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A b s t r a c t. Learning about potential land uses is necessary 
to make the best use of land resources due to ongoing temporal 
change caused by human activity. The study uses Landsat 5 and 
8 images to investigate changes in land cover, especially agricul-
tural land, in Shanghai, China over the last 20 years in 5-year 
intervals due to urbanization. Also, through the calculation of 
environmental indices of the earth’s surface, such as normalized 
difference vegetation index, normalized difference built-up index, 
normalized difference water index, emissivity, thermal radiance, 
and land surface temperature, the changes in their values in rela-
tion to the land cover changes were investigated. To capture the 
nature of the changes that have occurred, three other major land 
covers, such as urban, vegetation, and water classes, were also 
monitored in parallel with agricultural lands. Land cover and land 
surface temperature changes were also predicted for 2030 using 
the Markov chain method and GBM machine learning. Based on 
the results from 2002 to 2020, the agricultural and other land cov-
ers of this city underwent significant changes, and most of the 
agricultural lands have been lost in favor of the urban expansion. 
Consequently, the class for urban and impervious areas, has grown 
by 33.87%, making the class with the largest overall positive 
growth and, on the other hand, the agricultural land class, which 
had the largest negative growth at 57%, had a fall. Moreover, 
despite the increase of 10.5% in 2020 in the class of vegetated 
areas, the urban area’s water class, water body class, has grown 
by 16.4%. The land cover prediction map predicts areas in water 
body class and urban and impervious areas to rise, while agricul-
tural land class and vegetated areas will contract. The normalized 

difference vegetation index index shows a 58.54% decline, while 
the normalized difference built-up index and normalized differ-
ence water index indices and land surface temperature values 
increase. There is a strong correlation between the normalized 
difference vegetation index, normalized difference built-up index, 
normalized difference water index, and thermal radiance indi-
ces. The results of prediction and estimation of land cover and 
surface temperature also indicate reduction of agricultural land 
for the benefit of increasing urban land and a parallel increase 
in land surface temperature in 2030. The results of this research 
can represent the changes that have occurred and their effects as 
well as a roadmap for planning and policymaking in the future of 
Shanghai’s environment for managers and planners.

K e y w o r d s: Agricultural land changes, thermal radiation, 
emissivity, normalized difference vegetation index, normalized 
difference build-up index, normalized difference water index

1. INTRODUCTION

Due mostly to human activity, the land use pat-
tern is subject to processes of ongoing temporal change 
(Shayegan et al., 2013). Finding out about prospective land 
uses seems to be required in order to make the optimum 
use of land resources (Sharifi et al., 2013). A crucial tool 
for studying land use/land change (LU/LC) and evalu-
ating the potential for new land uses is the multispectral 
imagery and remote sensing technology, which improves 
our understanding of the Earth’s environment (Omidvar et 
al., 2013, Mansourmoghaddam et al., 2022a). For large-
scale, economically viable mapping of agricultural land, 
remote sensing is often a very useful technique (Knauer et 
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al., 2017, Kumhálová and Matějková, 2017). Urbanization 
has altered the natural aspect of the Earth’s surface by intro-
ducing new land uses and coverings amid diverse shifts in 
land use. Modern cities must have impermeable surfaces, 
such as roads, buildings, and other structures (Alberti and 
Marzluff, 2004; Gupta et al., 2020). The direct/indirect 
LU/LC and their relationship to climatic factors and the 
economic possibilities of the land have been altered by the 
fast rise of impermeable landscapes (Rousta et al., 2018; 
Wang et al., 2018). Urban heat islands (UHI), which are 
places in cities with temperatures that are 2 to 5 degrees 
higher than the average of the nearby towns or villages, are 
the result of changes in those relationships and heat buildup 
(Kaloustian and Diab, 2015; Ackerman, 1985). The wellbe-
ing of city residents as well as the adaptation of biota to 
the climate of urban areas are at risk due to the negative 
effects of thermal islands on nature and urban hydrology 
(He, 2019; He et al., 2019; Qiao et al., 2020; Grimm et 
al., 2008; Coseo and Larsen, 2014; Moniruzzaman et al., 
2021). Hence, urban planning, policymaking, and devel-
opment strategies must take into account the geographical 
and temporal characteristics of surface heat islands (Jaber, 
2018; Hewitt et al., 2014; Ruijsink, 2015). Krishna (1972) 
initially explored the impact of heat buildup in cities (Amiri 
et al., 2009).

