and implement sustainable or organic 
farming as a system using environmentally-friendly man-
agement techniques, such as the use of mycorrhizal fungi 
(MF). These are biological agents whose application in sus-
tainable and organic agriculture is becoming increasingly 
popular (Gosling et al., 2006; Mahmood and Rizvi, 2010). 
Mycorrhizae play a significant role, especially as factors 
limiting plant stresses and enhancing crop productivity, 
thereby indirectly contributing to a reduction in the con-
sumption of agrochemicals and in environmental pollution 
(Wang et al., 2020). Arbuscular mycorrhizal fungi (AMF) 
have the potential to become key organisms which could 
play important roles in sustainable agricultural ecosystems. 
The external hyphae of fungi penetrate into soils surround-
ing plant roots (Finlay, 2008), thereby increasing the root 
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absorption area 100- and even 1000-fold (Larcher, 1995). 
Therefore, AMF increases plant nutrient supply and reduc-
es fertilizer requirements (Finlay, 2008). AMF inoculation 
has the potential to become an important biotechnological 
tool which could be widely used in the renewal of modern 
agricultural ecosystems.

PHENOMENON OF MYCORRHIZAE

Mycorrhizal fungi (MF) are found in almost every 
terrestrial ecosystem and play an important role in plant 
growth and essential ecosystem processes (Błaszkowski 
and Czerniawska, 2011; Jamiołkowska et al., 2018). 
Many of the mycorrhizal fungi belong to the phylum 
Glomeromycota and class Glomeromycetes and their 
classification is based on molecular, biochemical and mor-
phological identification. The initial research carried out by 
Kamieński in 1881 with Monotropa hypopitys L., showed 
that fungi growing at the roots are beneficial for plants. 
In 1885, the botanist Albert Bernhard Frank was the first 
to describe the symbiotic relationship between a fungus 
and tree roots (Smith and Read, 2008). Mycorrhizal fungi 
form symbiotic associations with the roots of many plants. 
There are several species of mycorrhizal fungi that colonize 
various types of agricultural plants (Naher et al., 2013). 
Mycorrhizae are classified into two main types, namely 
ectomycorrhiza (intercellular) and endomycorrhiza (intra-
cellular). The second type is divided into ericoid, orchid 
and a ubiquitous vesicular-arbuscular mycorrhiza (Smith 
and Read, 2008). 

Ectomycorrhizal fungi hyphae form a sheath (man-
tle) around the plant roots and grow into the space of the 
cortex parenchyma, where they form a structure known as 
the Hartig net. On the other hand, hyphae growing outside 
the sheath penetrate the soil, and frequently form synne-
mata (vegetative parallel-oriented hyphae) or rhizomorphs 
(mycelial cords of intertwined hyphae) (Tahat et al., 2010). 
Individual layers of hyphae are specialized in performing 
protective or conductive functions. Hyphae outside the 
roots extend the zone of water and mineral (nitrogen, phos-
phorus, calcium, potassium and microelements) uptake by 
the plant roots. Ectomycorrhiza is a characteristic of a large 
number of trees, both Gymnosperms and Angiosperms (the 
Pinaceae, Myrtaceae, Salicaceae and Fagaceae families) 
(Taylor and Aleksander, 2005). Many species of coniferous 
trees, as well as oak, beech and hornbeam form obligatory 
mycorrhizas with ectomycorrhizal fungi which are neces-
sary for their proper development. Basidiomycota and As-
comycota fungi are partners in the formation of this type of 
mycorrhiza (Finlay, 2008; Zuccaro et al., 2014). In endo-
trophic mycorrhizae, fungal hyphae colonize the intercel-
lular space and the cell interior, but a sheath (mantle) is not 
formed around the roots and single fungal hyphae penetrate 
into the soil. Arbuscular mycorrhiza are one of the types of 
endomycorrhizae, formed mainly by fungi from the Glom-

eromycetes class. The external structures of arbuscular my-
corrhizal fungi (AMF) are resting spores and hyphae which 
penetrate the soil. Structures on the outer surface of plant 
roots that were previously identified as vesicles are now 
considered to be chlamydospores in the formative stage 
(Finlay, 2008).

