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A b s t r a c t. Maize (Zea mays) is one of the key crops in the 
world, taking third place after wheat and rice in terms of culti-
vated area. This study aimed to demonstrate the potential of 
non-destructive hyperspectral imaging in the wavelength range of 
400-1000 nm to discriminate between and classify maize kernels 
in three cultivars by using non-destructive hyperspectral imag-
ing in the wavelength range of 400-1000 nm. Three cultivars of 
maize kernels were exposed to hyperspectral imaging with 20 rep-
lications. Predictor variables included 28 intensities of reflection 
wave for spectral imaging and 4 variables in terms of the weight, 
length, width, and thickness of a single kernel. The classification 
was successfully performed through Linear Discriminant Analysis 
and Artificial Neural Network methods, taking into account 32, 
15, and 5 predictor variables. According to the results, Linear 
Discriminant Analysis with 32 predictor variables is characterized 
by a high degree of accuracy (95%). The most important predictor 
variables included the reflection wave intensity of the third peak, 
the wavelength intensity of 490 nm, the wavelength intensity of 
580 nm, and the weight and thickness of a single kernel.

Keywords: maize, classification, hyperspectral imaging, 
artificial intelligence

INTRODUCTION

Maize (Zea mays) is one of the key crops cultivated across 
the world, taking third place after wheat and rice in terms of 
area under cultivation (Harris et al., 2007; Bajus et al., 2019; 

Khorsand et al., 2020; Kapela et al., 2020). The importance 
of this crop and its considerable area under cultivation is asso-
ciated with its compatibility with various climatic conditions, 
making it one of the main food sources in temperate, tropical, 
subtropical, and humid regions. In Iran, this plant is the most 
important crop with the highest area under cultivation after 
wheat, rice, and barley (Harris et al., 2007).

There are different cultivars of maize kernels, which 
makes their classification imperative to ensure high quality. 
Moreover, ensuring quality is fundamental to the develop-
ment of sustainable agriculture; hence, techniques such 
as drying, refrigeration, and the application of an edible 
coating are necessary to maintain the quality of agricul-
tural products. On the other hand, effective and efficient 
methods, usually used in seed and seedling preparation and 
improvement centres, silos, and mechanized warehouses, 
should be developed to evaluate and classify the quality 
of these crops (Benthien et al., 2020; Pekel et al., 2020). 
Traditional methods used to classify different cultivars of 
maize kernels include the use of fluorescence imaging, 
protein electrophoresis, and molecular markers of deoxyri-
bonucleic acid (DNA), which are usually time-consuming 
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and complicated (Cheng et al., 2014; Cheng and Sun, 2015; 
Kamruzzaman et al., 2011; Gowen et al., 2007; Dziki et al., 
2020; Tan et al., 2020; Alsalem et al., 2021).

In recent times, spectroscopic techniques have been 
introduced and used extensively  to assess food quality and 
safety. These analysis methods are generally non-destruc-
tive and can be used to analyse physical-chemical 
information in both raw and processed foods. In particu-
lar, spectroscopy in the range of visible and near-infrared 
(NIR) radiation and attenuated total reflection (ATR) have 
been used to evaluate the types of a particular food and to 
confirm the geographical origin of many products (Wang et 
al., 2015; Anjos et al., 2015).

Furthermore, hyperspectral imaging (HSI) is an emerg-
ing technology that combines imaging or machine vision 
techniques with spectroscopy in a single system, thereby 
obtaining a sample image from visible to near-infrared 
wavelengths (Jackman et al., 2008; Valous et al., 2009). 
It is possible to obtain spatial and spectral information 
simultaneously using HSI (El-Masry et al., 2011 and 2012; 
Kamruzzaman et al., 2012; Wu et al., 2012).  This method 
is widely used in agriculture, including: i) the detection 
of cereal fungal infection (Bauriegel et al., 2011), ii) the 
analysis of the hardness of maize kernels (Delwiche et al., 
2013), and iii) seed variety identification and classification 
(Zhang et al., 2012; Yang et al., 2015; Liu et al., 2021).

