
Machine learning-based soil aggregation assessment under four scenarios 
in northwestern Iran

Parastoo Nazeri1, Shamsollah Ayoubi1*, Hossein Khademi1, Farideh Abbaszadeh Afshar1,2, 
Seyed Roohollah Mousavi3

1Department of Soil Science, College of Agriculture, Isfahan University of Technology, 8415683111, Isfahan, Iran
2Department of Soil Science, Faculty of Agriculture, University of Jiroft, Jiroft 78671-61167, Iran

3Department of Soil Science, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

Received February 19, 2024; accepted May 9, 2024

Int. Agrophys., 2024, 38, 293-310
doi: 10.31545/intagr/188506

*Corresponding author e-mail: ayoubi@cc.iut.ac.ir

A b s t r a c t. Soil aggregate stability is crucial for maintain-
ing the arrangement of solid particles and pore space in the soil, 
even under mechanical stresses. Traditional direct measurements 
of soil aggregate stability are time-consuming and expensive. 
This study aimed to spatially predict the soil aggregate stability 
indices, including the mean weight diameter of aggregates, the 
geometric mean diameter of aggregates, and the percentage of 
water stable aggregates, using five machine learning models and 
environmental covariates in the framework of digital soil map-
ping. A total of 100 samples were collected from the surface 
layer (0-15 cm) of soils in the Aji-Chai watershed, northwestern 
Iran, and their SAS indices were determined by standard labora-
tory methods. Four scenarios (S) were employed to evaluate the 
most influencing auxiliary variables, including (S1): topographic 
attributes, (S2): topographic attributes + remote sensing data, (S3): 
S2 + thematic maps (geology, land use/cover maps), and (S4): 
S3 + selected soil properties. Among the various machine learn-
ing models, the random forest showed exceptional performance 
and reduced uncertainty for S4, compared to the other machine 
learning models and desired scenarios. The coefficient of deter-
mination, concordance correlation coefficient, and normalized 
root mean squared error values of the random forest model were 
0.86, 0.87, and 31.42% for mean weight diameter; 0.80, 0.84, and 
31.59% for geometric mean diameter; and 0.54, 0.68, and 20.75% 
for water stable aggregates, respectively. Additionally, properties 
such as soil organic matter and clay, followed by remote sens-
ing data, demonstrated the highest relative importance when 
compared to the other covariates in predicting the soil aggregate 
stability indices. In conclusion, the random forest ML-based mod-
el seems to be able to accurately predict soil aggregate stability 

indices at the watershed scale. The generated maps can serve as 
a valuable baseline for land use planning and decision-making. 
These findings contribute to the scientific understanding of soil 
physical quality indicators and their application in sustainable 
land management practices.

K e y w o r d s: soil aggregation, data mining, remote sensing, 
environmental covariates 

1. INTRODUCTION

The sustainable management of soil is crucial for the 
well-being of our environment and the welfare of pre-
sent and future generations (Wang et al., 2017; Geisseler 
and Scow, 2014; World Health Organization, 2019). To 
achieve this, it is essential to have a deep understand-
ing of the diverse characteristics of soil. One key aspect 
that plays a vital role in preserving and nurturing soil 
health is soil aggregate stability (SAS), which depends, to 
a great extent, on the combination of clay particles with 
organic matter. It determines physical processes, such as 
the self-organization, absorption, disposal, and storage of 
soil water (Dexter et al., 2008; Resurreccion et al., 2011; 
Farahani et al., 2019). By focusing on maintaining SAS, 
we can effectively conserve and sustain the overall soil 
health in the world (Bhattacharyya et al., 2021; Chaplot 
and Cooper, 2015; Hanke and Dick, 2017; Chahal and 
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Eerd, 2019; Samaei et al., 2022). Aggregate stability 
indices serve as important indicators for evaluating soil 
deterioration and erodibility (Ye et al., 2019). SAS indices 
play a crucial role in determining several key parameters 
related to soil quality and functioning. Parameters such 
as penetration resistance, susceptibility to soil erosion, 
fertility, aeration, soil carbon dynamics (including losses 
and sequestration), and biological activity are significantly 
influenced by SAS indices (Jastrow et al., 1998; Deng et 
al., 2014; Chaplot and Cooper, 2015). Furthermore, SAS 
directly impacts the storage and dynamics of soil organic 
matter (SOM) by physically protecting organic matter 
against oxidation and decomposition (Ayoubi et al., 2020; 
Ayoubi et al., 2012; Jastrow et al., 1998; Zeraatpishe and 
Khormali, 2012; Khosravani et al., 2023). In fact, research 
conducted by Celik (2005) has demonstrated that SOM 
plays a direct role in the formation and stability of aggregates.

In recent years, the methodology of digital soil map-
ping (DSM) has gained recognition for its innovative and 
effective approach to illustrating the spatial distribution of 
soil properties. This technique has shown great promise in 
creating predictive maps of soil properties, as evidenced 
by studies (McBratney et al., 2003; Wadoux et al., 2020; 
Martin et al., 2021). By leveraging patterns of soil-forming 
factors, the DSM framework can deduce soil information, 
overcoming the limitations of data in traditional mapping 
methods. Consequently, highly precise and detailed soil 
maps can be generated at a fine resolution (Liu et al., 2020). 
Also, the number of environmental covariates used for 
DSM has rapidly increased due to the growing volume of 
RS data (Chen et al., 2022). Previous studies have demon-
strated that DSM techniques can accurately and efficiently 
describe the spatial distribution of soil properties (Ding et 
al., 2016; Wu et al., 2019; Song et al., 2020; Mishra et al., 
2021). The majority of research in DSM has been focused 
on soil texture components (sand, silt, clay) as well as the 
percentage of soil organic carbon (SOC), nitrogen, phos-
phorus, and potassium. While there have been studies 
conducted by Zhao et al. (2022) on clay content mapping 
in Australia, Mousavi et al. (2022) on SOC in Iran, and 
Emadi et al. (2020) on potassium content in Brazil, which 
focused on analyzing specific soil properties, there is a lack 
of research on SAS indices in difficult-to-access areas.