About 4% of China’s entire agricultural land and 6.5% 
of its total forest land were put to other purposes between 
1979-1981 and 1989-1991. An estimated 333 000 ha of agri- 
cultural land are transformed annually for industrial, com-
mercial, and housing uses, according to estimates from the 
Chinese Academy of Sciences (Institute, 1995; Seto et al., 
2002). According to Smil (1993), there are estimates that 
between 3 and 6 million a of agricultural land were convert-
ed into urban areas due to economic growth in the 1990s 
(Smil, 1993). According to Li and Yeh’s (1998) research, 
another significant study, the redevelopment of land in one 
Guangdong Province county has increased due to urbanization 
(Li and Yeh, 1998). Unfortunately, accurate area estima- 
tes of the changes in land use over a significant portion of the 
china are unavailable, and the motivations for these chan- 
ges in land use are not well-known. Owing to the propen-
sity to exaggerate productivity and underestimate the area 
of agricultural land, official figures on cultivated land and 
land-use are likely biased (Smil, 1995; Seto et al., 2002).

On the contrary, urban areas serve as the primary loca-
tions for employment, education, and health care, drawing 
more people there and causing cities to grow quickly, 
which in turn causes even more significant changes in LU/
LC (Jaber, 2018). Urban sprawl is a phenomenon brought 
on by the fast growth of cities and is frequently associated 
with single-use zoning, low-density housing, and low-rise 
buildings. Urban renewal is employed to stop it (Hong 
and Hong, 2016; Liu et al., 2019). Urban renewal refers 
to the reconstruction and renovation of suburban, commer-
cial, industrial, and residential districts in order to enhance 

local vibrancy and a sense of place (Deakin and Allwinkle, 
2007; Fei and Jian-ming, 2011). Commercial, residential, 
office, or even recreational complexes can take the place of 
certain suburban neighborhoods, stale manufacturing, and 
polluting facilities. Slums and abandoned homes can be 
upgraded to become residential neighborhoods of a much 
better level, or they can be removed and replaced with 
public spaces like green parks, stores, and parking lots. 
City restoration is progressively taking the center stage 
in urban planning and management of sustainable urban 
growth because it may help increase the effectiveness of 
urban land use and enhance the urban environment (Hou 
et al., 2018). Yet, there are currently relatively few stud-
ies on how urban regeneration affects surface temperature 
(Peng et al., 2015; Hou et al., 2018). For instance, using 
data from the Advanced Spaceborne Thermal Emission 
and Reflection Radiometer’s Worldview High-Resolution 
imaging, the relationship between urban renewal and sur-
face temperature variations over time has been examined 
(ASTER) (Pan et al., 2019; Qiao et al., 2020).