Williams et al. (2016) evaluated maize kernels in three 
classes of hardness (hard, medium, and soft) using NIR hyper-
spectral imaging. Pixel-wise and object-wise approaches were 
used to group the maize kernels according to hardness. Pixel-
wise classification assigned a class to each pixel of the single 
kernel and did not lead to acceptable results due to a high 
level of classification errors. However, more accurate results 
were obtained (with a sensitivity and specificity of 0.75 and 
0.97) using a predefined threshold and classifying all of the 
kernels based on the number of correctly predicted pixels. 
Object-wise classification was performed using two featured 
extraction methods of score histograms and mean spectra. 
Score histograms performed better concerning the classifica-
tion of hard kernels (sensitivity and specificity of 0.93 and 
0.97), while mean spectra performed better concerning the 
classification of medium kernels (sensitivity and specificity 
of 0.93 and 0.93). Both of the featured extraction methods 
may be recommended in the classification of maize kernels 
at a production scale (Williams and Kucheryavskiy, 2016).

The selection of wavelength and the conversion of 
features are the two major methods used to reduce the 
dimensionality of hyperspectral data. Wavelength selection 
is the process of finding the most representative wavelength 
of the original wavelengths and involves uninforma-
tive variable elimination (UVE) and sequential projection 
algorithms (SPA) (de Araújo Gomes et al., 2015; Hu et 
al., 2016). Wavelength selection can be used to minimize 
spectral redundancy to improve classification accuracy. The 
integration of feature conversion and wavelength selection 

(known as feature conversion/reduction) has been widely 
used in the non-destructive examination of the quality of 
agricultural products. Sun et al. (2016) reported the correct 
discrimination rate of 98.33% in discriminating between 
three types of black beans through the fusion of spectral and 
image information extracted from 13 optimal wavelengths 
under the first principal component for the shoot. Zhang et 
al. (2012) used a system based on visible and near-infra-
red (VIS/NIR) hyperspectral images and the near-infrared 
spectrum to discriminate between maize kernel cultivars 
by combining textural and spectral features. They used 
back-propagation neural network classification models and 
least-squares support vector machines, leading to the best 
correct discrimination rate of 98.89% for the predicted mod-
els. According to this study, the HIS model with data fusion 
was very suitable for the analysis of the non-destructive 
classification of different maize kernel cultivars.

In recent times, some researches have also used deep 
ANN-based relevant latent representation learning for 
hyperspectral imaging (HI) classification (Sellami and 
Tabbone, 2022), active deep learning for HI classification 
with uncertainty learning (Lei et al., 2021), and proxy-
based deep learning framework for spectral-spatial HI 
classification: efficient and robust (Yuan et al., 2021).

The objectives of this study included the examination 
of the ability to identify kernels of three maize cultivars 
based on a hyperspectral imaging technique and the ability 
to discriminate between these cultivars through the step-
wise method and to the elimination of some variables using 
LDA and ANN methods. Also, in this research, spectral 
data were obtained based on the level of grain mass, which 
may be used to facilitate imaging operations, and can be 
developed in practical applications.

MATERIALS AND METHODS

The maize kernels of three single-cross cultivars: SC 
703, SC 704, and SC 705 were obtained from the Ardebil 
Agricultural and Natural Resources Research Centre in 
Parsabad-Moghan, Iran. The kernels were then transferred 
to the Biophysical Properties Laboratory of the Biosystems 
Engineering Department of the University of Mohaghegh 
Ardabili, Iran. Three samples of each kernel with a weight of 
20 g were placed at a temperature of 105°C for 24 hours in 
a laboratory oven to determine the initial water content of the 
maize kernels. After recording the dry weight of the samples, 
the initial water content of the maize kernels was calculated 
to be 10.5%. A total number of 60 samples were used with 
20 replications for each sample to discriminate between 
3 maize cultivars. Also, a digital scale with an accuracy of 
0.001 g was used to measure the weight of the kernels.