Direct methods for assessing SAS can be cumber-
some, labor-intensive, time-consuming, and expensive 
(Bhattacharyya et al., 2021). As an alternative, indirect 
methods, also known as predictive soil maps by DSM 
approaches, offer a practical approach to estimate soil health 
indicators with reduced effort and cost while still providing 
reliable evaluation. These indirect methods can be valuable 
tools in soil research and management, allowing for efficient 
assessment of soil health without compromising accuracy 
(Martin et al., 2021; Wadoux et al., 2020; McBratney et 
al., 2003). Importantly, the results of DSM are reproducible 
and able to quantify uncertainties (Arrouays et al., 2020). 

Generally, machine learning (ML) techniques are found to 
be successful in predicting soil parameters, in particular, 
geometric mean diameter (Besalatpour et al., 2014), mean 
weight diameter (Bhattacharyya et al., 2021), hydrau-
lic conductivity (Rezaei et al., 2023), soil organic carbon 
stocks (Rostaminia et al., 2021), and field capacity mois-
ture content (Yamaç et al., 2020). 

Remote sensing (RS) covariates, including surface 
reflectance of soils and vegetation indices, are widely uti-
lized in DSM (McBratney et al., 2003; Zhou et al., 2021). 
Surface reflectance and band ratios are particularly effec-
tive in assessing SAS (Bouslihim et al., 2021a). In this 
regard, we can refer to the studies of Zeraatpisheh et al. 
(2021) on modeling the SAS using remote sensing covari-
ates, soil properties, and topographic attributes and Wang et 
al. (2018), who emphasize applying RS data to predict soil 
properties. The combination of topographic and RS attrib-
utes has been confirmed in numerous studies in the field of 
soil properties prediction (Mashalaba et al., 2020; Mousavi 
et al., 2023).

In recent years, investigations carried out by Khosravani 
et al. (2023) and Zeraatpisheh et al. (2021) have focused on 
DSM of SAS. However, these studies have not addressed 
the issue of prediction uncertainty and have not explored 
the potential of utilizing time series remote sensing imag-
es for spatial modeling of SAS. Therefore, here we try to 
address this hypothesis by the incorporation of time series 
RS images and the utilization of advanced ML models 
which will enhance the accuracy and precision of spatial 
predictions of SAS indices in the Aji-Chai watershed in 
north-western Iran. However, it is important to note that 
there is a need for further investigation into properties such 
as mean weight diameter (MWD), geometric mean diameter 
(GMD), and percentage of water-stable aggregates (WSA). 
Understanding the relationships between these properties 
and representative soil-forming factors is crucial in the field 
of pedometric science and requires more attention, especial-
ly at the watershed scale. Therefore, the main objectives of 
this study were: (i) to predict the spatial distribution of SAS 
indices and uncertainty of prediction maps at the watershed 
scale, (ii) to compare different MLMs across various input 
scenarios of soil and environmental covariates, and (iii) to 
identify the most important environmental covariates that 
significantly influence prediction of SAS indices in the Aji-
Chai watershed, East Azarbaijan Province, Iran.

2. MATERIALS AND METHODS 

2.1. Study area

The Aji-Chai watershed is located in East Azarbaijan 
Province, located between 46°45’ – 47°50ʹ longitudes and 
38°37’ – 39°38ʹ N latitudes. This watershed is located 
in the northwest of Iran (Fig. 1), with an area of around 
1 200 km2, steepness ranging from 0 to more than 70%, 
with an altitude of 1800 m a.s.l. It is considered the largest 
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sub-basin of Urmia Lake after the Zarinah River sub-basin. 
The mean annual temperature and precipitation are 11°C 
and 320 mm, respectively. According to Dumarten’s clas-
sification, this area has a semi-arid climate. The study area 
is predominantly characterized by pasture, which covers 
approximately 70% of the total area. Additionally, the 
watershed includes gardens, irrigated agricultural lands, 
and patches of bare land. Furthermore, based on the litho- 
logy map (1:100 000), igneous rocks, new alluviums, and 
marine deposits are the main parent materials contributing 
to soil formation in the study area. 

2.2. Soil sampling and laboratory analysis

In the study area, sampling points were selected using 
the hypercube method based on their coordinates. A total 
of 100 sampling sites were chosen, and soil samples were 
collected from each site at a depth of 0-15 cm for physi-
cal and chemical analysis (Jiang, 2021). The collected soil 
samples were then transferred to the laboratory. As regards 
five soil physicochemical properties e.g. in a ratio of 1:2.5 
soil: water suspension, soil pH and electrical conducti-

vity (EC) were determined (Page et al., 1982). Also, clay 
was determined as soil particle size distribution with the 
pipette method (Gee and Bauder, 1986), soil organic mat-
ter (SOM) content was measured using the Walkley-Black 
method (Walkley and Black, 1934), and calcium carbonate 
equivalent (CCE) was measured using the titration method 
(Page et al., 1982). The soil properties were selected based 
on expert opinion, and their correlation with SAS indices is 
displayed in Table 1.