Many studies on the use of thermal sensing in urban 
settings have been conducted recently. The research on the 
connections between the components of the Earth’s sur-
face, flux, and energy balance, or the relationship between 
air temperature and the earth’s surface temperature are only 
a few of the many investigated issues related to surface tem-
perature that are noteworthy (Xiao and Weng, 2007; Piringer 
et al., 2002; Grimmond, 2006; Mansourmoghaddam et al., 
2022c). It has also been calculated that vegetation abun-
dance and land surface temperature (LST) are related (Weng 
et al., 2004; Islam and Ma, 2018; Wu et al., 2015; Guha and 
Govil, 2020; Rousta et al., 2020). The results demonstrate 
a negative correlation between land surface temperature and 
the cooling effect of green spaces (Jiang and Tian, 2010). 
Additionally, a significant correlation between LST and the 
normalized difference built-up index has been found nor-
malized difference built-up index (NDBI) (Rousta et al., 
2018). A number of further studies have looked at how vari-
ations in land use/land cover (LU/LC) affect land surface 
temperature (LST) (Carlson and Arthur, 2000; Chen et al., 
2006; Xiao and Weng, 2007), and it turned out that these 
characteristics had a positive correlation, resulting in the 
development of urban heat islands (UHI) (Jiang and Tian, 
2010). The geographical and temporal divergence of LST 
between distinct city locations can be used to gauge the 
intensity of UHI (EPA, 2017). This may be accomplished 
by converting At-Sensor Brightness Temperature (ASBT) 
data from Landsat thermal bands to LST, which, when 
adjusted and transformed to real land surface emissivity, 
is associated with the temperature of the surrounding air 
(Lin et al., 2016; Nichol, 1996; Chander et al., 2009; Lo 
and Quattrochi, 2003; Jaber, 2018). The size and intensity 
of urban heat islands will grow as land use changes related 
to urbanization processes are predicted to continue (Qiao et 
al., 2020). Thus, it is crucial to research how heat islands 
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are affecting cities today and in the future. As a result, it 
is interesting to look at how urban LU/LC and LST trends 
interact. Modeling is crucial to achieving this goal and 
supporting efficient planning (Borana and Yadav, 2017). 
Certain cities have unplanned, erratic, and fast growth 
that commonly has negative environmental and socio-
economic effects on people’s quality of life (Moore et al., 
2003), urban ecology (Grimm et al., 2008), urban warm-
ing (Grimmond, 2007), agricultural lands (Kurucu and 
Chiristina, 2008), hydrological factors, and ground micro-
climate (Carlson and Arthur, 2000). Shanghai in China is 
an example of such a metropolitan city, which at the same 
time is struggling with environmental and anthropogenic 
heat emitted in the last decade resulting from considerable 
LU/LC changes associated with the need for more land and 
thus the reduction of agricultural land for the expansion of 
the urban land portion with the rapid growth of the popula-
tion. This study’s objectives are to: (i) present changes in 
the agricultural land and three other major LU/LC classes 
that have taken place in Shanghai over the previous four 
decades (split by each five-year period), and (ii) statistical-
ly evaluate the environmental and thermal impacts of these 
changes; iii) using landscape metrics, investigate the inter-
action between agricultural and urban land LU/LC classes 
and trends in the changes in surface thermal indicators; and 
iv) prediction and estimation of whether the city and its 
thermal condition is going to be related to changes in agri-
cultural land and other LU/LC classes using remote sensing 
data, statistical methods, and a machine learning model. 

The results of the study may provide very useful informa-
tion, which could help to manage and plan the expansion of 
residential land fostering environmental sustainability and 
could be a representation of the past to present situation as 
well as a roadmap for planning and policymaking in the 
future of Shanghai for managers and planners.

2. MATERIAL AND METHODS

2.1. Study area

Shanghai Metropolis is the subject of the study. Its 
coordinates are: latitude 31°32′N, longitude 120°52′E, and 
longitude 121°45′E (Fig. 1). The average annual tempera-
ture in this region is around 15°C, and it has a northern 
subtropical monsoon climate. In the summer, the highs are 
typically 28°C, while in the winter, they are 4°C. The annu-
al average precipitation is between 1 000 and 1 200 mm, 
with May and September typically receiving roughly 60% 
of the total. Geographically, the region is mostly situated at 
the Yangtze River basin, an alluvial terrace. The region’s 
elevation varies from 1 to 103.4 m, with an average of 4 m 
(Li et al., 2012).

2.2. Data collection

In this research, Landsat-5 and Landsat-8 level-2 (upper 
atmospheric reflectance) images for 2002, 2005, 2010, 
2015, and 2020 were used to study land cover changes in 
Shanghai, China. Some of these images used for classifi-
cation are from the US Geological Survey website (www.

Fig. 1. Location of Shanghai as a study area in a) China and b) enlargement of the city area along with c) false color composite 
Landsat-8 image of the city in 2020 (5, 4, 3) composite.

(a)

(b)

(c)
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usgs.nasa.gov), and the images used to calculate environ-
mental indicators were collected and processed for seasonal 
averaging in the Google Earth Engine. The specifications of 
the images used are presented in Table 1. Also, the overall 
visual representation of the research methodology is shown 
in Fig. 2.