Arbuscular mycorrhizal fungi (AMF) are of great im-
portance among the mycorrhizal fungi (Tahat et al., 2010). 
Arbuscular mycorrhiza form due to a longstanding symbi-
otic relationship between a small group of soil fungi and 
the roots of higher plants, which was formed 460 million 
years ago (Redecker, 2002). AMF occur in a variety of 
climates and habitats, both in natural ecosystems and in 
agricultural areas, and are the most prevalent mycorrhizal 
fungi (Gaur and Adholeya, 2004). These fungi cannot grow 
and reproduce without a host plant (Kiriachek et al., 2009). 
Many researchers (Ellouze et al., 2012; Souza et al., 2005) 
have noted that the development of symbiosis required 
two stages in the life cycle of the fungus. The asymbiot-
ic phase begins with spore germination and is particularly 
dependent on favourable environmental conditions such as 
appropriate moisture, temperature, and pH levels, mineral 
nutrients, organic matter, soil microorganisms and the ac-
cumulation of pollutants (Jamiołkowska et al., 2018). The 
symbiotic phase begins when the fungal mycelium makes 
physical contact with the root surface and the appressorium 
differentiates. AM symbiosis is very beneficial for the host 
plant and enhanced nutrient uptake is the most commonly 
reported advantage (Hodge and Fitter, 2010). The general 
life cycle begins with the colonization of a root and the de-
velopment of arbuscules from the branch hyphae within the 
root. The development of mycorrhizal symbiosis requires 
two stages for the completion of the fungus life cycle. The 
asymbiotic phase begins with the germination of spores 
and depends on the biotic and abiotic conditions of the en-
vironment (humidity, temperature, pH, level of minerals, 
organic matter, soil microorganisms, pollution level). The 
symbiotic phase begins when physical contact is made with 
the root surface, when the extraradical hyphae differentiate 
into the apressorium. Symbiotic AMF can form extraradi-
cal mycelium that grows outside the roots in order to have 
access to more water and soil minerals for the host plants 
(Smith and Smith, 2011). The AMF network spreads in the 
soil and contributes to soil aggregate formation as well as 
increases in the capture area for inorganic nutrients (Augé, 
2001, Brundrett, 2004). The beneficial effect of AMF on 
soil structure is related to the presence of glomalins. These 
abundant soil proteins, produced by AMF, have a positive 
effect on the soil structure by inducing and increasing the 
stability of soil aggregates, which improves the effective-
ness of the symbiotic relationship (Gałązka and Gawry-
jołek, 2015).
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MYCORRHIZAE AND PLANT GROWTH REGULATION

Mycorrhizae affect several aspects of the plant growth 
of host plants (physiology, phytopathology, biochemistry). 
MF directly and indirectly affects plant nutrition, which is 
reflected in the economic benefits to agricultural systems 
(Smith and Smith, 2012). At present, a significant volume 
of research is underway which is focused on the impor-
tance of MF in promoting the growth of plants through 
root colonization and plant nutrition (Table 1). MF protect 
plants from diseases and toxins and play other roles such 
as facilitating soil aggregation, plant protection against 
drought stress and soil pathogens, as well as increasing 
plant diversity (Whipps, 2004; Zadehbagheri et al., 2014). 
The best known role of MF is plant stimulation through 
allowing the plant to obtain microelements from the soil 
solution via external hyphae and to translocate them to 
the host through the hyphae, while in return the fungus 
receives photosynthetic carbonate compounds (Smith and 
Read, 2008; Santander and Olave, 2012). The degree of 
plant growth change associated with arbuscular mycor-
rhizal (AM) colonization may be expressed in terms of 
mycorrhizal dependency (MD). Tawaraya (2003) reported 
that the differences in MD between plant species or culti-
vars depends on many factors, including the plant species 
or cultivar and fungal species under consideration as well 
as the soil P levels. The mean values of MD were 44% for 
field crops, 56% for forage crops, 70% for wild grasses and 
phorbs, 79% for trees, and 56% for all plants, thereby indi-
cating that the cultivated plant species showed a lower MD 
than the wild plant species. MD was negatively correlated 
with root morphological characteristics such as root length, 
root dry weight, root hair length, density of the root hairs, 
the ability of roots to acquire phosphate from the soil, and 
the phosphorus utilization efficiency of the host plant.