100 grams of soil that passed through a 4.25 mm sieve 
was capillary wetted, and the wet sieving method was used 
to separate water-stable aggregates. The diameter of the 
sieves was 2-1, 0.5-0.25-0.1, and 0.05 mm, respectively. 
Then, the mean weight diameter of water-stable aggre-
gates (MWD), the geometric mean diameter of water-stable 
aggregates (GMD), and the percentage of water-stable 
aggregates (% WSA) were determined. The percent of 
water-stable aggregates (% WSA) was calculated (Kemper 
and Rosenau, 1986) as follows:

Fig. 1. Location of the: a) Aji-Chai watershed in East Azarbayjan province, b) East Azarbayjan province in northwestern Iran, and 
c) the spatial locations of the sampled soils in the studied watesheld.

a) b)

c)

a) b)

c)
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(1)

where: X is the arithmetic average of the size of aggregates 
on the ith sieve and Wi is the fraction of water-stable aggre-
gates on the ith sieve, computed using:

(2)

where: Wi (a+s) is the dry weight of the particles on sieve i, 
Wi(s) is the dry weight of sand or gravel on sieve i, Wt is the 
total dry weight of the soil, and n is the number of aggre-
gate fractions. The MWD of water-stable aggregates was 
computed using Eq. (3) (Kemper and Rosenau, 1986):

(3)

Moreover, Eq. (4) was used to calculate the geometric 
mean diameter (GMD, mm) of aggregates: 

(4)

2.3. Environmental covariates

Several environmental covariates were acquired from 
different sources to explain SAS indices. They include ter-
rain attributes, RS data, and thematic maps (i.e. geology, 
land use maps). A preprocessed digital elevation model 
(DEM, 60 × 60 m resolution) from SRTM of the National 
Aeronautics and Space Administration (NASA) (Jarvis et 
al., 2008) was downloaded to calculate terrain attributes. 
For RS indices, the median of satellite images of Landsat-8 
operational land imager (OLI) and Sentinel-2 was used 
within the sampling time (July, 2022). Also, some soil 
variables were used as soil covariates for related modeling 
processes. In general, 120 covariates including vegeta-
tion indices were prepared from band ratios of RS satellite 
images and the first- and second-order DEM derivatives 
in SAGA (System for Automated Geoscientific Analysis) 
software (version 4.7).

2.3.1. Feature selection

Applying fewer covariates could benefit and improve 
the efficiency of the modeling process in DSM research 
(Brungard et al., 2015, Yu et al., 2024). The soil and environ-
mental covariates were selected using two primary methods: 
variable importance analysis by the Random Forest algo- 
rithm and expert opinion. Subsequently, Pearson’s correla-
tion coefficient (r) was employed to assess the relationship 
between SAS indices and the soil properties chosen based 
on expert opinion (Table 1). In conclusion, 23 highly im- 
portant and correlated covariates (refer to Table 2) were 
chosen for modeling. Six of the most important covariates 
are illustrated in Fig. 2 as representative of input covariates 
to the spatial modeling of SAS.

2.4. Spatial modeling of SAS

Five popular MLMs were employed, including random 
forest (RF), k-Nearest Neighbor (k-NN), support vector 
regression (SVR), artificial neural networks (ANNs), and 
cubist (CB) for modeling and mapping of SAS indices 
under four scenarios (Table 3). All the MLMs were imple-
mented using specific packages of the R statistical software 
version (4.2.1).

2.4.1. Random forest (RF)

Random forest (RF) is an extended version of the regres-
sion and classification tree models (Breiman, 2001). It is 
one of the most frequently used ML models in DSM. The 
RF output is the mean of all regression trees, and the ensem-
ble model is built by averaging multiple models based on 
different bootstrap sample datasets (Behrens et al., 2010). 
RF requires two tuning hyper-parameters, i.e. the number 
of randomly sampled variables at each split (mtry) and the 
number of regression trees (ntree) grown in the forest. For 
each depth, the tuning of these parameters was done by iter-
ating mtry values (i.e. the number of covariates) from 1 to 
16 and ntree values from 500 to 3 000 with an increment of 
100 (Hengl et al., 2015). The ‘‘randomForest’’ and ‘‘caret’’ 
packages (Liaw et al., 2002) of the R software were used 
for this goal.

Ta b l e  1. Pierson correlation analysis between soil physio-chemical properties and SAS indices

Soil properties pH EC CCE SOM Clay MWD GMW WSA
pH 1    
EC 0.16 1  
CCE 0.39** 0.16 1  
SOM -0.59** -0.06 -0.30** 1  
Clay -0.38** -0.06 -0.19* 0.77** 1  
MWD -0.53** -0.08 -0.29** 0.95** 0.82** 1  
GMW -0.52** -0.10 -0.29** 0.92** 0.84** 0.98** 1  
WSA -0.49** -0.02 -0.27** 0.87** 0.71** 0.85** 0.83** 1

*Correlation coefficients are significant at the p<0.05 probability level. **Correlation coefficients are significant at the p<0.01 proba-
bility level.
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2.4.2. Nearest Neighbor (k-NN)

The k-Nearest Neighbors (kNN) regression model is 
a versatile algorithm suitable for various tasks, including 
DSM. It is a non-parametric technique utilized for regres-
sion analysis. In this method, the prediction of a new data 
point is made by identifying the k nearest data points in the 
training set based on a distance metric, as documented by 
Nemes et al. (2006) and Zolfaghari et al. (2013). The pre-
diction for the new point is then determined by averaging 
the values of the k nearest neighbors. We applied this meth-
od to model SAS indices, such as MWD, GMD, and WSA.

2.4.3. Support vector regression (SVR)

In the 1990s, support vector machine classification 
was proposed as a new approach in the learning machine 
theory by Chen et al. (2023). This method is a non-para-
metric supervised statistical method that works based on 
the assumption that there is no information about how the 
data set is distributed. The support vector regression (SVR) 
model is an adaptation of the SVM model for regression 

tasks, commonly used in DSM as a ML model. In con-
trast to traditional regression models, SVR defines an error 
range, where predicted values within this range are deemed 
accurate. The size of the error interval determines the struc-
ture of the regression model (Zhao et al., 2023). In this 
research, we utilize the "svmLinear2" function to establish 
correlations between SAS and various soil and environ-
mental covariates in the context of DSM.

2.4.4. Artificial neural network (ANN)

The multi-layer perceptron algorithm with three layers 
was used to estimate the target data (test data). This type 
of algorithm consists of an input layer in order to apply 
problem inputs to train the network with data of auxiliary 
variables, a hidden layer with seven neurons and a sigmoid 
operator function, and an output layer with a linear operator 
function and will be able to make an estimate of SAS of the 
tested soils according to the input database (Behrens et al., 
2005). The neural network model was implemented using 
different numbers of environmental covariates.