The system for collecting hyperspectral images is 
shown in Fig. 1. For the most part it consists of a specially 
designed light-insulated box in which an image sensor, 
a camera equipped with a charge coupled device (CCD), 
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a light source and the sample which are located inside the 
box and a computer outside the box supported by access 
to an information and control system (Spectrometer-
OPTC-1000, IRAN). The finished wooden and rectangular 
box has two supports, one for the camera that can move 
during imaging and the other one fixed for the sample 
chamber. The distance from the camera lens to the sample 
is 1 m and imaging is obtained in a horizontal direction. 
The samples (kernel mass) were placed in a small wooden 
chamber with thin glass on the side where the light is locat-
ed. As a light source, two tungsten lamps (5 W) were used 
to illuminate the samples and placed with an angle of 45° 
to avoid undesired reflections. The camera used is a line 
scanning camera that can capture an image with maximum 
dimensions in pixels of 720 x 440 mm and a minimum 
width of 0.2 mm in a period of time ranging from 10 to 110 
ms. The CCD of the camera may be used to reveal radia-
tion over a range of 190-1150 nm with a resolution of 1 nm. 
Nevertheless, in the case of the ranges of 190 to 400 and 
1000 to 1150 nm a high degree of noise is present, hence 
only radiation wavelengths of between 400 and 1000 nm 
will be considered to create a suitable and stable image.

For each mass sample, 300 scans were taken over a peri-
od of 300 ms, and 1279 wavelengths for each hyperspectral 
reflectance image. In this way, a special block was prepared 
from an image with dimensions of 1279 x 300 x 720 mm. 
After each imaging, 20 kernels from the sample mass were 
randomly selected and weighed using a digital scale. After 
that, their dimensions (length, width, and thickness) were 
measured using a precision calliper. The variables were 
selected based on an initial statistical evaluation. In Table 1 
the weights and dimensions of the seed samples for the 
3 maize cultivars are summarized along with their means 
and standard deviations.

A spectral range of 740-420 nm was considered for the 
analysis, from which wavelengths assumed to facilitate the 
discrimination between maize cultivars were selected. The 
wavelengths of the spectral samples were selected on the 
basis that the set of spectral data could cover an average of 
the total range of the extractable spectra ranging from 400 
to 1000 nm. For this purpose, 28 spectral wavelengths were 
selected in this range. Based on an analysis of the obtained 
spectral data, wavelengths of 420, 430, 435 (first peak of the 
curve), 450, 460, 480, 490, 500, 510, 520, 540, 546 (second 
peak of the curve), 550, 570, 578 (third peak of the curve), 
580, 600, 610, 630, 640, 660, 670, 690, 700, 710, 720, 740 
and 750 (fourth peak of the curve), were effective as signifi-
cant wavelengths in the prediction model. Therefore, these 
28 wavelengths were used in the next stages of processing.

The collected data were analysed using linear discrimi-
nant analysis (LDA) and artificial neural network (ANN) 
analysis. LDA is commonly used as a dimension reduction 
tool to find a linear combination of new variables from the 
original data. LDA aims to maximize the between-class var-
iance and minimize the within-class variance. ANN is one 
of the most common methods of artificial intelligence. One 
of the most important applications of neural networks is pat-
tern recognition. Pattern recognition may be implemented 
using a feed-forward neural network trained in the same 
way. A network consisting of three input, output, and hidden 
layers was used to classify the maize cultivars. Performance 
was calculated using cross-entropy (CE%). The following 
equations may be used to determine the number of nodes in 
the hidden layer (Rasekh and Karami, 2021a):

≤ 2Ni + 1 , (1)
(

Ni +No

2

)

, (2)
2Ni

3
, (3)

√

NiNo , (4)
2Ni . (5)

Based on these equations, (Ni) and (No) indicate the 
number of nodes in the input and output layers, respective-
ly. Overall, 60% of the data were used for training and 40% 
for validation and testing. The confusion matrix was used 
to select the best model; the confusion matrix calculates 
the prediction accuracy of models. This matrix compares 
the predicted and actual values. The columns and rows in 
the confusion matrix correspond to the predicted and actual 
classes, respectively. The diagonal cells in the confusion 
matrix correspond exactly to the classified observations 

Fig. 1. Schematic of hyperspectral system and sample chamber.