Recent studies have confirmed the significant impact of 
MF on the development and growth of various types of veg-
etables (Table 1). MF influences plant structure in different 
ways, this is due to the functional diversity of MF (Smith 
and Read, 2008). This positive effect is associated with the 
role of MF in increasing the uptake of nutrients and subse-
quent water absorption leading to better plant growth (Augé, 
2001). The application of MF at the initial stage of plant 
development promotes the symbiosis of AM, which in turn 
contributes to the improvement in plant growth parameters 
both in the nursery and in the field (Wang et al., 2008). This 
hypothesis was confirmed by Jamiołkowska et al. (2008), 
who showed that the inoculation of seedlings with mycor-
rhizal fungi significantly influenced the length of tomato 
stems and roots. It was found that MF application to tomato 
roots significantly improves the physiological and morpho-
logical parameters of the cultivated plants (Jamiołkowska 
et al., 2020a). Thicker leaves allow for improved photo-
synthesis at a high radiation intensity, which explains the 
high variation of this feature in response to light. A thicker 
epidermis is a mechanical barrier to pathogens infecting 
plants, and the predisposition of the host plant to form 
physical structures preventing the spread of pathogens is 
important for plant resistance (Poorter et al., 2010). 

The application of MF is beneficial for plants and 
results in a better uptake of immobilized phosphate ions. 
Phosphorus is an essential macronutrient and plays an 
important role in all biological systems, as it participates 
in all energy transfer processes in the form of ATP and is 
an essential component of various biological molecules 
(nucleotides, phospholipids and sugar phosphates). One 
of the significant advantages of using mycorrhiza is the 
increase in the phosphorus nutrition of the plants during 
cultivation. Phosphorus captured from the rhizosphere is 

Ta b l e  1. Effect of mycorrhizal fungi (MF) on the plant growth

Influence on Plant Reference

Mycorrhizal fungi

Nutrient
uptake

pepper, 
tomato, 
cereals

Al-Karaki et al., 2001; Azcón et al., 2001; Hodge et al., 2001; Liu et al., 2002; Giri and Mukerji, 
2004; Govindarajulu et al., 2005; Reynolds et al., 2005; Lambers et al., 2008; Oseni et al., 2010; 
Wu et al., 2010; Cavagnaro and Martin, 2011; Guru et al., 2011; Alvarez et al., 2012; Tanwar et al., 
2013; Motha et al., 2014; Saia et al., 2014; Wahb-Allah et al., 2014; Hart et al., 2015; Michałojć et 
al., 2015; Chitarra et al., 2016; Jamiołkowska et al., 2020a

Photosynthesis maize, 
tomato, 
poplar

Augé, 2001; Nelson and Achar, 2001; Sannazzaro et al., 2006; Colla et al., 2008; Zuccarini and 
Okurowska, 2008; Sheng et al., 2008; Zhu et al., 2012; Liu et al., 2015

Claroideoglomus etunicatum and Rhizophagus intraradices

Growth tomato, 
olive

Augé, 2001; Dasgan et al., 2008; Oseni et al., 2010; Guru et al., 2011; Castillo et al., 2013; 
Conversa et al., 2013; Tanwar et al., 2013; Khabou et al., 2014; Motha et al., 2014; Wahb-Allah et 
al., 2014

