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A b s t r a c t. This study used NDVI, ET, and LST satellite 
images collected by moderate resolution imaging spectroradiom-
eter and tropical rainfall measuring mission sensors to investigate 
seasonal and yearly vegetation dynamics, and also the influence 
of climatological factors on it, in the area of the Caspian Sea 
Watersheds for 2001-2019. The relationships have been assessed 
using regression analysis and by calculating the anomalies. The 
results showed that in the winter there is a positive significant cor-
relation between NDVI and ET, and also LST (R = 0.46 and 0.55, 
p-value = 0.05, respectively). In this season, the impact of pre-
cipitation on vegetation coverage should not be significant when 
LST is low, as was observed in the analysed case. In spring, the 
correlation between NDVI and ET and precipitation is positive 
and significant (R = 0.86 and 0.55, p-value = 0.05). In this season, 
the main factor controlling vegetation dynamics is precipitation, 
and LST's impact on vegetation coverage may be omitted when 
precipitation is much higher than usual. In the summer, the correla-
tion between NDVI and ET is positive and significant (R = 0.70, 
p-value = 0.05), while the correlation between NDVI and LST is 
negative and significant (R = –0.45, p-value = 0.05). In this sea-
son, the main factor that controls vegetation coverage is LST. In 
the summer season, when precipitation is much higher than aver-
age, the impact of LST on vegetation growth is more pronounced. 
Also, higher than usual precipitation in the autumn is the reason for 
extended vegetation coverage in this season, which is mainly due 
to increased soil moisture.

Keywords: Caspian Sea watersheds, evapotranspiration, 
tropical rainfall measuring mission, normalized difference vegeta-
tion index, land surface temperature

INTRODUCTION

Climate change affects the Earth's ecosystems to a sig-
nificant extent, but not every region is impacted by it in the 
same manner. It is and will be more pronounced for regions 
characterized by a sensitive equilibrium between the local 
ecosystem and climate, like parts of the Mediterranean or 
the Sahelian regions (Lereboullet et al., 2013; Fayech and 
Tarhouni, 2020; Picoli et al., 2019; Rousta et al., 2021; 
Shahbazi et al., 2009). Vegetation is a very sensitive part of 
human life and activity and is susceptible to climate change 
impacts on the environment. On the other hand, vegetation 
also influences climate change, as to mitigate and adapt to 
climate change new ways to cultivate vegetation are being 
sought, e.g. zero tillage (Vilček et al., 2019). The total 
amount of vegetation and the length of the growing season 
are known as vegetation dynamics when considered in uni-
son, and both of these components are susceptible to changes 
in climate (Bagherzadeh et al., 2020; Zhang 2020). There is 
a close relationship between climatic factors and vegetation 
coverage (Rousta et al., 2020a; Rousta et al., 2020b; Chen 
et al., 2022). Vegetation cover is often used as a climate 
impact indicator in climate change studies. Also, because of 
the vital role of vegetation changes in the hydrological and 
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biochemical cycles of the climate and its influence on the 
atmospheric energy balance, it must be considered in such 
studies (Olafsson and Rousta, 2021; Lan et al., 2021).

Evapotranspiration (ET) is a crucial part of the water 
and energy equilibrium in the soil-plant-atmosphere sys-
tem, and it is the main reason for the loss of about 60% 
of ground rainfall (Oki and Kanae, 2006; Paraskevas et 
al., 2013; Miao et al., 2022). ET accounts for the largest 
water consumption on the globe through agricultural water 
usage. One of the important research difficulties lies in the 
interannual variability of ET, which makes it challenging 
to explore because (1) as a process ET is too complex to 
be exactly predicted or measured (Brutsaert and Stricker, 
1979), and (2) at the catchment scale, despite it being an 
intricate process and its relationships with other processes 
occurring in the soil-plant-atmosphere system, it has been 
proven that available water and energy are the main fac-
tors controlling the mean value of annual ET (Cheng et 
al., 2011; Chao et al., 2021). Zhan et al., (2019) have sug-
gested that significant biases may be caused as a result of 
neglecting the influence of changes in surface water area 
(Zhan et al., 2019). Furthermore, rainfall is one of the most 
important factors affecting vegetation cover in different 
areas, which significantly affects the life of living organ-
isms, plants in particular (Rousta et al., 2018; Rousta et al., 
2017; Hadian et al., 2014; Telak et al., 2021; Zhang et al., 
2019c) Therefore, in the study of changes in vegetation, 
precipitation-related calculations are inevitably involved.

Remote sensing constitutes a comprehensive, rapid and 
effective method for observing certain natural process-
es by presenting the land surface data on a macro-scale, 
which reveals dynamic variation (Zhang et al., 2001). 
Remote sensing data has become the main way in which 
to study both long-term and large-scale phenomena, and 
the major method used to obtain an overview of vegeta-
tion cover (Shen and Wang, 2001). Remote sensing has 
become one of the fundamental branches of science, as it 
enables the gathering of diversified information concerning 
both objects and phenomena occurring in the environment 
through the use of various sensors (Gu et al., 2007). The 
technique helps to sketch out the contextual drought sce-
narios (Zhao X. et al., 2021) not only in the spatial but 
also in the temporal domain. The Normalized Difference 
Vegetation Index (NDVI) is one of the most extensively 
applied remotely sensed surface indices. It is an index 
used to analyse a plant's growth status, spatial density 
dynamics, and also its phenology (Zhong et al., 2010; 
Mansourmoghaddam et al., 2021; Mansourmoghaddam 
et al., 2022b). NDVI is an index which is very common-
ly used to investigate the status of vegetation. In order to 
measure NDVI factors such as the leaf area index (LAI) 
and the production pattern (Dutta et al., 2015), which is 
based on vegetation class, land use/land cover changes 
(Fonge et al., 2019), water stress, vegetation phenology, 
continental land cover mapping, and chlorophyll content 