Ta b l e  2. Environmental covariates for soil aggregate stability indices prediction

Enviromental 
covariates Source Covariates Definition

Topographic attributes Digital elevation 
model

DEM Digital Elevation Model

AnalyHil Analytical Hillshading
Convergence Convergence index
TWI Topographic wetness index

Remote sensing 
attributes

Landsat-8 images CNR Carbonate Normalized Ratio
(Red-Green/Red+Green)

DVI Difference Vegatation index
INR Iron Normalized Ratio

(Red-SWIR2/Red-SWIR2)

TSAVI Transformed soil adjusted vegetation index
s(ρNIR-s × ρRed-a)/(a × ρNIR + ρRed − a × s + X×(1 + s × s))

Sentinel-2 images CNR.s Carbonate Normalized Ratio (Red-Green/Red+Green)

CTVI Corrected transformed vegetation index
Brightness Brightness index

((Red)2 + (NIR)2)0.5

Wetness Wetness index
NDVI Normalized difference vegetation index

(NIR − Red)/ (NIR + Red)
Bands Single Bands of Landsat-8 OLI(Banda3,11)

Landuse  map Land use Land use Land use map
Geology map Geology Geo Geology map (1:100 000)

Soil variables Lab analysis pH, EC, CCE,  
SOM, Clay 

pH, electrical conductivity, calcium carbonate equivalent, soil 
organic matter 
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Fig. 2. Six of the most influential environmental covariates derived from remote sensing and topograpgic indices, a) carbonate 
Normalized ratio (Sentinei2), b) topograohic wetness index, c) analytical Hillshading, d) geology, e) digital elevation model, f) diffe-
rence vegatation index.

Ta b l e  3. Descriptive statistics of the scenarios of this study

Scenario Abbreviate Covariates

1 S1 Topographic attributes

2 S2 Topographic attributes+RS data

3 S3 Topographic attributes+RS data+ Geology+Land use/ cover 

4 S4 Topographic attributes+RS data+Geology+Land use/ cover+ soil variables

a)

c)

e)

b)

d)

f)
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2.4.5. Cubist (CB)

Cubist is a piecewise linear tree model that uses a recur-
sive partitioning of the predictor covariates space (Ma et 
al., 2017). It uses a divide-and-conquer strategy and seeks 
to minimize the intra subset variation at each node. CB 
models take the form: if (conditions) then (linear model) 
approach. If the predictor variables associated with an 
observation satisfy a set of conditions, the linear model is 
used to predict the response. The advantage of the condi-
tion set in each rule is that they enable interactions to be 
handled automatically by allowing different linear models 
to capture the local linearity in various parts of the predic-
tor variables space. This can often lead to smaller trees and 
better prediction accuracy than regression trees (Ma et al., 
2017). CB requires tuning two parameters, i.e. the optimal 
number of committees and neighbors. The ‘‘caret’’ package 
of the R software was used for this goal.

2.5. Evaluation and assessment of models

For the aim of external validation of the various ML 
algorithms, the data set was randomly split into two parts, 
with 80% of them used for calibration and 20% used for 
validation. For tuning the RF, k-NN, SVR, ANN, and CB 
parameters, a 10-fold cross-validation was repeated 10 times 
(Heung et al., 2016) using just for the calibration data set. 
Common statistical indices, i.e. coefficient of determina-
tion (R2), Lin’s concordance correlation coefficient (CCC), 
root mean square error (RMSE), and the percentage of nor-
malized root mean squared error (nRMSE), were used to 
evaluate each model based on the validation data set using 
the following equations: 

(5)

(6)

(7)

, (8)

where: Pi and Oi are the predicted and observed values, O 
is the average of the observed values over the n measure-
ments, r is the correlation coefficient between the predicted 
and observed values, and ,  is the variance of the pre-
dicted and observed values.

3. RESULTS AND DISCUSSION

3.1. Summary statistics and correlation analysis

The descriptive statistics of SAS indices and soil phys-
icochemical properties are shown in Table 4. As can be 
seen, MWD varied from 0.13 to 2.92 mm with a mean of 
1.08 mm. GMD varied from 0.11 to 2.16 mm with a mean 
of 0.86 mm, and WSA varied from 30.02 to 92.37% with 
a mean of 50.68%. Khazaei et al. (2008) reported a mean 
of 1.60 mm for MWD in some soils of Hamadan province, 
Iran. The arid and semi-arid climates of these two prov-
inces do not provide suitable conditions for soil aggregate 
formation and stabilization. According to the Le Bissonnais 
(2016) classification, the aggregates in the studied soils 
have medium stability.

The lowest and highest coefficients of variance (CV) 
were obtained for pH and EC, and the low variability of 
pH could be due to the logarithmic nature of pH. SOC, 
Clay, CCE, MWD, and GMD showed high variability (CV 
≥ 35%), while WSA had moderate variability (15% ≤ CV < 
35%) according to the Wilding and Drees (1978) classifica-
tion. High variation of aggregate stability indices is due to 
different land management as well as variability in intrinsic 
soil properties, such as clay content and clay types (Havaee 
et al., 2015). Zeraatpisheh et al. (2021) reported the highest 
CV for SOM and MWD and the lowest one for GMD and 
WSA in northern Iran. Similarly, several studies reported 

Ta b l e  4. Descriptive statistics of soil aggregate stability indices in all studied soils (N = 100)

Variable Unit Mean Max Min Median Variance StDev CV (%)
pH – 7.45 8.08 5.77 7.54 0.16 0.404 5.42
EC (dS m-1) 0.536 3.74 0.06 0.23 0.59 0.77 143.65
CCE

(%)
9.57 48 0.2 7.5 78.26 8.84 92.37

SOM 1.13 4.5 0.1 0.8 0.83 0.911 80.61
Clay 22.44 40 1.6 20 130.6 11.42 50.89
MWD

(mm)
1.08 2.92 0.13 0.82 0.55 0.74 68.51

GMD 0.86 2.16 0.11 0.75 0.27 0.52 60.46
WSA (%) 50.68 92.37 30.02 47.75 209.55 14.47 28.55

Min – minimum, Max – Maximum, StDev – standard deviation, CV – coefficient of variance, EC – electrical conductivity, CCE – cal-
cium carbonate equivalent, SOM – soil organic matter, MWD – mean weight diameter of water-stable aggregates, GMD – geometric 
mean diameter of water-stable aggregates WSA – percentage of water stable aggregates. 
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that land use changes and the conversion of natural ecosys-
tems to cultivated lands have drastically altered aggregate 
stability and associated soil properties (Bakhshandeh et al., 
2019; Zeraatpisheh et al., 2020; Ayoubi et al., 2020).