Yield tomato Demir, 2004; Subramanian et al., 2006; Utkhede, 2006; Dasgan et al., 2008; Nzanza et al., 2012; 
Salvioli et al., 2012; Candido et al., 2013; Colella et al., 2014; Jamiołkowska et al., 2020b
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absorbed by AMF hyphae and then absorbed and trans-
ported along the hyphae to the interior of the mycelium and 
finally to the cortical region of the roots (Alvarez et al., 
2012). The increased uptake of other macro- and micronu-
trients (potassium, nitrogen, calcium, copper, sulphur, zinc, 
iron, magnesium) after MF application was also observed 
(Table 1). The inoculation of plants with MF was dem-
onstrated to have a positive effect on the quality of plant 
fruit (Nzanza et al., 2012; Jamiołkowska et al., 2020a). 
Michałojć et al. (2015) found that the fruit of plants inocu-
lated with mycorrhizal fungi had a high level of calcium 
as compared to the control plants. Increased K, Ca and 
Mg uptake by inoculated plants may occur through two 
mechanisms; the first one involves direct nutrient capture 
by extraradical mycorrhizal hyphae, thereby increasing the 
absorption of the root systems, which shortens the nutrient 
transport distance in the soil before they reach the roots. 
It has been shown that the direct uptake and transport of 
K and Ca to the plant occurs through AMF extraradical 
hyphae (George, 2000). The second mechanism that may 
be responsible for the increased content of these ingredi-
ents in mycorrhizal plants is increased water uptake, which 
results in the improved flow of macronutrients from the 
soil (Khalvati et al., 2005). Mycorrhizal plants can extract 
more water from the soil and have a higher root hydraulic 
conductivity, thereby improving the water absorption rate 
of the plants, and reducing the response to drought stress. 
Mycorrhiza can also regulate the selectivity of the root plas-
ma membrane towards water, with enhanced P-nutrition, 
which increases the resistance of crops to drought. In the 
event of water stress, AMF increases the rate of transpira-
tion and stomatal conductance or it modifies the equilibrium 
of plant hormones (Junqin et al., 2019). The major factors 
causing increased water transport and reduced resistance 
to water through-flow with mycorrhizal inoculation may 
be the increased root surface area provided by the hyphae 
(Allen, 1982). The high levels of macronutrients in plants 
inoculated with MF may be due to the higher rate of photo-
synthesis in mycorrhizal plants (Nelson and Achar, 2001). 
The improved acquisition of phosphate from the soil and 
the improvement in the nutritional status of plants, is one 
of the reasons for the effective impact of mycorrhization on 
tomato productivity (Subramanian et al., 2006). The distri-
bution of carbon in various parts of the plant, the supply of 
plant nutrients, as well as tolerance and resistance to heavy 
metals in the soil depend on the degree of root colonization 
by endomycorrhizal fungi, which change both the quantity 
and quality of the host plant’s root exudates (Tahat and 
Sijam, 2012).

Plant mycorrhization increases the content of chloro-
phyll in plants (Sannazzaro et al., 2006; Sheng et al., 2008; 
Manila and Nelson, 2014). Elevated chlorophyll content is 
directly correlated with the photosynthetic rate in mycor-
rhizal plants (Ratti et al., 2010). Chlorophyll fluorescence 
is a parameter used to analyse the photosynthetic process 

and related mechanisms in plants that grow under stress 
conditions (Hussain and Reigosa, 2011; Qiu et al., 2013). 
Some studies have shown that AM symbiosis improved the 
Fv/Fm ratio in maize leaves (Sheng et al., 2008; Zuccarini 
and Okurowska, 2008; Zhu et al., 2012). Liu et al. (2015) 
found that MF increased the drought tolerance of poplar by 
reducing the decrease in photosynthesis parameters such as 
Fv/Fm and qP. Mycorrhizal plants also showed more active 
non-photochemical quenching than the non-inoculated 
plants (Sheng et al., 2008). 

Better growth and a higher yield of tomatoes inocu-
lated with MF have been confirmed in numerous studies 
(Table 1). Michałojć et al. (2015) however did not con-
firm this hypothesis because no beneficial effect of AMF 
on the yield of tomato grown in rockwool and straw 
was noted. These studies show that MF can develop and 
form a symbiosis with plants growing in natural soil and 
not in an artificial substrate such as mineral wool. Other 
studies conducted on tomato plants grown in a field and 
inoculated with a commercial AMF formulation showed 
larger inflorescences and a higher number of flowers as 
well as a higher total and marketable yield as compared 
to non-inoculated plants (Conversa et al., 2013). A study 
of Jamiołkowska et al. (2020) showed no significant effect 
of MF (Claroideoglomus etunicatum and Rhizophagus int-
raradices) on the total and marketable yield of tomato, but 
rather demonstrated the effect of mycorrhizae on reducing 
the number of diseased fruits. 