(Geerken et al., 2005; Martínez and Gilabert, 2009; Moulin 
et al., 1997; Dhar et al., 2020; Mansourmoghaddam et al., 
2022a) are usually used. In recent times, satellite data have 
been more and more often used to link vegetation indices 
to climatic elements (Roerink et al., 2003; Jelínek et al., 
2020). Since the 1980s, the correlations between NDVI 
and climate parameters in various geographic regions 
and ecosystems have been studied by many researchers. 
Tang et al. (2012) examined the effects of leaf area index 
(LAI) on ET for western Mexico during monsoon by using 
moderate resolution imaging spectroradiometer (MODIS) 
space-borne data. They found that the LAI explains about 
30% of ET variability in the continental interior and 10% 
in the Sierra Madre Occidental. Also, they proved that ET 
estimated using variable infiltration capacity (VIC), which 
in turn was based on interannual LAI fluctuations, varied 
considerably at the start of the greening and dormancy 
phases. Additionally, it was observed that at the beginning 
of the monsoon season that ET was influenced by the start 
of the greening phase, which indicates that the observation 
of the LAI anomalies may be beneficial in the forecasting 
of ET values early in the season (Tang et al., 2012). In the 
research of Alemu et al. (2014), a thermal-based simplified 
surface energy balance operational (SSEBOp) ET, together 
with NDVI calculated from MODIS Terrestrial (MOD16), 
and precipitation obtained from the tropical rainfall meas-
uring mission (TRMM) were assessed for the Nile Basin 
for 2002-2011. Alemu et al. (2014) showed that negative 
ET anomalies were observed for seven years (including 
2009 being the driest year) in >50% of the Nile Basin area, 
while the remaining three years (including 2007 being the 
wettest year) >60% of the area exhibited positive ET anom-
alies. They showed that a higher correlation of vegetation 
and monthly ET is obtained when ET calculations are based 
on the NDVI (R>0.77, p<0.001) rather than on thermal 
properties (0.52<R<0.73, p<0.001). These two different 
ET estimation methods gave very similar results for rain-
fed croplands (with thermal-based ET giving values which 
were higher by about 60 mm y–1) while for the wetlands 
the results were significantly divergent (thermal-based ET 
being 440 mm y–1 higher than the NDVI-based one). A pos-
itive correlation between precipitation and the anomalies of 
thermal-based ET was observed (R = 0.6, p<0.05) for four 
of the nine analysed climatic zones. (Alemu et al., 2014) 
also proved that the trends of ET were statistically signifi-
cant for just about 5% of the Nile Basin.

The southern watersheds of the Caspian Sea are home to 
one of the greenest and most dense forests in Iran (Poorzady 
and Bakhtiari, 2009). Studies concerning the changes in this 
area are of high importance, because they are occurring rap-
idly, and both urban and rural areas are expanding despite 
the primary role of this watershed in maintaining biology 
and hydrology resources. The changes in the world's cli-
mate in recent decades have also added to the importance of 
this study. This paper attempts to find correlations between 
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vegetation dynamics and climatological factors in the 
Caspian Sea Watersheds (CSW) area. The relationship between 
vegetation dynamics and climatological factors is assessed 
by employing NDVI, ET, LST and precipitation derived 
from MODIS and TRMM datasets. This study focuses on 
(a) investigating vegetation coverage changes over the CSW, 
(b) analyzing the time-series of MODIS-derived NDVI, ET 
and LST, and TRMM-derived precipitation, (c) assessing the 
relationship between NDVI and ET, LST and precipitation 
over the CSW.

MATERIAL AND METHODS

The research area studied is the Caspian Sea Watershed 
(CSW) located in the north of Iran. The study area is located 
between 35 and 38°N and 49 and 58°E. The total area is 
about 70 000 km2, and it contains four main watersheds, 
including the Lahijan-Noor Watershed (LNW), Haraz-Neka 
Watershed (HNW), Ghareso-Gorgan Watershed (GGW), 
and Atrak Watershed (AW) having an area of approx. 11 000, 
18 800, 13 200, and 27 000  km2, respectively. The highest 
elevation in the study area is about 5 587 m in HNW, and the 
lowest elevation is about –30 m in AW. The highest amount 
of precipitation in the CSW area is in LNW, and its lowest 

is in the AW watershed (856.7 and 321.3 mm, respectively). 
LST in the CSW area varies from 17.89 to 26°C in the AW 
and LNW watersheds, respectively (Fig. 1 and Table 1) also, 
there is a significant difference between the land cover of 
each sub-basins of CSW (Table 2).

The current study makes use of 1 579 satellite images. 
The first dataset consisted of 437 MODIS NDVI, 874 ET 
as well as 228 TRMM precipitation images for the period 
from 2001 to 2019 with a 0.1-degree resolution, and 40 
shuttle radar topography mission (SRTM) digital elevation 
images with a resolution of 1 arc-second (~30 m), which 
were used to provide an elevation map of the study area 
(Zandbergen 2008). The second dataset consisted of indi-
ces derived from the first dataset, including the Z score 
(anomaly) of NDVI, ET, and TRMM precipitation.

The calculation of NDVI takes into account that in 
healthy leaves (that is, the green ones) near-infrared (NIR) 
radiation is highly reflected by the mesophyll, while a huge 
ratio of the radiation in the red visible (RED) band is assim-
ilated by the chlorophyll and other pigments (Tavazohi and 

Ta b l e  1. The characteristics of the studied watersheds in the Caspian Sea Watershed including Lahijan-Noor Watershed (LNW), 
Haraz-Neka Watershed (HNW), Ghareso-Gorgan Watershed (GGW) and Atrak Watershed (AW) together with their land surface tem-
perature (LST)

Name Area
(km2)

Elevation (m) Average
Maximum Minimum Average Majority Minority Precipitation (mm) LST (°C)

LNW 11000 4644 –28 1365 1 –27 856.7 17.89
HNW 18800 5587 –28 1316 –28 355 541.2 19.79
GGW 13200 3456 –29 771 1 –29 377.2 23.81
AW 27000 2896 –30 990 1 –30 321.3 26.87

Fig. 1. Maps presenting the study area of the Caspian Sea 
Watershed including Lahijan-Noor Watershed (LNW), Haraz-
Neka Watershed (HNW), Ghareso-Gorgan Watershed (GGW) and 
Atrak Watershed (AW), and an elevation profile (a) and land cov-
er types from MODerate resolution Imaging Spectroradiometer 
(MODIS) MCD12Q1 image from 2017 (b).