The partial dependence plots between the SAS with soil 
properties, including the content of clay and SOM (Fig. 3), 
indicates that with the increase in the amount of SOM and, 
to some extent, clay, the percentage of the SAS increases, 
indicating the key role of SOM and clay (Table 1) in the 
SAS (Hati et al., 2007).

3.2. Modeling performance

The final modeling process was assessed using four sta-
tistical indicators: coefficient of determination (R2), Lin’s 
concordance correlation coefficient (CCC), root mean 
square error (RMSE), and normalized root mean square 

error (nRMSE). The performance of five ML models (RF, 
CB, SNM, ANN, and K-NN) in the four compiled scenar-
ios for predicting SAS indices is presented in Tables 5-8. 
The results of modeling showed that the RF model for S4 
exhibited the highest accuracy in predicting the SAS indi-
ces, as evidenced for MWD by the lowest RMSE (0.33), 
nRMSE (31.42 %), and the highest R2 (0.86) and CCC 
(0.87) in the validation dataset, while the following val-
ues were obtained in the GMD prediction: RMSE (0.26), 
nRMSE (30.59%), R2 (0.80), and CCC (0.84). Furthermore, 
for the WSA prediction, the lowest RMSE (10.55) and 
nRMSE (20.75%) as well as and R2 (0.54) and CCC (0.68) 
were obtained (Table 8). The RF model turned out to be 
a successful model in the prediction of SAS indices because 
of several drivers, such as the size of the dataset, the scale 
of variation, and the relationships between dependent and 
independent covariates (da Silva Chagas et al., 2016). In 
the analysis of the other scenarios, the results showed that 
the CB model is highly accurate for the SAS in scenario 1 
(S1) (Table 5), while in scenario 2 (S2), the RF, SVR, and 
CB models had the highest accuracy for the MWD, GMD, 
and WSA indicators, respectively (Table 6). Also, in sce-
nario 3 (S3), the SVR models for predicting MWD and WSA 
and the CB model for estimating GMD had the best effi-
ciency and accuracy (Table 7). Finally, in scenario 4 (S4), 
the RF model had the highest accuracy for SAS evaluation 
due to its high efficiency. RF is insensitive to noise or over-
training, which shows its ability in dealing with unbalanced 
data (Boateng et al., 2020).

Mousavi et al. (2022) and Rahmani et al. (2022) con-
firmed that the RF algorithm had high accuracy and low 
error for predicting SOC and topsoil thickness in Qazvin 
plain, Iran. Shi et al. (2020) reported an R2 of 0.50 when 
aggregate stability was estimated using high-resolution 
Airborne Prism Experiment hyperspectral images in crop-
lands. Bouslihim et al. (2021b) found that the RF model 
resulted in the lowest RMSE (<0.15) and higher R2 (>0.92), 
compared to multiple linear regression for predicting SAS 
indices. Zeraatpisheh et al. (2021) also showed that the 
RF model with higher R2 (0.75, 0.74, and 0.58) and lower 
nRMS (24.28, 12.72, and 10.40) performed better for pre-
dicting SAS indices, while the K-NN and SVR models 
showed a weaker performance. 

The CB model also “as the second best model” demon-
strated the most accurate predictions for the MWD, GMD, 
and WSA indices for S4, as indicated by the lowest RMSE 
(0.38, 0.27, and 10.04, respectively) and nRMSE (36.19, 
31.76, and 19.75 respectively) as well as the highest R2 
(0.77, 0.78, 0.51) and CCC (0.83, 0.84, and 0.62,) respec-
tively (Table 8). The priority of models regarding their 
performance for predicting MWD, GMD, and WSA were as 
follows: RF > CB > SVR>ANN> K-NN.  In contrast, the 
K-NN model exhibited the weakest prediction accuracy for 
MWD, GMD, and WSA, with the lowest R2 and CCC values. 
According to Malone et al. (2009), the RF, CB, and SVM 

Fig. 3. a) Partial dependence plots between MWD with clay con-
tent and SOM, b) GMD with clay content and SOM, and c) WSA 
with clay content and SOM in the given watershed.
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models performed moderately in predicting SAS, while 
ANN along with K-NN demonstrated weaker results. Ye 
et al. (2018) reported a R2 value of 0.40, comparable with 
our results, and a higher RMSE of 0.53 for MWD of a small 
catchment on the Loess plateau in China. In accordance 
with our findings, Khaledian and Miler (2020) in a review 
regarding selecting appropriate machine learning methods 
for DSM, found that, in almost all studies in spatial mod-
eling of soil properties, the CB model had approximately 
similar performance to that of RF in terms of R2 and RMSE.