Ta b l e  1. Weight data and dimensions of samples of measured corn cultivars

Repeat Weight (g) Length (mm) Width (mm) Thickness (mm)
SC 703 SC 704 SC 705 SC 703 SC 704 SC 705 SC 703 SC 704 SC 705 SC 703 SC 704 SC 705

Min 0.224 0.277 0.389 8.900 11.04 10.77 7.705 7.335 7.885 4.765 3.890 5.985
Max 0.241 0.291 0.288 10.20 10.23 10.31 6.500 7.560 7.165 4.250 4.135 4.980
Mean 0.243 0.266 0.283 10.43 10.88 10.35 6.755 6.969 7.137 4.456 4.205 4.834
SD 0.026 0.035 0.053 0.674 0.590 0.580 0.637 0.541 0.512 0.455 0.477 0.671
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(Rasekh and Karami, 2021a; Rasekh et al., 2021b), while 
the parameters of sensitivity, specificity, accuracy, and pre-
cision were used to analyse the performance of the system 
(Rasekh and Karami, 2021a; Tatli et al., 2022):

Sensitivity =
TP

TP + FN
, (6)

Specificity =
TN

TN + FP
, (7)

Precision =
TP

TP + FP
, (8)

Accuracy =
TP + TN

TP + TN + FN + FP
, (9)

AUC =
Sensitivity + Precision

2
. (10)

In the above mentioned equations true positive (TP), 
true negative (TN), false positive (FP) and false negative 
(FN) are used to calculate the specified parameters and 
all values are dimensionless. The parameter of specificity 
reflects the proportion of the samples that received a nega-
tive result (true negative rate). The parameter of precision, 
which is also known as a positive predictive value, provid-
ed an indication of the repeatability of the data as indicated 
by the closeness of data clustering in data plots. The param-
eter of sensitivity is defined as the ratio of TP samples to 
total TP and FN samples. The Precision (P) is defined as 
the ratio of TP samples to the total TP and FP samples. 
The area under the curve (AUC) is a measure of the ability 
of a classifier to distinguish between classes and is used as 
a summary of the ROC curve.

LDA and ANN analyses using the SPSS statistical 
program (SPSS, Chicago, IL) and Matlab® (ver. 2014a) 
software (Mathworks, Inc., Natick, MA, USA) were used 
to classify the cultivars. The conventional method consid-
ered all of the variables in the analysis, while the stepwise 
method eliminated some variables and included only those 
with the highest impact.

RESULTS AND DISCUSSION

The reflectance of the raw spectra is shown in Fig. 2. 
According to the figure, all of the significant wevelengths 
were between 420 to 1070 nm. Also, the differences between 
the three varieties of maize may easily be observed. The high-
est reflectence was observed in the region around the red band 
(up to 35 to 40%), while in the near-infrared band the reflec-
tion is lower. However, there were some fluctuations in all 
of the trends of the curve obtained, this may be due to some 
of the noise which occurred during data acquisition by the 
hyperspectral camera and environmental illuminations.

This analysis was performed based on 32 predictor var-
iables, the 28 intensities of the reflectance spectrum and 
the 4 variables of weight, length, width, and thickness of 
a single kernel. Also the analysis was performed based on 
5 predictor variables, it eliminated variables that did not 
have a significant effect on the potential of the process to 

discriminate between cultivars and considered only five 
variables that could significantly discriminate between 
the three maize cultivars. The variables with the greatest 
importance as predictor variables included the reflection 
wave intensity of the third peak, the wavelength intensity at 
490 nm, the wavelength intensity at 580 nm, and the weight 
and thickness of a single kernel. Finally, an analysis was 
conducted with 15 predictor variables, including 11 inten-
sities of reflectance spectra and 4 variables of the weight, 
length, width, and thickness of a single kernel.

According to the data of 32 predictor variables, 32 neu-
rons were considered for the input layer, and 3 neuron layers 
were considered for the output layer given the classification 
of 3 maize cultivars. The number of hidden layer nodes was 
determined using Eqs 1 to 5.  Therefore, the neural network 
with a structure of 32-17-3 had the highest accuracy in the 
classification of 3 maize cultivars.

In the case of 5 predictor variables, 5 and 3 neurons were 
considered for the input and output layers, respectively, and 
the hidden layer was considered to be equal to 8 layers. 
Therefore, the neural network with a structure of 5-8-3 had 
the highest degree of accuracy in the classification of 3 maize 
cultivars. Finally, a network with 15 predictor variables was 

Fig. 2. Percentage of reflectance in three different maize varieties.