Ta b l e  2. Land cover types of Caspian Sea Watershed including 
Lahijan-Noor Watershed (LNW), Haraz-Neka Watershed (HNW), 
Ghareso-Gorgan Watershed (GGW) and Atrak Watershed (AW) 
together with their area (km2) from MODerate resolution imag-
ing spectroradiometer (MODIS_ MCD12Q1 images using the 
International Geosphere-Biosphere Programme (IGBP) classifi-
cation (Didan et al., 2015; Loveland et al., 1999)
Land cover type LNW HNW GGW AW
Evergreen needleleaf forests 2 2 8 0
Evergreen broadleaf forests 22 0 0 0
Deciduous needleleaf forests 0 0 0 0
Deciduous broadleaf forests 2386 2263 444 0
Mmixed forests 869 1039 1161 0
Closed shrublands 0 0 0 0
Open shrublands 11 359 1358 6490
Woody savannas 1196 1563 913 0
Savannas 833 1452 116 0
Grasslands 5156 8648 3104 17624
Permanent wetlands 82 63 2 2
Croplands 169 2169 5722 1822
Urban and built-up lands 170 511 185 53
Cropland/natural vegetation mosaics 7 89 19 0
Permanent snow and ice 0 0 0 0
Barren 92 141 146 959
Water bodies 5 500 23 51
Total 11000 18800 13200 27000



I. ROUSTA et al.142

Nadoushan, 2018). This situation is reversed in the case 
of unhealthy or water-stressed vegetation (Chanklan et al., 
2017; Dutta et al., 2015; Ghafarian Malamiri et al., 2018; 
Quaye-Ballard et al., 2020). NDVI is calculated as:

NDV I =
NIR−RED

NIR +RED
, (1)

where: NIR stands for near-infrared radiation (about 0.841-
0.876 μm) and RED stands for radiation from the visible 
red band (about 0.62-0.67 μm). The NDVI variability rang-
es from –1 to +1, with healthy vegetation having values 
between 0.2 and 0.8 (Chuvieco et al., 2004; Goward et al., 
1991; Cai et al., 2014).

The NDVI index used in the presented paper was obtained 
from the National Aeronautics and Space Administration 
(NASA) Earth Observing System (EOS), specifically from 
the Terra- Moderate Resolution Imaging Spectroradiometer 
(MODIS). In order to download NDVI data for the peri-
od from 2001 to 2019 the Application for Extracting and 
Exploring Analysis Ready Samples (AρρEEARS) an 
application platform was used (https://lpdaacsvc.cr.usgs.
gov.appeears) (Didan, 2015). The obtained MOD13A1 
Vegetation Indices are characterized by a spatial resolution 
of 250 m and are shown as a composite with a 16-day inter-
val (MOD13Q1.006__250m_16_days_NDVI). For all of 
the downloaded images, quality assessment (QA) was per-
formed using the VI quality indicator (Didan et al., 2015). In 
order to perform temporal aggregation, downloaded images 
were labeled by ascending numbers for each year. The data 
was aggregated to seasonal and yearly values. Yearly NDVI 
was obtained by calculating the arithmetic mean from all of 
the 23 images for each pixel, while for the seasonal values 
only a subset of the data was taken into account (winter veg-
etation coverage for each pixel was obtained by calculating 
the arithmetic mean from the images labeled numerically 
from 1 to 6, spring vegetation coverage used images labeled 
from 7-12, summer vegetation coverage – 13-18, and fall 
vegetation coverage – 19-23):

Y early NDV I =

∑
K

i=1
NDV Ii

K
, (2)

Winter NDV I =

∑
6

i=1
NDV Ii

6
, (3)

Spring NDV I =

∑
12

i=7
NDV Ii

6
, (4)

Summer NDV I =

∑
18

i=13
NDV Ii

6
, (5)

Fall NDV I =

∑
23

i=19
NDV Ii

5
, (6)

where: i is the index for chronologically labelling the imag-
es for each year and K stands for the number of images for 
each year (K = 23).

In order to calculate vegetation coverage only the pixels 
classified as vegetation (NDVI>0.2) were taken into account. 
After the summation of pixels classified as representing 
vegetation was performed, the result was multiplied by the 
size of one pixel (0.625 km2). After that, the ARC GIS cell 

statistics were used to obtain several statistical indicators, 
such as NDVIs means and standard deviations (both yearly, 
and for each season). They were also calculated both for the 
individual CSW sub-basins and for individual years from the 
analysed period spanning from 2001 to 2019. Additionally, 
the means for the entire period were calculated.

The current study used 874 images of the MOD16A2GF 
Version 6, an 8-day composite Evapotranspiration (ET-500m) 
product downloaded using AρρEEARS for 2001-2019. 
Each image from the MOD16A2GF has a spatial resolution 
of 500 m and is a gap-filled 8-day composite. It estimates 
the evapotranspiration by using the Penman-Monteith equa-
tion, for the calculation of which, the daily meteorological 
data from reanalyses are combined with remotely sensed 
data products, such as vegetation dynamics, albedo, or land 
cover obtained from MODIS (Running et al., 2019).