Our results showed that nRMSE were less than 42% 
for the best estimation (Table 8). The nRMSE close to 40 
% means acceptable prediction accuracy, while the values 
higher than 71% show unacceptable prediction accuracy 
(Hengl et al., 2004; Kamamia et al., 2021). Besalatpour et 
al. (2013) used four different models, including the adap-
tive network-based fuzzy inference system (ANFIS), the 
generalized linear model (GLM), ANNs, and multi linear 
regression (MLR), to predict the MWD in a highly moun-
tainous watershed in Iran and found lower accuracy criteria 
than in the current study. They showed that the R2 value 
in the MLR model ranged from 0.07 to 0.18 for three dif-
ferent sets (soil data, vegetation and topographic data, and 
the combination of the three covariates). In the same way, 

Asadi and Bagheri (2010) attempted to predict SAS with 
the ANN and MLR models in Iran. The obtained R2 val-
ues for the MLR model ranged from 0.15 to 0.39, which 
is lower than the results obtained in the current study. This 
confirms that the relationships between SAS indices and 
environmental covariates are not exactly linear, and some 
of the relationships might be non-linear, which is explained 
by non-linear models, such as RF and ANN. 

Among the five applied MLMs (RF, CB, ANN, K-NN, 
and SVR), our results showed that the K-NN and ANN 
models had the weakest performance for all the scenarios, 
compared to the other models for predicting MWD, GMD, 
and WSA, respectively. Several researchers (i.e. Mansuy et 
al., 2014; Taghizadeh-Mehrjardi et al., 2016; Campbell et 
al., 2018; Gunarathna et al., 2019; Szabó et al., 2019) using 
MLM in soil mapping revealed that in all sample sizes, the 
K-NN model had lower performance than the RF and CB 
models. Boateng et al. (2020) reported that a part of this 
weakness for the KNN model might be attributed to the 
high difficulty of setting the ideal value of K for the KNN 
classifier, although this algorithm was easy to implement 
and understand. In the comparison of the KNN, SVR and 
RF models, Boateng et al. (2020) stated that, due to the 
numerous types of NN architectures to choose from and 

Ta b l e  5. Validation criteria for prediction of aggregate stability 
indices of all models for scenario 1 (S1)

ML model R2 CCC RMSE nRMSE(%)

MWD

RF 0.1 0.25 0.67 63.80

CB 0.12 0.33 0.78 74.28

SVM 0.10 0.21 0.81 77.14

ANN 0.15 -4.58 0.26 74.28

K-NN 0.08 0.17 0.64 60.95

GMD

RF 0.11 0.27 0.51 60

CB 0.14 0.35 0.54 63.52

SVM 0.11 0.25 0.87 94.56

ANN 0.16 -4.93 0.24 66.66

K-NN 0.12 0.21 0.46 54.11

WSA

RF 0.08 0.19 11.66 22.94

CB 0.10 0.24 11.91 23.43

SVM 0.10 0.22 11.48 22.58

ANN 0.06 -4.19 0.23 69.69

K-NN 0.06 0.14 13.58 26.72

RF – random forest, CB – Cubist, SVM – support vector machine, 
ANN – artificial neural network, K-NN – Nearest Neighbor.

Ta b l e  6. Validation criteria for prediction of aggregate stability 
indices of all models for scenario 2 (S2)

ML model R2 CCC RMSE nRMSE(%)

MWD

RF 0.60 0.64 0.46 42.60

CB 0.36 0.33 0.73 67.59

SVM 0.45 0.50 0.60 55.55

ANN 0.27 0.46 0.26 78.78

K-NN 0.26 0.47 0.46 42.59

GMD

RF 0.36 0.37 0.46 54.11

CB 0.40 0.33 0.50 58.82

SVM 0.41 0.51 0.42 49.41

ANN 0.40 0.48 0.18 50

K-NN 0.32 0.47 0.37 43.52

WSA

RF 0.40 0.58 8.10 15.93

CB 0.45 0.64 8.83 17.40

SVM 0.44 0.47 12.52 24.63

ANN 0.32 0.47 0.18 54.54

K-NN 0.23 0.25 14.34 28.21

Explanations as in Table 5.
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the high number of algorithms used for training, most 
researchers recommend SVR and RF as easier and wieldy 
used methods which repeatedly achieve results with high 
accuracies and are often faster to implement. Khaledian 
and Miler (2020) compared various ML models in digital 
soil mapping and claimed that various factors, such as sam-
ple size, covariate numbers, and learning time, affected the 
performance of the models. They accentuated that ANN 
models were more powerful when the datasets were large, 
and for a dataset less than 100, RF, SVR and CB were more 
efficient.    

3.3. Relative importance analysis of covariates

The relative importance (RI) analysis for the best per-
forming model and scenario in predicting SAS indices is 
visually depicted in Fig. 4. The findings revealed that soil 
properties, RS data, and topographic data significantly 
influenced the variability of the SAS indices. According 
to Fig. 3, SOM, clay, CNRs, and TWI were recognized as 
four top covariates for predicting SAS indices by explain-
ing 59, 58, and 60% of variability in MWD, GMD, and 
WSA, respectively. SOM and clay are two important prop-
erties that affect the stability of soil aggregates, because 
a large portion of SOM contains particulate organic mate-

rials (Soinne et al., 2016), and they are substantially 
influenced by land use and land management. Research 
conducted by Liu et al. (2023) highlighted the crucial 
role of SOM in controlling soil aggregation. Djukic et al. 
(2010) found that changes in precipitation, temperature, 
vegetation types, and SOM decomposition greatly impact-
ed SOM pools with elevation. The bonding between clay 
particles and organic matter plays a vital role in SAS, as 
demonstrated by Hati et al. (2007). Moreover, an increase 
in clay and organic matter content in soil enhances resist-
ance in SA (Annabi et al., 2017). Khazaei et al. (2008) also 
emphasized the significant influence of SOM, clay, and 
calcium carbonate on SAS. Overall, organic matter plays 
a key role in enhancing soil structural stability through 
such mechanisms as increasing hydrophobicity and parti-
cle adhesion. Several studies (Annabi et al., 2017; Chaney 
and Swift, 1984; Chenu et al., 2000; Kavdir et al., 2004) 
confirm the substantial impact of SOM and clay on SAS 
indices. Among the topographic attributes, topographic 
wetness index (TWI) had a high contribution to predict-
ing SAS indices, as shown in Fig. 4. Cantón et al. (2009), 
Tang et al. (2010), and Nsabimana et al. (2020) revealed 
that TWI, elevation, and slope played a significant role in 
the spatial distribution of SAS. Additionally, topography 