2.3. Data preprocessing
A rough estimate of the surface’s spectrum reflectance 

as would be seen from the ground if air absorption or 
scattering did not exist was provided by Landsat Level-2 
images. Surface Reflectance products were created by the 
Earth Resources Observation and Science (EROS) Center. 
By adjusting satellite images for atmospheric effects utiliz-
ing the EROS Scientific Processing Architecture (ESPA) 
on-demand interface, Level-2 data products were created. 
Landsat 8 Surface Reflectance data (LaSRC) were gene- 
rated using the Land Surface Reflectance Code. The aero-
sol inversion experiments were carried out by LaSRC 
using a unique radiative transfer model, additional climatic 
data from MODIS, and the coastal aerosol band. The view 
zenith angle was also hardcoded to “0” by LaSRC, and the 
calculations for the atmospheric adjustment used both the 
solar zenith and view zenith angles (USGS, 2018). The 
scale factor coefficients shown in Table 2 were applied to 
the images as an initial correction.

2.4. LULC map
2.4.1. Derivation of LULC map

This research used the Gradient Tree Boosting GTB 
algorithm in order to prepare a land cover classification 
map. Boosting is “one of the most powerful learning ideas 
introduced in the last twenty years (Hastie et al., 2009; 
Krauss et al., 2017). By using the model’s residuals rath-
er than the response variable to fit a decision tree, GBT 
increases predictive power. A new tree is periodically add-
ed to the fitted model to update residuals. In GBT, trees are 
grown in a sequential manner, with each new tree being 
grown to correct the flaws in the preceding tree. Each step 

includes the application of a learning rate multiplier to 
help prevent the models from becoming overfit (James et 
al., 2013; Rushin et al., 2017). In this research, in order to 
implement this algorithm, the number of trees was set to 
300 because after that no increase in accuracy was achieved 
in the classification results.

2.4.2. Prediction of LULC map using the Markov model 

The most popular method for modeling LU/LC changes 
is the Markov model (Kumar et al., 2014). Based on the 
understanding of the states that came before the predicted 
one, the Markov approach predicts the future state of a sys-
tem. A transition matrix incorporating changes in LU/LC 
between previous periods is built (Logsdon et al., 1996) 
in order to forecast changes in LU/LC for the next period 
(Kumar et al., 2014). A straightforward way for examining 
and researching intricate dynamical systems is provided by 
the Markov model (Muller and Middleton, 1994; Guan et 
al., 2008; Dadhich and Hanaoka, 2010; Zhang et al., 2011; 
Kumar et al., 2014). Many investigations have confirmed the 
Markov approach’s accuracy (Jianping et al., 2005; Zhang 
et al., 2011; Kumar et al., 2014; Mansourmoghaddam et 
al., 2021). The Markov model was employed in the study to 
forecast the LULC changes for Shanghai in 2030.

2.4.3. Accuracy assessment
2.4.3.1. Accuracy assessment of LULC map

Using a stratified random sample strategy, the classi-
fication accuracy for each LU/LC class was determined. 
1000 pixels were randomly selected from the Landsat data-
sets for each class at each of the four time periods (Bokaie 
et al., 2016; Pal and Ziaul, 2017). The user, producer, over-
all accuracy, and the Kappa coefficient were all calculated 
to assess the classification’s precision (Ziaul and Pal, 2016; 
Sultana and Satyanarayana, 2018; Sexton et al., 2013). The 
Kappa test is a nonparametric measurement used to assess 
the degree of correspondence between user-assigned and 
specified values (Ishtiaque et al., 2017). As a gauge of the 
accuracy of measurement for binary features, the kappa 
coefficient is frequently utilized. The Kappa coefficient’s 
value ranges from -1.0 to 1.0, with 1.0 denoting perfect 
agreement between user-assigned and specified values, 0.0 
denoting agreement no better than that predicted by chance, 
and negative denoting agreement lower than that expected 