When the whole yearly set of 8-day MOD15A2H 
becomes available, the data is gap-filled, and the inputs 
are checked using the Quality Control (QC) label for each 
pixel using such measures as the 8-day Leaf Area Index 
and the Fraction of Photosynthetically Active Radiation 
(LAI/FPAR). If it occurs that one of the LAI/FPAR pix-
els fails to pass quality screening, its value is calculated 
by linear interpolation. After that, the enhanced MOD16 
MOD16A2GF product is calculated. The MOD16A2GF 
ET product unit is kg m–2 8 d–1 (8-day total ET), the scale 
factor is 0.1, and the valid range is from 32 767 to ~32 760. 
In the MOD16A2GF images, seven filling values for non-
vegetated pixels are provided. They are labelled as 32 767 
= filled value, 32 766 = land cover (LC) identified as peren-
nial salt or water bodies, 32 765 = LC meaning barren land 
or very sparse vegetation (rock, tundra, desert), 32 764 = 
LC assigned as perennial snow or ice, 32 763 = LC mean-
ing "permanent" wetlands or inundated marshland, 32 762 
= land cover assigned as urban or built-up land, 32 761 = 
land cover that is "unclassified". The seasonal and yearly 
arithmetic mean of ET was determined for each pixel using:

Y early ET =

∑
46

i=1
ETi

46
, (7)

Winter ET =

∑
12

i=1
ETi

12
, (8)

Spring ET =

∑
24

i=13
ETi

12
, (9)

Summer ET =

∑
36

i=25
ETi

12
, (10)

Fall ET =

∑
46

i=37
ETi

10
, (11)

where: index i was used for labelling the downloaded imag-
es in ascending order chronologically by acquisition dates.

To estimate the daytime LST, the 874 images from 
MOD11A2 were used. MOD11A2 is an 8-day LST that is 
derived by making a composition from 2 to 8 days of the 
MOD11A1 images (MOD11A2.006 LST Day 1km). Similarly 
as for NDVI or ET, the LST data for the period from 2001 to 
2018 was downloaded using the Application for Extracting 
and Exploring Analysis Ready Samples (AρρEEARS) from 
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the application platform (https://lpdaacsvc.cr.usgs.gov.
appeears) (Didan, 2015). The seasonal and yearly arithmetic 
mean of LST was determined for each pixel using:

Y early LST =

∑
46

i=1
LSTi

46
, (12)

Winter LST =

∑
12

i=1
LSTi

12
, (13)

Spring LST =

∑
24

i=13
LSTi

12
, (14)

Summer LST =

∑
36

i=25
LSTi

12
, (15)

Fall LST =

∑
46

i=37
LSTi

10
, (16)

where: index i was used for labelling downloaded images 
in ascending order by acquisition dates. Before any calcula-
tions the units in the LST images were converted to °C by 
(Wan et al., 2015):

LST (
◦

C) = DN(K)0.02− 273.15 , (17)
where: DN stands for digital number included in the origi-
nal MOD11A2 images (Kelvins), and 0.02 is a conversion 
coefficient (scale factor).

The 228 TIF images from the GPM_3IMERGM month-
ly precipitation dataset with a spatial resolution of 0.1×0.1 
degree were downloaded to provide the details concerning 
precipitation characteristics. The unit of precipitation in the 
downloaded images was mm/hour, and afterwards it was 
converted to mm/month by multiplying the value for each 
pixel by the number of hours and days in each month, yearly 
(from January to December) and also the seasonal (winter 
(DJF), spring (MAM), summer (JJA) and fall (SON)) sums 
of precipitation were calculated (Huffman et al., 2019).

An anomaly (Patel et al., 2007) is calculated using the 
same formula as in the case of the Z-score:

Zij =
Xij − Uij

σij
, (18)

where: Zij is the anomaly of the ith image at the jth time-
scale, Xij is the parameter (such as NDVI, ET, LST, or 
precipitation) sum for the ith image at the jth time-scale, 
while Uij and σij are the long-term mean and standard devia-
tion connected with the ith image at the jth time-scale. The 
anomaly is an indicator calculated for selected periods and 
shows how the given parameter obtained for a particular 
period matches the value obtained for the entire record 
(Patel et al., 2007; Rousta et al., 2020a).

The correlations between the assessed quantities were 
obtained by employing a linear regression with a p-value 
equal to 0.05. In this method, the relationship between two 
variables is assumed to be linear, with one variable being 
explanatory, whereas the other one is a dependent variable 
(Song et al., 2005). A linear regression model is defined as:

yi = a+ bxi , (19)
where: a and b are coefficients of the equation. These coeffi-
cients may be derived from the relationship between certain 
pairs of explanatory and dependent variables (xij, yij).

A statistical method that allows for the assessment 
of the relationship between a single dependent variable 
and several independent variables is known as a multiple 
regression. In a multiple regression, the independent varia-
bles have their weights, which is a measure of their relative 
contribution to the prediction:

yi = a0 + a1x
1

i
+ a2x

2

i
+ · · ·+ anx

n

i , (20)
where: yi is the dependent variable, and  are the 
explanatory variables. The weights a1 ... an were calculated 
using the least squares from the ANOVA package.

RESULTS

Figure 2 presents the seasonal NDVI variations in CSW 
for 2001-2019. The spring season is the greenest one in 
the study area with 53 110 km2 of vegetation covering the 
studied area (75.82% of the whole study area), while the 
summer season is the second greenest season with veg-
etation coverage equal to 39 248 km2 (56% of the whole 
study area). In the winter and fall seasons, about 48% of the 
whole study area is covered by vegetation (Fig. 2).

The two most dry (least green) winters occurred in 2008 
and 2011, with a standard deviation reduced by the value of 
1.85 and 1.48 compared to the overall average. The years 
2016, 2010, and 2013 were the greenest, and the standard 
deviation was higher by the value of 1.68, 1.37, and 1.35, 
respectively. In the spring season, the years 2001 and 2008 
were the driest, with the standard deviation being lower by 
the value of 2.10 and 1.60, and the years 2019 and 2010 
were the greenest years, respectively, with the standard 
deviation increasing by the value of 1.50 and 1.33. In the 
summer season, the years of 2001, 2015 and 2008 were the 
driest with the standard deviation lower by 1.67, 1.62, and 
1.51 compared to average, and the years 2019 and 2003 
were the greenest with the standard deviation higher by 
a value of 2.23 and 1.41. In the fall season, the driest years 
were 2008 and 2001, with the standard deviation reduced 

Fig. 2. Time series of yearly/seasonal (winter (WIN), spring 
(SPR), summer (SUMM), and fall (FALL)) normalized differ-
ence vegetation index (NDVI) anomalies in the study area during 
2001-2019.
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by the value of 0.89 and 0.85, and the years 2005 and 2012 
were the greenest, with the standard deviation higher by the 
value of 1.44 and 1.78 (Fig. 2).