Ta b l e  7. Validation criteria for prediction of aggregate stability 
indices of all models for scenario 3 (S3)

ML model R2 CCC RMSE nRMSE(%)

MWD

RF 0.40 0.44 0.63 60

CB 0.38 0.45 0.62 59.04

SVM 0.44 0.41 0.70 66

ANN 0.25 0.39 0.23 65.71

K-NN 0.15 0.25 0.70 66.66

GMD

RF 0.42 0.53 0.38 44.70

CB 0.50 0.62 0.35 40.69

SVM 0.46 0.50 0.44 51.76

ANN 0.21 0.37 0.21 58.33

K-NN 0.14 0.25 0.47 55.29

WSA

RF 0.41 0.52 11.66 22.94

CB 0.32 0.54 11.95 20.68

SVM 0.38 0.51 13.90 27.35

ANN 0.2 0.33 14.08 42.66

K-NN 0.19 0.22 15.36 30.22

Explanations as in Table 5.

Ta b l e  8. Validation criteria for prediction of aggregate stability 
indices of all models for scenario 4 (S4)

ML model R2 CCC RMSE nRMSE(%)

MWD

RF 0.86 0.87 0.33 31.42

CB 0.77 0.83 0.38 36.19

SVM 0.73 0.8 0.39 37.14

ANN 0.11 0.19 0.34 97.14

K-NN 0.11 0.16 0.80 76.19

GMD

RF 0.8 0.84 0.26 30.59

CB 0.78 0.84 0.27 31.76

SVM 0.74 0.82 0.30 35.29

ANN 0.15 0.22 0.30 83.33

K-NN 0.16 0.20 0.55 64.70

WSA

RF 0.54 0.68 10.55 20.75

CB 0.51 0.62 10.04 19.75

SVM 0.53 0.65 10.22 20.11

ANN 0.08 0.17 0.28 84.84

K-NN 0.02 0.11 15.61 30.71

Explanations as in Table 5.
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has vital impacts on other soil properties and vegetation 
distribution, which inevitably influence SAS. For instance, 
Adhikari et al. (2018) emphasized the critical role of 
parameters derived from DEM in the spatial distribution 
of soil properties that regulate SA. Moreover, the results 
of Wang et al. (2023) demonstrated significant differ-
ences in soil functions among different land use types and 
slope positions, highlighting the impact of slope position 
on SA. Furthermore, the TWI, as a physical indicator of 
the influence of regional topography on runoff flow and 
water storage, has been shown to be the most important 
variable for predicting SOC (Taghizadeh-Mehrjardi et 
al., 2016; Tajik et al., 2020). The Carbonate Normalized 
Ratio derived from Sentinel satellite (CNRs) was found to 
be a proxy for RS data in predicting SAS indices (Fig. 3). 
Additionally, RS data and its derivative covariates, along 
with topographic attributes, have been identified as sig-
nificant predictors for predicting SAS (Zeraatpisheh et al., 
2020; Jones et al., 2021). RS spectral data reflects land 
surface conditions and is relevant for exploring soil proper-
ties, such as SOC, soil moisture, and soil texture (Browning 
and Duniway, 2011). Several scholars have confirmed the 
influential role of RS data in predicting soil properties and 
SA aggregation (Minasny et al., 2013; Zeraatpisheh et al., 
2019; Tajik et al., 2020, Matinfar et al., 2021; Mahjenabadi 
et al., 2022). The CNR.s index was reported as the third 
most important predictor for MWD and GMD and the 
fourth for WSA, indicating the crucial contribution of car-
bonate-rich parent materials to SAS indices viability. This 

index is the consequence of soil carbonate effects on soil 
aggregation and ultimately on MWD, GMD, and WSA. 
Following the CNRs among the RS indices, the bright- 
ness index, DVI, NDVI, and TSVI with different weights 
had significant contributions to explaining the variability 
of MWD, WSA, and GMD. Vegetation indices are regarded 
as proxies for native vegetation cover that directly or indi-
rectly influences SAS indices (Jones et al., 2021). Overall, 
the results of the covariate importance analysis showed that 
soil properties, topographic data, and RS data derived from 
Sentinel 2 in the last scenario (S4) had a high contribution 
to explaining the variability of SAS and their estimation at 
the watershed scale. In this regard, Khosravani et al. (2023) 
investigated the prediction of SOC and soil properties in 
two scenarios and showed that soil variables along with 
environmental covariates improved the accuracy of MLMs, 
compared to the scenario without soil properties. Similarly, 
Zeraatpisheh et al. (2021) demonstrated that soil and RS 
covariates were recognized as the most important driving 
factors of the SAS. Also, Kamamia et al. (2021) found that 
soil covariates, remote sensing, and DEM variables were 
recognized as the most effective factors in explaining MWD 
in Kenya.    

3.4. Spatial prediction of soil aggregate stability 
with uncertainty estimates

Since the RF model demonstrated high accuracy in pre- 
dicting SAS indices, we utilized spatial prediction and 
uncertainty maps to illustrate the predicted SAS indices 
using this model and associated uncertainty maps for three 

Fig. 4. Relative importance of environmental covariates (%) for predicting SAS indices for the best prediction model in scenario 4 (S4).

Importance (%) Importance (%) Importance (%)
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studied indices. As shown in Fig. 5a, the spatial predic-
tions of MWD in the northeastern, northwestern, some 
southeastern, and southwestern areas of the study region, 
characterized by higher altitude and pasture land with 
good vegetation cover, exhibit the highest MWD contents. 
Conversely, the central and western regions, dominated by 
agricultural land use, particularly long-term cultivation, and 
pastures with poor vegetation, show the lowest MWD val-
ues. Several scholars reported that intensive cultivation and 
tillage practices led to the destruction of macro-aggregates 

and the enhancement of micro-aggregates, and subsequent-
ly lowering MWD (Ayoubi et al., 2012; Weidhuner et al., 
2021; Ferreira et al., 2023). 