In addition to these advantages, arbuscular mycorrhi-
za (AM) provides plants with other benefits, such as im-
proved disease resistance (Pozo and Azcón-Aguilar, 2007). 
MF show some similarity to biotrophic pathogens and are 
able to induce plant defence reactions in the initial stages of 
symbiosis (Paszkowski, 2006; Jung et al., 2012). For colo-
nization to be successful, the fungus has to modulate these 
plant responses. This modulation may pre-condition the 
tissues for the efficient activation of plant defences in the 
event of a pathogen attack (“priming” phenomenon) (Pozo 
and Azcón-Aguilar, 2007). Song et al. (2015) found that 
mycorrhization enhanced tomato resistance to Alternaria 
solani infection by priming the systemic defence response 
(jasmonic acid signalling pathway). AMF increases plant 
resistance to various phytopathogens (Harrier and Watson, 
2004; Pozo et al., 2005; Bi et al., 2007). The appropriate 
management of AMF may be applied to ensure the sustain-
ability of agricultural systems in relation to plant disease 
management (Liu et al., 2007). 

MF EFFECT ON PLANT HEALTH STATUS

Mycorrhizal fungi (MF) are used in biological plant 
protection to reduce the development of pests, especially 
pathogens. In recent years, many studies have investigated 
the ability of AMF to limit the development of diseases 
caused by soil-borne pathogens (Matloob and Juber, 2013; 
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Kareem and Hassan, 2014). Plant mycorrhization and relat-
ed changes in the roots as well as the activation of plant 
defence mechanisms contributes to the reduction of dis-
ease severity (Demir and Akköprü, 2005). The potential of 
MF to control phytopathogenic fungi has been described 
by many scientists (Table 2). Mycorrhized plants are less 
susceptible to pathogens. Several studies have reported the 
beneficial effect of MF inoculation on plant health status and 
the reduction in pathogen development. MF inhibits infec-
tion and the development of many soil-borne pathogens, 
such as Fusarium species, Verticillium spp., Rhizoctonia 
solani, Pythium ultimum and Phytophthora species, how-
ever, effective biocontrol has also been observed against 
phyllosphere pathogenic fungi such as Alternaria solani 
(Table 2). Fritz et al. (2006) found that the protective effect 
of mycorrhiza against the development of tomato leaf spots 
(A. solani) occurred in parallel to the induced systemic 
resistance. Mycorrhizal networks formed between tomato 
seedlings to protect neighbouring plants from early blight 
(Song et al., 2015). Jamiołkowska et al. (2020) also dem-
onstrated the beneficial effects of AMF (C. etunicatum and 
R. intraradices) on the health status of tomato, where the DI 
(disease index) depended not only on the tomato cultivars, 
but also on the fungus species used for mycorrhization. 

The effect of Glomus spp. application on plant root pro- 
tection has been described by many researchers (Table 2). 
The effectiveness of inoculation and MF persistence de-
pends on several factors in the soil (temperature, soil mois-
ture, soil phosphorus content, mycorrhizal fungus species, 
mycorrhizal inoculation time, mycorrhizal inoculum level 
and pathogen inoculum potential) (Berruti et al., 2015; 
Jamiołkowska et al., 2018). Yao et al. (2002) demonstrat-
ed that inoculation with MF reduced R. solani develop-
ment on micropropagated potato plantlets. In the present 
study, AMF (R. intraradices and C. etunicatum) were used 
against the soil pathogen of tomato, i.e. Fusarium spp. Both 