During the study period, all seasons of the years 2001, 
2002, 2008, 2014, and 2017 experienced a negative NDVI 
anomaly, with the situation in the years 2001 and 2008 
being more severe than in other years. On the other hand, 
the years 2010, 2012, 2013, 2016, and 2019 were the years 
with the most positive anomaly, with the most positive 
anomaly occurring in 2019 as compared to the other years. 

In summary, the years 2008 and 2001 with vegetation cov-
ering about 33 587 and 34 323 km2 (47.9 and 49% of the 
whole study area, respectively) had the least coverage, and 
the years 2016 and 2019 with 43 572 and 45 196 km2 (62.2 
and 64.5% of the whole study area, respectively) had the 
highest vegetation coverage during the studied period of 
2001-2019 (Fig. 2).

During the study period, the lowest ET in the winter 
period was observed in 2016 with the standard deviation 
lower by the value of 4 compared to the average, whereas 
in the other years winters had normal values of ET. In the 
spring season, 2001 and 2008 were the years with the lowest 
ET, with standard deviation values lower by a value of 1.45 
and 2.39, while 2019, 2016, and 2010 were the years with 
the highest ET, with standard deviation values higher by the 
value of 1.7, 1.52, and 1.1. In the summer season 2006 and 
2018, the lowest ET was observed, with standard deviation 
values lower by 1.03 and 1.74, and 2003 and 2007 were the 
years with the highest ET, with standard deviation values 
higher by 1.74 and 1.25. In the fall season, 2010 and 2017 
had the lowest ET, with standard deviation values lower by 
2.02 and 1.64, while 2005 and 2012 were the years with the 
highest ET, with standard deviation values higher by 1.83 
and 1.37 (Fig. 3). From Fig. 3, it is evident that 2019 and 
2003 were the years with the highest ET anomalies (with 
standard deviation values higher by 3.54 and 3.3, respective-
ly), and 2008, 2001 and 2017 with standard deviation values 
lower by 3.54, 2.44, and 2.04, were the years with the lowest 
ET anomalies during the study period of 2001-2019 (Fig. 3).

During the 2001-2019 study period, 2008 and 2012 had 
the coldest winter, with an LST anomaly lower by the val-
ue of 1.04 and 0.91 compared to the average, and the year 
2018 had the warmest winter, with the standard deviation 
higher by 3.8. In the spring season, 2003 and 2009 were 
the coldest years (with the standard deviation values lower 
by 1.9 and 1.14, respectively), while 2001 and 2008 with 
standard deviation values higher by 2.16 and 1.6 had the 
warmest spring. In the summer season, 2001 and 2019 had 
the coldest summer with standard deviation values lower 
by 1.45 and 1.9, while 2002 and 2017 had the warmest 
summers with standard deviation values higher by 1.18 and 
2.18. In the fall season, 2011 and 2014 had the coldest falls, 
with standard deviation values being lower by 2.4 and 1.08 
than usual, and 2002 and 2010 had the warmest falls, with 
standard deviation values higher by 1.53 and 2.14 (Fig. 4). 
From Fig. 4, it follows that during the studied period (2001-
2019), 2003 and 2009 were the coldest years (with an LST 
anomaly of –1.12 and –1.03, respectively), and 2019 with 
an LST anomaly of 1.4 was the warmest (Fig. 4).

In Fig. 5, the yearly/seasonal anomalies of precipitation 
in the study area during 2001-2019 are presented. From 
these results, it may be stated that 2001 and 2014 had the 
driest (with the least precipitation) winters with a precipi-
tation anomaly lower by the value of 1.55 and 1.67, and 
2005, 2010 and 2019 were the wettest (with the highest 

Fig. 3. Time series of yearly/seasonal (winter (WIN), spring 
(SPR), summer (SUMM), and fall (FALL)) evapotranspiration 
(ET) anomalies in the study area during 2001-2019. 

Fig. 4. Time series of yearly/seasonal (winter (WIN), spring 
(SPR), summer (SUMM), and fall (FALL)) land surface tempera-
ture (LST) anomalies in the study area during 2001-2019. 

Fig. 5. Time series of yearly/seasonal (winter (WIN), spring 
(SPR), summer (SUMM), and fall (FALL)) precipitation (Precip) 
anomalies in the study area during 2001-2019. 
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precipitation) winters, with the standard deviation higher 
by the value of 1.6, 1.3 and 1.7. In the spring seasons, 2001 
and 2008 were the driest years (with standard deviation val-
ues lower by the value of 1.14 and 1.61), while 2003, 2007 
and 2019 had standard deviation values higher by the value 
of 1.66, 1.17, and 2.16 and had the wettest springs during 
the studied period (2001-2019). In the summer season of 

2006 and 2017, the driest conditions were observed, with 
standard deviation values lower by the value of 1.27 and 
1, and 2002, 2011 and 2012 had the wettest summers with 
standard deviation values higher by the value of 1.69, 2.13 
and 10.69 In the fall season of the years 2007 and 2010 the 
driest conditions occurred, with standard deviation values 
being lower by the value of 1.47 and –2.17, while 2011 with 

Fig. 6. The relationship between winter Normalized Difference Vegetation Index (NDVI) variations and winter Evapotranspiration 
(ET) (a), precipitation (b), and Land Surface Temperature (LST) (c) and the relationship between winter ET and precipitation (d), and 
LST (e) in Caspian Sea Watershed during 2001-2019. 
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the standard deviation value higher by a value of 2.85 than 
average had the fall (Fig. 5). During 2001-2019, 2008 and 
2017 were the driest years (with precipitation anomalies of 
–3.7 and –3.9), and 2011 and 2019 which had precipitation 
anomalies of 4.94 and 3.6, respectively, have been the wet-
test years during the study period (Fig. 5).