Ta b l e  1. Characteristics of images used in the current research, along with the spatial resolution (SR) and by the separation of the 
images used for classification (CL) and the images used for environmental indicators (EI)

Cloudiness
Month date

SR (m)
Bands usedSatellite/

Sensor
Studied
year E)CLEICL

> 10%

06 (Jun)
07 (Jul)

08 (Aug)
09 (Sep)

08
30

2, 3, 4,
6, 7

1, 2, 3, 4,
5, 6, 7Landsat-5 /TM

2002
2005
2010

093, 4, 5,
6, 10

2, 3, 4, 5,
6, 7, 10Landsat-8 /OLI2015

2020

Ta b l e  2. Scaling factor of Level-2 Landsat-8 images (USGS, 
2020)

Data type Scaling factor
Surface reflectance 0.0000275  + -0.2
Surface temperature 0.00341802  + 149.0
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by chance. The sampled population’s actual prevalence of 
the features, together with those of individuals’ sensitivity 
to and specificity for each of the two categories, all contrib-
ute to the calculation of the Kappa coefficient (Thompson 
and Walter, 1988).

2.4.3.2. Accuracy assessment of LULC prediction 

In order to evaluate the efficacy of the created Markov 
models for LU/LC and LST prediction, the LU/LC and 
LST for 2015 and 2020 were predicted, and the actual maps 
created from satellite images were compared with the pre-
dicted data. The results were contrasted with actual values 
using the 2 test to make sure the model was appropriate 
(Kumar et al., 2014):

(1)

where: E is the map coming from the prediction and O is 
the map derived from the satellite image.

2.5. Environmental surface indices

2.5.1. Normalized difference vegetation index (NDVI)

In this research, normalized difference vegetation index 
(NDVI) was used to monitor changes in vegetation values. 
The ratio of the red (R) and near-infrared (NIR) bands on 
the Landsat-8 satellite is known as the NDVI index, and 
it is frequently used to assess the condition of vegetation 
(Avdan and Jovanovska, 2016; Li et al., 2017; Rousta et al., 
2022; Mansourmoghaddam et al., 2022d). Leaf area index 
(LAI) and production pattern (Dutta et al., 2015; Tarpley et 
al., 1984), which are based on vegetation class, changes in 
land use and land cover, water stress, vegetation phenology, 
continental land cover mapping, and chlorophyll content 
(Moulin et al., 1997; Running et al., 1995; Townshend and 
Justice, 1986), are often employed to measure the NDVI. 
Two red and near infrared bands of Landsat-5 (3,4) and 
Landsat-8 (4,5) Level-2 were utilized to generate this index. 
Following the acquisition of these images, the associated 
calibration coefficients (Table 2) were multiplied by the 
images, and the NDVI was then determined using Eq. (2): 

(2)

2.5.2. Normalized difference build-up index (NDBI)

The NDBI is a build-up index developed to maximize 
the reflectance of the SWIR band to detect built-up land 
while simultaneously reducing the reflectance of the NIR 
band to identify vegetation and damp surroundings (Rasul 
et al., 2018). The NDBI is calculated as:

(3)

where: SWIR represents the short-wavelength infrared and 
NIR represents the near-infrared band.

2.5.3. Normalized difference water index (NDWI)

Remote sensing methods make it straightforward to 
examine changes on the surface of the planet using satel-
lite data. Using the spectral water index, we looked at the 
dynamics of the surface water at several areas following 
the accident. The spectral water index is computed using 
various mathematical operations, ratios, differences, and 
normalized differences of two or more bands. Such arithme-
tic spectrum procedures also aid in the cancellation of the 
majority of noise (McFeeters, 1996; Mansourmoghaddam 
et al., 2022b) was the first to create the idea of the NDWI, 
which is calculated according to Eq. (4):

(4)

where:  G is  the reflectance in the green band and NIR is the 
reflectance in the near-infrared.