biocontrol agents were particularly effective at inhibiting 
root rot diseases (Ozgonen et al., 2001; Berta et al., 2005). 
The species composition of the fungal populations of plants 
are modified not only by AMF treatment, but also by other 
microorganisms in the rhizosphere that interact with key 
AMF components of the soil microbiota  (Jamiołkowska 
et al., 2020b). In this context, AM formation changes the 
plant physiology and the nutritional and physical proper-
ties of rhizosphere soil. In this way, AMF interacts with 
microorganisms in the rhizosphere, thereby affecting both 
soil properties and quality. Conversely, soil organisms 
also significantly affect AM development and function-
ing (Barea et al., 2002). Changes within a population also 
depend on the interaction of fungi in a given community. 
The study allowed for the determination of the influence of 
R. intraradices and C. etunicatum on the development of 
Colletotrichum coccodes on tomato (Jamiołkowska et al., 
2020a) and included the application of AMF which re-
duced the occurrence of C. coccodes on potato plants 
(Cwalina-Ambroziak et al., 2015). Therefore, AMF may 
be recommended to protect tomatoes against root anthrac-
nose. AMF creates favourable conditions for the activity of 
rhizosphere microorganisms. Matsubara et al. (2010) sug-
gested that Glomus intraradices is an effective biocontrol 
agent for Fusarium crown and root rot which may appear 
in degraded soil. The improvement of plant health status 
also depends on the composition of the microbiota in the 
plant rhizosphere. MF influences the development and ac-
tivity of soil microorganisms (Jamiołkowska et al., 2020b). 
MF application (i.e. Claroideoglomus etunicatum) on to-
mato roots contributes to an increase in the number of soil 
fungi, especially saprotrophs in the rhizosphere. The sym-
biosis between MF and the plant may also be promoted by 
soil microorganism exudates, especially certain saprophyt-
ic bacteria and fungi (mycorrhizal helper bacteria) (Joseph 
and Sivaprasad, 2000). Studies conducted by Jamiołkowska 

Ta b l e  2. Effect of mycorrhizal fungi (MF) on the plant health status

Influence on Plant Reference

Mycorrhizal fungi

Verticillium 
dahliae

cotton Zhang et al., 2018

Fusarium spp. tomato, bean, chry-
santhemum, cucumber, 
chickpea 

Bhagawati et al., 2000; Siddiqui and Singh, 2004; Akköprü and Demir, 2005; Hao et 
al., 2005; Al-Askar and Rashad, 2010; Matsubara et al., 2010; Manila and Nelson, 
2014; Al-Hmoud and Al-Momany, 2015; Jamiołkowska et al., 2020a

Phytophthora spp. tobacco Trotta et al., 1996; Pozo et al., 2002

Claroideoglomus etunicatum, Rhizophagus intraradices, Funneliformis mosseae, Rhizophagus irregularis, Glomus spp.

Other pathogens banana, cucumber, 
tomato, cotton, potato, 
sweet pepper

Becker et al., 1999; Declerck et al., 2002; Berta et al., 2005; Kobra et al., 2009; 
Bødker et al., 2002; Kasiamdari et al., 2002; Yao et al., 2002; Harrier and Watson, 
2004; Whipps, 2004; Pozo and Azcón-Aguilar, 2007; Matsubara et al., 2010; Died-
hiou et al., 2013; Matloob and Juber, 2013; Manila and Nelson, 2014; Cwalina-
-Ambroziak et al., 2015; Al-Hmoud and Al-Momany, 2015; Song et al., 2015; 
Jamiołkowska et al., 2020b
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et al. (2020b) show that in mycorrhizal plants, the fungal 
biodiversity increases within the rhizosphere (a greater 
number of saprotrophic fungi with antagonistic abilities).