In Fig. 6 the relationships between NDVI variations and 
winter precipitation, ET and LST in CSW during the study 
period are shown. There is a positive and significant cor-
relation between NDVI, ET and LST in the study area for 
the time period of 2001-2019 (R = 0.46 and 0.55, respec-
tively, p-value = 0.05). The relationship between NDVI and 
precipitation is positive, but not significant at a confidence 
level of 0.05. An assessment of the relationship between ET, 
LST and precipitation resulted in a positive and significant 
(R = 0.70, p-value = 0.05) correlation being found between 
ET and precipitation, but without any significant depend-
ence of ET on LST being revealed. Therefore, it may be 
stated that the main factor controlling the dynamics of veg-
etation in the study area in the winter season, which is the 
coldest season (9.3°C), is LST. In the winter season, when 
precipitation is high enough, LST has a positive impact on 
ET. With the occurrence of low temperatures in the study 
area, the impact of precipitation on vegetation growth can-
not be significant, because with low temperatures there is 
a low capacity for holding humidity, as well as the low tem-
peratures themselves providing a limitation for vegetation 
growth (Kim et al., 2014). For example, in 2005 LST was 
lower than usual (6.2°C), but precipitation was high, in fact 

this year was the second wettest year during the studied 
period (after 2019), therefore, the vegetation coverage was 
lower than usual (32 597 km2). On the other hand, in 2004 
LST was 10°C higher than usual, and precipitation was 
equal to 133.1 mm (lower than the average value), but the 
vegetation coverage was 36 931 km2, significantly higher 
than usual (Fig. 6 and Table 3).

In Fig. 7, the relationships between NDVI variations 
and spring season precipitation, ET and LST in CSW during 
2001-2019 are presented. A positive significant correlation 
between NDVI and ET and also precipitation in the study 
area during 2001-2019 (R = 0.86 and 0.55, respectively, 
with a p-value = 0.05), and a significant and negative corre-
lation between NDVI and LST (R = –0.65, p-value = 0.05) 
may be observed. The correlation between ET and LST was 
negative and significant (R = –0.76, p-value = 0.05), while 
the correlation between ET and precipitation was positive 
and significant (R = 0.74, p-value = 0.05). From these cor-
relations, it follows that in the spring season the main factor 
determining the vegetation dynamics in the study area is 
precipitation. In the spring season, which has moderate 
LST (25.29°C) and is the greenest period in the study area, 
when precipitation is high enough, vegetation coverage is 
extended and vice versa (Fig. 4). If precipitation in spring 
is higher than that which normally occurs in the study area 
in this period, LST's impact on vegetation growth is not sig-
nificant, because LST in the spring season is already high 
enough (25.3°C) and is not a limiting factor for vegeta-
tion growth. For example, in 2003 and 2019, despite LST 

Ta b l e  3. The relationship between vegetation coverage (VC) 
variations and winter and spring Evapotranspiration (ET), pre-
cipitation and Land Surface Temperature (LST) in the Caspian 
Sea Watershed during 2001-2019

Year
Vegetation 

coverage (km2)
ET

(kg m–2 season–1)
Precipitation 

(mm)
LST
(°C)

Winter Spring Winter Spring Winter Spring Winter Spring
2001 31753 42371 67.6 104.9 107.3 90.3 10.7 28.8
2002 29887 48917 68.3 116.6 136.3 174.3 10.3 24.1
2003 31731 53558 73.7 131.6 170.2 213.8 6.2 22.2
2004 36931 55044 68.1 125.1 133.1 185.9 10.0 24.9
2005 32597 55023 76.5 127.0 190.5 151.4 6.2 25.0
2006 36761 55527 69.9 123.5 134.9 114.8 8.7 26.2
2007 30533 54558 71.3 130.1 156.3 192.7 7.3 23.8
2008 26040 44912 66.4 93.6 127.5 69.8 4.8 27.9
2009 30371 53064 74.4 127.5 171.8 144.6 8.5 23.4
2010 38716 59913 73.9 135.3 183.4 123.0 9.8 24.5
2011 27491 48875 66.2 115.2 160.7 118.8 8.2 25.5
2012 31249 56772 70.5 119.6 136.3 128.2 5.3 24.9
2013 38631 58910 71.1 126.6 165.2 133.1 9.0 25.2
2014 32134 48065 69.2 113.9 104.3 127.3 8.8 26.3
2015 33674 50735 72.0 112.0 140.5 101.2 9.6 27.0
2016 39942 59763 72.9 140.7 155.4 165.1 10.2 24.0
2017 31496 49923 69.3 124.8 131.0 106.2 8.1 26.9
2018 36221 52371 72.5 114.1 119.6 99.4 10.6 25.9
2019 37168 60791 74.6 142.9 193.0 236.2 9.1 24.0
Average 33333 53110 71.0 122.4 148.3 140.9 8.5 25.3

Ta b l e  4. The relationship between vegetation coverage (VC) 
variations and summer and fall evapotranspiration (ET), pre-
cipitation and land surface temperature (LST) in the Caspian Sea 
Watershed during 2001-2019

Year
Vegetation 

coverage (km2)
ET

(kg m–2 season–1)
Precipitation 

(mm)
LST
(°C)