2.6. Thermal indices
2.6.1. Emissivity

The emissivity of the surface of a material is its effec-
tiveness in emitting energy as thermal radiation. The 
emissivity of a surface depends on its chemical composi-
tion and geometrical structure. Quantitatively, it is the ratio 
of the thermal radiation from a surface to the radiation from 
an ideal black surface at the same temperature as given by 
the Stefan-Boltzmann law (Trefil, 2003). The land surface 
emissivity (e) was calculated using the equation below 
(Ranagalage et al., 2018; Dos Santos et al., 2017; Estoque 
et al., 2018; Rousta et al., 2018; Mansourmoghaddam et 
al., 2021, 2022e, 2023c):

(5)

where: n = 0.004, m = 0.986 (Alberti and Marzluff, 2004; 
Mansourmoghaddam et al., 2021), and Pv denotes the vege-
tation proportion, also referred to as fractional vegetation 
cover. The vegetation proportion (Pv) was calculated as 
(Estoque et al., 2018; Sultana and Satyanarayana, 2018; 
Mansourmoghaddam et al., 2021, 2022e, 2023c):

(6)

where: NDVImin  and NDVImax are minimum and maximum 
values of the NDVI.

2.6.2. Thermal radiance

Thermal radiation is generated when heat from the 
movement of charges in the material (electrons and protons 
in common forms of matter) is converted to electromagnetic 
radiation. All matter with a temperature greater than abso-
lute zero emits thermal radiation (Meseguer et al., 2012). In 
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order to monitor the state and changes of the thermal radi-
ance of the studied area in the 20-year period, this research 
used the ST_TRAD images produced by Landsat-5 and 
Landsat-8 level-2. The values of these products were pro-
duced by converting the values of level-1 6 and 10 bands of 
Landsat-5 and Landsat-8 to radiance, respectively. The unit 
of the measurement is watts per square meter per steradian 
in each wavelength   (Falls and Dakota, 2020).

2.6.3. Land surface temperature (LST)

Equation (7) was used to determine LST, one of the 
most significant characteristics, from the brightness tem-
perature using the emissivity correction (Ranagalage et al., 
2018; Bokaie et al., 2016; Avdan and Jovanovska, 2016; 
Dos Santos et al., 2017; Estoque et al., 2018; Sultana and 
Satyanarayana, 2018; Ziaul and Pal, 2016; Rousta et al., 
2018):

(7)

where: τ is  at-sensor brightness temperature; w is the wave-
length of emitted radiance (10.8 µm Landsat 8 TIRS 10th 
band), p = (h×c) ⁄ s (1.438×102 m K), with h being the Plank’s 
constant (6.626×10-34 J s); s is the Boltzmann constant 
(1.38×10-23 J K-1); c is the velocity of light (2.988×108  m s-1), 
and e is the land surface emissivity (Mansourmoghaddam 
et al., 2024). 

Equation (8) was used to obtain the temperature value 
(brightness) at the sensor (Ranagalage et al., 2018; Bokaie 
et al., 2016; Avdan and Jovanovska, 2016; Dos Santos et 
al., 2017; Estoque et al., 2018; Sultana and Satyanarayana, 
2018; Ziaul and Pal, 2016; Rousta et al., 2018):

(8)

where: K1 and K2 are the thermal conversion constants taken 
from Landsat 8 Thermal Infrared Sensor (TIRS) metadata 
of the 10th band (Table 3).

In order to obtain the at-sensor brightness temperature 
(τ) from the thermal band, Eq. (9) was employed to convert 
the raw data into spectral radiance values (LANDSAT 8 
data users handbook, 2015):

(9)

where: Lφ is the top of atmosphere (TOA) spectral radian- 
ce (W (m-2 sr µm)), ML is a multiplicative rescaling fac-
tor dependent on the metadata for a particular band, QCal 
is the quantized and calibrated standard product’s pixel 

value (digital number), and AL is the additive rescaling 
factor dependent on the metadata for a particular band 
(Mansourmoghaddam et al., 2024).