Ta b l e  2. Statistical results of the artificial neural network clas-
sification models using 32, 5, and 15 predictor variables
Topology Stage Samples Accuracy Error* CE**
32-17-3 Training 36 100 0 1.27

Validation 12 91.7 8.3 3.23
Testing 12 50 50 3.41
Overall 60 88.3 11.7 0.26

5-8-3 Training 36 75 25 0.86
Validation 12 75 25 1.28
Testing 12 58 41 1.28
Overall 60 71.7 28.3 0.48

15-10-3 Training 36 88.9 11.1 0.87
Validation 12 66.7 33.3 1.53
Testing 12 75 25 1.54
Overall 60 81.7 18.3 0.34

*Percentage error indicates the fraction of samples that are mis-
classified. A value of 0 means no misclassifications, 100 indicates 
maximum misclassifications; **Minimizing cross-entropy results 
in a favourable classification. Lower values are better. Zero means 
no error.
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chosen, the neurons considered for the input, hidden and 
output layers were 15, 10 and 3, respectively. A neural net-
work with a structure of 15-10-3 had the highest degree of 
accuracy concerning the classification of 3 maize cultivars, 
according to which the CE was equal to 0.34% for overall 
data, its results are shown in Table 2. According to the results, 
the highest degree of accuracy was obtained with 32 predictor 
variables and the amount of error and CE were 11.7 and 0.26, 
respectively. Furthermore, the value of the receiver operating 
characteristic (ROC), was very sensitive for the classification 
of the 3 maize cultivars (true positive rate; 0.883). Table 2 
shows that the inputs data had a high degree of accuracy 
(88.3%) overall for the classification of 3 maize cultivars. 
This model wasn't under or over fitted because the training 
CE values were lower than the testing stage, which indicates 
that they produced a high performance.

In a ROC curve the true positive rate (Sensitivity) is plot-
ted as a function of the false positive rate (100-Specificity) 
for different cut-off points. Each point on the ROC curve 
represents a sensitivity/specificity pair corresponding to 
a particular decision threshold. A test with perfect discrimi-
nation (no overlap in the two distributions) has an ROC 
curve that passes through the upper left corner (100% sen-
sitivity, 100% specificity). Therefore, the closer the ROC 
curve is to the upper left corner, the higher the overall accu-
racy of the test. ROC analyses showing that maize kernel 
classification had large areas under the curve (with high 
F values) provided favourable indications of the effective 
classification of maize kernels.

Furthermore, in their receiver operating characteristic 
(ROC) curve (Fig. 3a), it may be observed that the 3 clas-
sifications with 32 variable predictors had a very high 
sensitivity (true positive rate; 0.96). Figure 3b shows the 
performance curve of the neural network model based on 
5 predictor variables. The real positive rate and the false 
positive rate for classifying the 3 maize cultivars were 
0.717 and 0.811, respectively. By comparing the accuracy 
of the results  those obtained with this model with respect 

to the one based on 32 predictor variables, the results were 
lower. The reason for this may be related to the exclusion of 
predictor variables which leads to a reduction in accuracy. 
Finally, Fig. 3c provides an indication of the receiver oper-
ating characteristics curve, based on 15 predictor variables. 
The real positive rate and the false positive rate for classi-
fying 3 maize cultivars were 0.819 and 0.878, respectively. 

Fig. 3. Receiver operating characteristics (ROC) curve showing the true positive (sensitivity; y-axis) and false-positive (specificity; 
x-axis) rates of the classification Model ANN using, a) 32, b) 5, and c) 15 predictor variables.

Fig. 4. Confusion matrix for the classification of three maize cul-
tivars using; a) 32, b) 5, and c) 15 predictor variables.
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The classification, based on 15 predictor variables, has 
shown a lower accuracy than that of 32 predictor variables, 
but higher than that of 5 predictor variables.