Summer Fall Summer Fall Summer Fall Summer Fall
2001 33517 29652 50.6 132.9 99.4 61.5 35.1 20.8
2002 38292 32062 94.1 145.7 111.2 58.1 37.2 22.9
2003 44106 34833 50.9 138.7 129.1 64.1 33.9 20.4
2004 40220 35437 70.4 148.9 120.8 63.9 34.7 20.6
2005 40254 37147 56.6 131.9 117.5 62.4 34.6 20.9
2006 36668 31016 20.4 140.6 95.1 62.4 36.8 20.4
2007 40686 34174 53.3 94.5 123.2 56.3 35.4 21.8
2008 34045 29353 34.0 120.2 97.2 62.0 36.0 21.0
2009 40438 31737 50.6 157.5 103.6 63.4 33.3 19.8
2010 40218 33772 38.9 74.8 96.2 54.1 36.5 23.6
2011 38857 34897 104.9 218.0 102.5 70.3 35.1 18.0
2012 42716 37965 94.1 145.7 119.4 68.3 34.9 21.8
2013 40947 33820 25.4 123.8 109.0 62.2 35.0 21.7
2014 37233 31338 48.7 147.1 95.5 65.7 36.5 19.6
2015 33674 35382 60.9 156.3 99.6 67.1 36.6 20.0
2016 40952 33633 51.3 134.7 121.8 62.3 35.7 20.8
2017 37549 33049 12.9 111.8 99.2 55.7 38.4 22.1
2018 38422 35570 30.4 131.7 86.4 65.6 37.1 21.2
2019 46916 35907 39.3 143.9 120.2 63.8 35.3 20.9
Average 39247 33723 52.0 136.8 107.7 62.6 35.7 21.0
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being lower than normal, and with precipitation higher than 
usual, the vegetation coverage was extended. On the other 
hand, a higher than normal LST accompanied by lower 
than usual precipitation due to their impact on ET (ET will 
be decreased because of low humidity), can become a lim-
iting factor for vegetation growth and may result in a less 
green year, as was the case in 2001 and 2008 (Table 3).

In Fig. 8 the relationships between NDVI variations and 
summer season precipitation, ET and LST in CSW during 
2001-2019 are shown. A positive significant correlation 
between NDVI and ET in the study area during 2001-2019 
(R = 0.70, p-value = 0.05) and a negative significant cor-
relation between NDVI and LST (R = –0.45, p-value = 
0.05) was observed. The correlation between ET and LST 

Fig. 7. The relationship between normalized difference vegetation index (NDVI) variations and spring evapotranspiration (ET) (a), 
precipitation (b), and land surface temperature (LST) (c), and the relationship between spring ET with precipitation (d), spring ET with 
LST (e) in Caspian Sea Watershed during 2001-2019. 
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indicates that there is a negative and significant relation-
ship between them (R = –0.56, p-value = 0.05), while the 
correlation between ET and precipitation is positive, but 
insignificant (R = 0.36). From these correlations, it follows 
that in the study area in the summer season the main factor 
that determines the vegetation dynamics is LST. The sum-
mer is the hottest season (35.69°C) in the study area, and 
when the LST value was lower than usual and precipitation 
was higher than usual, vegetation coverage was extended 

(Fig. 5 and Table 4). In the case of precipitation higher than 
usual in the study area, the impact of LST on vegetation 
growth is very important, because very high LST causes 
a limitation in vegetation growth. For example, in 2002 
and 2009 precipitation was equal to 111.2 and 103.6 mm, 
respectively, but the LST was 37.2 and 33.3°C, respec-
tively, therefore despite 2002 being wetter than 2009, the 
vegetation coverage was higher in 2009 (Table 4).

Fig. 8. The relationship between normalized difference vegetation Index (NDVI) variations and summer evapotranspiration (ET) (a) 
precipitation (b) and land surface temperature (LST) (c) and the relationship between summer ET with precipitation (d), summer ET 
with LST (e) in Caspian Sea Watershed during 2001-2019. 
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Ta b l e  5. The relationship between vegetation coverage (VC) variations and fall Evapotranspiration (ET), precipitation (Precip) and 
land surface temperature (LST) in the Caspian Sea Watershed during 2001-2019
Model of 
vegetation 
coverage

R
(regression
coefficient)

R2

(determination
coefficient)

Multiple regression equations

Yearly 0.86 0.74 VCyearly = –33572 + 604.8 ETyearly – 7.9 Precipyearly + 982.4 LSTyearly

Winter 0.73 0.53 VCwinter = –20486 + 594.2 ETwinter + 6.4 Precipwinter + 1259.6 LSTwinter

Spring 0.88 0.77 VCspring = 22892 + 403.3 ETspring – 35.4 Precipspring – 559.4 LSTspring

Summer 0.72 0.52 VCsummer = 30807 + 193.8 ETsummer – 23.8 Precipsummer – 313.8 LSTsummer

Fall 0.55 0.30 VCfall = –26039 + 504.6 ETfall – 1.1 Precipfall + 1351.0 LSTfall

Fig. 9. The relationship between normalized difference vegetation index (NDVI) variations and fall evapotranspiration (ET) (a) pre-
cipitation (b) and land surface temperature (LST) (c) and the relationship between fall ET with precipitation (d), fall ET with LST (e) 
in Caspian Sea Watershed during 2001-2019. 
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In Fig. 9 the relationships between NDVI variations and 
fall season precipitation, ET and LST in CSW during 2001-
2019 are presented. Insignificant and positive correlations 
between NDVI and ET and also precipitation (with R = 0.33 
and 0.14, respectively) and no correlation between NDVI 
and LST were found in the study area during 2001-2019. 
The correlation between ET and LST indicates that there is 
a negative significant relationship between these factors (R 
= –0.78, p-value = 0.05), while the correlation between ET 
and precipitation is positive and significant (R = 0.82). From 
these correlations, it follows that the main factor determin-
ing the vegetation dynamics in the fall season in the study 
area is precipitation. The fall season is the moderate season 
(20.97°C) in the study area, and when precipitation is higher 
than usual, the vegetation coverage is extended. However, 
when precipitation is higher than usual and LST is lower 
than usual, it extends the vegetation coverage (as it was in, 
for example, in 2011) (Fig. 9 and Table 4).