SOIL CONTAMINATION AND MYCORRHIZAE

MF can be used in agricultural cultivation systems to 
reduce the application of synthetic fertilizers, pesticides 
and other supplements, thereby enhancing crop quality 
(Bhattacharyya and Jha, 2012) and stimulating contam-
inant bioremediation (Gaur and Adholeya, 2004; Fester, 
2013). Overall, MF reduces organic contaminant residues 
in the aboveground part of plants, but causes an increased 
accumulation of contaminants, especially persistent organ-
ic pollutants (POPs) in plant roots (Wang et al., 2020). MF  
also have a significant  potential  in the restoration of de-
graded soils with low fertility without losses in productivi-
ty (Quilambo, 2003). Mycorrhizal fungi are present on the 
roots of plants growing in heavy metal contaminated soils 
and play an important role in metal tolerance and accumu-
lation. MF play a significant role in the phytostabilization 
of toxic compounds. Mycorrhizal plants accumulate metal-
lic pollutants by storing these heavy metals in vesicles and 
in fungal hyphae in their roots, due to this, the contami-
nants are immobilized in the fungal structures and do not 
inhibit nutrient uptake. MF releases glomalins, which are 
metal-absorbing glycoproteins and thus immobilize toxic 
metals. Another protein is metallothionin which is released 
by some MF, this also reduces the toxicity of heavy met-
als in the soil (copper, cadmium, zinc, lead). AMF reduces 
the toxicity of heavy metals by metabolizing these met-
als. Metallothionins like polypeptides are known to cause 
heavy metal detoxification in AM fungal cells. Mycorrhizal 
fungi also induce plant resistance to salinity stress and they 
can be extremely beneficial in the phytoremediation of the 
soil (Bano and Ashfag, 2013). The isolation of native and 
stress-adapted AMF species could be a potential biotech-
nology tool for inoculating plants in order to successfully 
restore degraded ecosystems or convert conventional farms 
to organic ones (Gaur and Adoleya, 2004).

CONCLUSIONS AND PROSPECTS FOR FUTURE

Mycorrhizal fungi (MF) interact with the most cultivat-
ed plants, such as cereals, vegetables and fruit trees, and are 
receiving increasing attention due to their potential use in 
sustainable and organic plant production. Studies concern-
ing the effects of MF on plant growth and crop productivity 
have led to several hypotheses (Elmer, 2002), among which 
the most important are: improvements in nutrition resulting 
in better plant growth, higher plant resistance to pathogen 
contamination or symptom compensation, plant morpho-
logical changes (structural barrier formation), changes in 
the biochemical compounds related to plant defence and an 
increase in the percentage of antagonists in the mycorrhi-

zosphere. Not only can MF improve soil fertility and plant 
health, but it can also alter the accumulation of contami-
nants in plants. The benefits and mechanisms behind the 
role of MF in alleviating biotic and abiotic stresses, in or-
ganic and sustainable farming, are as follows: 1) increased 
plant biomass through improved mineral plant nutrition 
and water soil distribution, 2) reducing the infestation of 
plants by pests, 3) reducing the oxidative stress induced 
by soil contaminants, 4) the accumulation and sequestra-
tion of contaminants by AMF structures, 5) stimulating the 
development of antagonistic microorganisms in the soil and 
ensuring the microbiological balance of the rhizosphere, 
6) improving soil structure, and 7) reducing pesticide ap-
plication due to increased crop resistance to pathogens and 
improving the competitive position of plants with regard 
to weeds. 

Studies conducted with AMF in recent years have 
revealed their myriad benefits for plant health, soil and 
crop productivity. Therefore, it is believed that AMF could 
be used as bio-fertilizers in the near future to improve soil 
fertility, as well as plant growth and development. AMF 
can serve as a substitute for inorganic fertilizers, increas-
ing the bioavailability of minerals, especially phosphorus. 
It is believed that AMF can reduce the use of chemical fer-
tilizers by up to 50% in order to obtain better agricultural 
production, depending on the crop species and prevailing 
stress factors (Begum et al., 2019). Moreover, mycorrhi-
zae, due to their ability to bind heavy metals, can be used 
to improve the quality of degraded soils (Asmelash et al., 
2016). Therefore, it is important to characterize the native 
AMF population specific to the soils of a geographical area 
in order to create effective compositions (AMF consorti-
um inocula) of autochthonous mycorrhizal fungal species 
which effectively enhance crop productivity and remediate 
degraded soils. This is a challenge not only for scientists 
but also for biotechnologists to develop fungal inocula for 
large-scale applications.
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