Figure 4 shows the confusion matrix obtained from the 
classification of 3 maize cultivars using LDA and ANN 
methods. As shown in Fig. 4a, the accuracy of LDA and 
ANN methods with 32 variable predictors were 95% and 
88.3%, respectively. According to Fig. 4, there are two 
numerical digits in the upper and lower sides within the 
diagonal cells, indicating the number and the correct dis-
crimination rate, respectively. For example, in the first cell 
corresponding to cultivar 1, 33.3% of the total observed 
datasets were classified correctly, and since there were no 
instances of incorrect classification, the accuracy of classi-
fication in the LDA method was 100% for cultivar 1. Also, 
in Fig. 4b, with 5 variable predictors, the accuracy of the 
LDA and ANN methods was 75 and 71.7%, respectively. 
In addition, these values with 15 predictor variables, were 
81.7% and 81.9%, respectively.

Considering Equations 6 to 10, the performance param-
eters of the LDA and ANN methods in classifying the three 
maize cultivars are summarized in Table 3. The confusion 
matrix calculates the performance parameters of the discri-
minant models (Karami et al., 2020a, 2020b; Rasekh and 
Karami, 2021b; Combrzyński et al., 2021). According to 
the results of Table 4, it may be seen that the accuracy of the 
LDA method with different predictor variables is more than 
96%, while this value from the ANN method ranged from 
81 to 92%. According to the results of Table 3, the accuracy 
of data classification was 95 and 85% using the LDA and 
ANN methods, respectively.

Ta b l e  3. Performance parameters for classification of three maize cultivars using 32, 5 and 15 predictor variables
Models Predictor variable Variety Accuracy Precision Sensitivity Specificity AUC
LDA 32 Var1 1.000 1.000 1.000 1.000 1.000

Var2 0.950 0.950 1.000 0.974 0.987
Var3 0.950 0.900 1.000 0.949 0.974

Average per class 0.967 0.950 1.000 0.974 0.987
5 Var1 0.952 0.800 0.727 0.979 0.853

Var2 0.986 0.850 1.000 0.984 0.992
Var3 0.962 0.600 1.000 0.959 0.980

Average per class 0.966 0.750 0.909 0.974 0.942
15 Var1 0.976 0.900 0.857 0.989 0.923

Var2 0.981 0.800 1.000 0.979 0.990
Var3 0.976 0.750 1.000 0.974 0.987

Average per class 0.978 0.817 0.952 0.981 0.967
ANN 32 Var1 0.900 0.850 0.850 0.925 0.888

Var2 0.933 0.900 0.900 0.950 0.925
Var3 0.933 0.900 0.900 0.950 0.925

Average per class 0.922 0.883 0.883 0.942 0.913
5 Var1 0.783 0.769 0.500 0.925 0.847

Var2 0.817 0.680 0.850 0.800 0.740
Var3 0.833 0.727 0.800 0.850 0.789

Average per class 0.811 0.726 0.717 0.858 0.792
15 Var1 0.850 0.762 0.800 0.875 0.818

Var2 0.917 0.895 0.850 0.950 0.922
Var3 0.867 0.800 0.800 0.900 0.850

Average per class 0.878 0.819 0.817 0.908 0.864

Fig. 5. Canonical discriminant functions of LDA with; a) 32, b) 5, 
and c) 15 predictor variables.
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It is evident that the LDA method is more accurate than 
the ANN one in the classification of three maize cultivars.  
Similar results have been reported by other researchers using 
LDA and ANN methods (Karami et al., 2020c; Khorramifar 
et al., 2021; Karami et al., 2021; Rasekh et al. 2021a).

According to Fig. 5a, the three maize cultivars were 
correctly identified according to the canonical discriminant 
function analysis. As shown, cultivars 2 and 3 had some 
overlap, while cultivar 1 did not have any overlap with the 
other two cultivars. In addition, according to Fig. 5b, in 
canonical discriminant functions, the three maize cultivars 
were classified using the LDA method with a 75% accu-
racy. As may be seen in Fig. 5b, the centres of the groups 
have equal distances from each other, and the samples of 
all three groups overlap. Therefore, this method provides 
less accuracy in the identification of maize cultivars than 
other methods. Finally, according to Fig. 5c, in canonical 
discriminant functions, three maize cultivars were classi-
fied with 81.7% accuracy using the LDA method, and there 
was some overlap among all three samples.