For variations in vegetation coverage, multiple regres-
sion equations were calculated both for yearly and seasonal 
values (Table 5). These equations allow for an estimation 
of the projected value of vegetation coverage. The obtained 
multiple regression and determination coefficients indi-
cate that ET, precipitation and LST explain about 75% of 
the yearly and spring vegetation coverage variation, and 
around 50% of its variation in the winter and summer.

DISCUSSION

In this study the variation in actual evapotranspiration 
(ET), precipitation and land surface temperature (LST) 
is characterized, and an assessment of the relationship 
between these climatic factors (ET, precipitation and LST) 
is performed for the period of 2001-2019 with vegetation 
dynamics in CSW . The study used MODIS images to obtain 
NDVI (MOD13Q1, 16 days, 250 m), LST (MOD11A2, 

eight days, 1 000 m), ET (MOD16A2GF, eight days, 500 m), 
and TRMM images (TRMM GPM_3IMERGM, 10 km) to 
calculate precipitation.

From the analysis of the interannual and inter-seasonal 
vegetation anomalies presented in this paper, it follows 
that substantial fluctuations occurred during 2001-2019 
in the study area. The main findings of this study are as 
follows. The winter season with an average LST equal to 
9.30°C is the coldest time period, the spring season with 
an LST equal to 25.29°C is mild, and the summer period is 
the hottest season (35.69°C) while fall is a moderate sea-
son (20.97°C) in the study area. The watersheds with the 
highest vegetation coverage simultaneously have the high-
est elevation, precipitation sums and lowest LST, and are 
located in the western part of the CSW watershed. When 
viewed from west to east the NDVI coverage, elevation, 
LST and precipitation decrease. The wettest (with the high-
est precipitation) season in the western watersheds (HNW 
and LNW) was the fall, in the eastern watersheds (GGW) 
– winter and spring, and in AW it was spring (Fig. 10).

LST plays the most important role in determining veg-
etation dynamics in cold seasons, while in the warm seasons 
both precipitation and LST are factors affecting the vari-
ation in vegetation in the study area. When a higher LST 
is recorded during a particular winter and fall it does not 
necessarily follow that this year will produce a vegeta-
tion coverage which is higher than average. LST can have 
a positive impact on ET when precipitation is high enough, 
but when LST is low, the impact of precipitation on vegeta-
tion coverage is not important, because with low LST there 
is also a low capacity for holding humidity (Ondier et al., 
2010; Rousta et al., 2014). On the other hand, when high pre-
cipitation occurs in the spring and summer (especially in the 
spring season) it follows that a year with a positive anomaly 
of vegetation coverage in the study area is expected.

In the spring and summer seasons, if LST is higher than 
usual it is accompanied by precipitation lower than usu-
al, ET is decreased because of low humidity (Allen et al., 
2007), and it becomes a limitation for vegetation growth, 
as it was in 2001 and 2008. When the usual precipitation 
is accompanied by LST which is higher (lower) than usu-
al in these seasons, a year with lower (higher) vegetation 
coverage in the study area is observed (Schwingshackl et 
al., 2017; Fan et al., 2019). In the seasons with precipita-
tion that is higher than average in the area, the impact of 
LST on vegetation growth was more pronounced. This is 
because LST in these seasons is very high, which in turn 
results in a much higher ET and causes soil moisture losses, 
which becomes a limitation for vegetation growth (Laio et 
al., 2001; Karam et al., 2003; Zhang et al., 2019a, 2019b; 
Zhao T. et al., 2021; Zhao X. et al., 2020).

An anti-correlation between yearly NDVI and LST 
during the study period during 2001-2019 was observed, 
which resulted in positive NDVI anomalies for the years 
with negative LST anomalies. One exception was observed 

Fig. 10. The distribution of monthly precipitation in each water-
shed and the whole Caspian Sea Watershed including Lahijan-Noor 
Watershed (LNW), Haraz-Neka Watershed (HNW), Ghareso-
Gorgan Watershed (GGW), and Atrak Watershed (AW) during 
2001-2019. 
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for 2010, because in this year a positive anomaly in both 
the NDVI and LST was recorded. In order to shed light on 
this, a seasonal and after-seasonal assessment for the sepa-
rate watersheds is required. In 2010, precipitation and LST 
in the western watersheds were higher than usual, which 
made them the greenest. Such conditions which resulted in 
favorable circumstances for vegetation growth affected the 
yearly NDVI anomaly and made it positive (Fig. 11).

CONCLUSIONS

1. Vegetation variations are surface phenomena, which 
may be a good indicator of climate change. These changes 
can be represented by an increase/decrease in temperature, 
precipitation, relative humidity, evapotranspiration, and 
other climatic variables. It was shown that climate change 
can have a great impact on vegetation variations in the 
Caspian Sea watersheds areas.

2. The present study attempted to identify and analyse 
the spatio-temporal variations in NDVI, ET, LST and pre-
cipitation in the whole Caspian Sea watersheds and its 4 
sub-regions using remotely sensed satellite images. It was 
found that remote sensing images may be useful in moni-
toring the variations in vegetation in a humid area such as 
Caspian Sea Watersheds.

3. The indices retrieved from remote sensing for the 
period 2001-2019 indicated a considerable inter-seasonal 
and inter-annual variability, but no significant increasing/
decreasing trends were found in the studied indices in 
Caspian Sea Watersheds during 2001-2019.

4. ET, precipitation and LST explain about 75% of 
the yearly and spring vegetation coverage variation in the 
Caspian Sea watershed areas.

5. Vegetation dynamics is a multi-aspect phenomenon 
that is affected by many factors including atmospheric 
patterns, atmospheric teleconnections and sea surface tem-
peratures (especially in the Caspian Sea, which is the study 
area, the Mediterranean Sea and the Black Sea areas), the 
effects of human activities are also noteworthy. Also, the 
variations in the strength of Siberia's High pressure can 
have a great impact on the vegetation dynamics of Caspian 
Sea Watersheds, especially in the Caspian Hyrcanian for-
ests. In future studies in the field of vegetation variations 
in the studied area, the factors mentioned above should be 
considered.
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