To assess the model’s uncertainty in predicting MWD, 
we calculated the ratio of measured soil values within the 
90% prediction interval to the average prediction interval 
(Shrestha and Solomatine, 2006). Ideally, 90% of obser-
vations should fall within the defined prediction interval 
with a 90% confidence level, and the interval should be as 
narrow as possible. This uncertainty analysis partly confirms 

Fig. 5. Spatial prediction of different SAS indices for the best prediction model in scenario 4 (S4): a) mean weight diameter (MWD) 
predicted by the random forest (RF) model, b) uncertainty map(PI-MWD), c) the geometricmean diameter (GMD) predicted by the ran-
dom forest (RF) model, d) Uncertainty map(PI-GMD), e) water-stable aggregates (WSA) predicted by the random forest (RF) model, 
f) uncertainty map (PI-WSA).

a)

c)

e)
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the model’s ability to predict MWD, as shown in Fig. 5b. 
Additionally, Fig. 5c illustrates the spatial prediction of 
GMD using the RF model, indicating higher values in the 
eastern and northwestern parts, with lower values in the 
central and western areas due to agricultural practices. 
Figure 5d demonstrates the high accuracy of the model’s 
prediction uncertainty map for this index. Furthermore, 
Fig. 5e displays the WSA prediction map, the highest val-
ues are noted in the areas under pasture land use and the 
lowest values are recorded in the agricultural land and the 
barren areas, respectively. The destruction of aggregates 
and their transformation into fine aggregates in the arable 
land reduces the SAS due to agricultural operations. On the 
other hand, the wetting of the soil aggregates in these land 
use systems causes air to be trapped between the soil aggre-
gates and increases the dispersion of clay particles, and as 
a result, WSA decreases (Gholoubi et al., 2019). However, 
in pasture land use, there are more stable aggregates due to 
the greater content of organic carbon and clay, structural 
porosity, and a lack of cultivation. The uncertainty map of 
the RF model for the WSA index is shown in Fig. 5f. The 
highest values of SAS in the pasture soils are in accordance 
with high clay and higher organic matter contents in these 
soils that enhance the aggregation, while all the three indi-
ces had the lowest values in the agricultural and barren soils 
with lower clay and organic matter levels.

Overall, the SAS assessment is a function of the amount 
of carbon in the soil and that, in turn, is a function of the 
input of plant residues and their loss from the soil (Fuentes 
et al., 2004). In pasture soil, due to a lack of cultivation and 
higher content of plant residues, there is a balance between 
the decomposition of SOM and the accumulation of plant 
residues. However, this balance is disturbed in arable lands 
because of the harvest of plant biomass and the lack of 
a return of plant residues to the soil (Wang et al., 2014). 
Also, in arable lands, tillage operations cause the mixing 
of the lower layers of the soil with a lower percentage 
of organic carbon with the surface soil containing more 
organic carbon, and as a result, they cause a decrease in 
soil organic carbon, which plays a great role in flocculating 
soil particles and then stabilizing the soil aggregate (Tejada 
and Gonzalez, 2008). Many studies showed that long-term 
cultivation and agricultural practices could decrease the 
amount of SOM (Solomon et al., 2002; Tajik et al., 2019a, 
2019b) and, consequently, decline soil aggregate stabili-
ty indices. Similarly, Celik (2005) found 61% decreases 
in MWD for the surface layer, and Caravaca et al. (2004) 
reported 40% decreases in WSA in cultivated soil, com-
pared with the natural forest soil. 

Generally, the results showed that, in general, MLMs 
have a high ability to predict the SAS indices at the water-
shed scale. They accurately predicted a range of the SAS 
indices using environmental variables in combination with 
easily measured soil properties, such as clay and SOM. 
It seems that using satellite images with higher spectral 

and spatial resolution as well as DEM with higher spatial 
resolution enhance the spatial prediction of SAS at the 
watershed scale. 

4. CONCLUSIONS

This study aimed to employ five multi linear regressions 
to predict the spatial distribution of soil aggregate stabi-
lity indices of the surface soil (0-15 cm depth) under four 
scenarios combining various auxiliary variables, such as 
topographic attributes, remote sensing and thematic maps, 
with easily available soil properties in northwestern Iran.

The results of the validation showed that the random for-
est model in scenario 4 (S4) exhibited very well predictions 
for mean weight diameter and geometric mean diameter. 
However, R2 = 0.54 for water-stable aggregates is definitely 
not a good achievement. These results confirmed the potential 
of the random forest model in digital soil mapping studies, and 
the combinations of a series of auxiliary variables that cover 
a high range of soil forming factors have higher efficacy for 
predicting complex variables such as soil aggregate stabil-
ity. The uncertainty analysis of the prediction maps further 
confirmed the RF model’s accuracy and reliability in pre-
dicting these indicators. 

Among the selected covariates, soil properties, remote 
sensing data, and topographic attributes emerged as the 
most influential factors in predicting soil aggregate stabil-
ity indicators in unobserved areas. Specifically, soil organic 
matter and clay content demonstrated a significant influ-
ence in predicting soil aggregate stability. It is essential to 
acknowledge that, while these covariates captured a sub- 
stantial portion of spatial variation in soil aggregate sta-
bility, they may not encompass all factors influencing soil 
aggregate stability. Furthermore, the soil aggregate stabil-
ity maps highlighted the significant role of land use in soil 
aggregate stability, particularly through the influence of 
organic carbon. The higher content of soil organic matter 
and clay in pasture soils, compared to arable land, under-
scored the impact of land use on soil organic matter and soil 
aggregation.

In a broader context, these findings emphasize the 
potential of mapping methods as a viable approach for 
modeling soil aggregate stability indices, thereby facilitat-
ing improved management and erosion control in the study 
area. This underscores the broader applicability of such 
modeling approaches in enhancing soil quality and sustain-
ability across diverse geographical regions.
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