Figure 6 shows the test results for the accuracy of the 
classification of 3 maize cultivars based on the number 
of predictor variables. The statistical results were calcu-
lated using equations (6-10) and their mean was reported. 
Among the models tested, the LDA based on the 32 predic-
tor variables provided the best performance in classifying 3 
maize cultivars, in particular, the highest sensitivity, preci-
sion, and AUC. Based on the obtained results, the overall 
accuracy of all of the LDA models was higher than that of 
the ANN methods and they can be used to classify maize 
cultivars with great accuracy.

Williams et al. (2016) evaluated corn kernels at three 
hardness levels (hard, medium and soft) with the help of 
hyperspectral imaging in the NIR range for classifica-
tion. They achieved a level of accuracy of 0.75 and 0.97, 
respectively, with a Pixel-wise approach in sensitivity and 
specificity. Object-wise classification was performed using 
two methods for feature extraction – score histograms 
and mean spectra. The model based on score histograms 

performed better for hard kernel classification (sensitivity 
and specificity of 0.93 and 0.97), while that of mean spec-
tra gave better results for medium kernels (sensitivity and 
specificity of 0.95 and 0.93). In this study, imaging was per-
formed on a single grain.

Zhang et al. (2012) used a system based on an observ-
able HSI model and near-infrared spectrum to detect corn 
seed cultivars by combining textural and spectral charac-
teristics. To do this, they used back-propagation neural 
network classification models and a partial square sup-
port vector machine (LS-SVM) and also the best detection 
accuracy of 98.89% was obtained for the predicted models. 
This study showed that the HSI model combined with the 
experimental data was very suitable for the non-destructive 
classification analysis of different maize grain cultivars.

In the present study, the classification of 3 maize seed 
cultivars was performed using hyperspectral imaging and 
LDA and ANN methods using three analytical methods, i.e. 
considering the total of 32, 5 and 15 predictor variables. In 
this study, a direct linear diagnostic analysis method, which 
considered the highest number of predictor variables, pro-
duced the highest level of accuracy in distinguishing the 
maize cultivars from each other (95%) and in reducing the 
number of predictor variables, the ANN method was found 
to be more accurate than the LDA method (85 and 88.3%).

CONCLUSIONS

1. This study has successfully shown that a hyperspec-
tral imaging analysis may be used to rapidly classify maize 
cultivars if coupled with LDA and ANN methods.

2. The LDA and ANN methods, with the use of 32 pre-
dictor variables, offered an accuracy of 95 and 88.3%, 
respectively. Furthermore, in the stepwise method and by 
eliminating some variables, the LDA and ANN methods 
had an accuracy of 75 and 71.7%, respectively, in the case 
of the 5 predictor variables. Finally, based on 15 predictor 
variables, the accuracy of both the LDA and ANN models 
was 81.7%. The LDA method is also more accurate than 
the ANN method. Therefore, it is reasonable to surmise that 
the discrimination accuracy decreases with a lower number 
of predictor variables. In this study, the LDA method had 
the highest level of accuracy in discriminating between the 
maize cultivars considering the 32 predictor variables. The 
most important predictors for discriminating between culti-
vars included the reflection wave intensity of the third peak, 
the wavelength intensity at 490 nm, the wavelength intensi-
ty at 580 nm, the weight of a single kernel, and the thickness 
of a single kernel. The length and width of a single kernel 
did not affect the classification of the cultivars significantly.

3. Hyperspectral imaging technology can be used suc-
cessfully along with the measurement of seed weight, the 
dimensions of the seed, seedling preparation, improvement 
centres, silos, mechanized warehouses, and in places where 
it is necessary to sort and separate maize kernel cultivars.

Fig. 6. Average performance parameters of different models in the 
classification of 3 maize cultivars based on the number of predic-
tor variables.
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4. This study has shown that a hyperspectral imaging 
system can rapidly classify maize cultivars by using LDA 
methods. Due to the great number of advantages (non-
destructive, rapid, real-time) hyperspectral imaging systems 
can be widely applied to classify different cultivars of seeds.

Data Availability Statement: The datasets used and/
or analysed during the current study are available from the 
corresponding author upon reasonable request.
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