2.6.4. Estimation of future land surface temperature

These gradient boosting machine (GBM) machine learn-
ing models were employed and evaluated to estimate LST 
in various tunings, as indicated by Mansourmoghaddam 
(2024). This method involves experimenting to determine 
the ideal hyperparameter values to optimize model perfor-
mance. For this purpose, aggregated data from two years 
were split into training, testing, and validation datasets for 
the best model selection (to enhance data variance). After 
a few runs, a reliable result was obtained by dividing the 
data into training and testing sets (ratio 85:15) using the R 
package Split (version 4.0.2). After applying the machine 
learning model to the validation dataset, the model perfor-
mance was evaluated to determine the model accuracy in 
forecasting the new dataset.

2.7. Accuracy assessment

The performance of the Markov and machine learn-
ing model was assessed using statistical metrics, namely 
root mean absolute error (RMSE), root mean square loga-
rithmic error (RMSLE), and mean absolute error (MAE) 
(Mansourmoghaddam et al., 2024). 

3. RESULTS
3.1. LULC assessment
3.1.1. Classification algorithm accuracy assessment

In order to prepare the land-cover classification map of 
Shanghai, China, a number of the most widely used image 
classification algorithms in remote sensing were evalu-
ated first. Based on this, the GTB algorithm showed the 
best performance with sampling accuracy and classifica-
tion accuracy of 0.987 and 0.890 in the overall accuracy 
and 0.985 and 0.788 in the Kappa coefficient, respectively 
(Table 4) and was used to prepare a land-cover map.

3.1.2. LULC change assessment
Thus, the land cover map of Shanghai city was extract-

ed and analyzed using the GTB algorithm for 2002, 2005, 
2010, 2015, and 2020 (Fig. 3). Based on the extracted 
information (Table 5), the land cover of this city under-
went drastic changes from 2002 to 2020. Thus, the class 
of water within the urban area, water body class (WB), 
has increased by 16.4%, from 576.6 km2 in 2002 to 671.2 
km2 in 2020. Also, the class of urban and impervious are-
as, urban and impervious areas (UIL), has increased from 
2250.9 to 3013.4 km2, with 33.87% growth, as the class 
with the highest positive growth in the entire period. On the 
other hand, the agricultural land class (AL), with 57% ne-
gative growth, as the class with the most negative growth, 
decreased from 1684.6 km2 in 2002 to 723.5 km2 in 2020. 
The class of vegetated areas (VA), increased by 1093.3 km2 

Ta b l e  3. Landsat thermal bands conversion constants

Sensor Band K1 
(W (m-² sr µm)) K2 (K)

TIRS 10 774.8 1321.0
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in 2020 compared to 989.3 km2 in 2002 (10.5% growth); 
however, this growth started in 2005 with an increase to 
1122.6 km2 and in fact had decreased by 2020 compared to 
2005, with 2.6% negative growth.

3.1.3. Accuracy assessment

In order to evaluate the accuracy of the information 
obtained from the land cover classification, the accuracy 
of the maps was evaluated (Table 6). The accuracy assess-
ment of the land-cover classified maps showed that, in all 
the 5 maps of the 5 studied periods, the sampling accuracy 
was above 0.96, and the Kappa coefficient accuracy was 
between the lowest 0.70 for the 2010 map and the highest 
0.87 for 2005.

3.2. LULC prediction
3.2.1. LULC prediction using the Markov Chain

In order to predict the Shanghai land cover changes, 
the prediction map of land cover changes for 2030 was 
calculated using the Markov chain (Fig. 4). Based on the 
information extracted from the land cover prediction map 
(Table 7), the area of two classes of water within the urban 
area (WB), and urban areas and impervious surfaces (UIL), 
will increase to 683.1 and 3 449.1 km2 with a growth of 1.77 
and 14.6%, respectively, compared to 2020. On the other 
hand, for the two classes of agricultural land (AL), and areas 
containing vegetation (VA), a negative growth of 40.4 and 
14.2% is predicted, respectively, until the area of these two 
classes reaches 431 and 938.2 km2 in 2030, respectively.

3.2.2. LULC prediction accuracy assessment

Like the land cover map of the studied years, in order 
to ensure and know the level of accuracy, the predicted 
land cover map must also be validated. In this way, the 

Ta b l e  4. Comparison of sampling accuracy assessment (SAA) and classification accuracy assessment (CAA) of different image clas-
sification algorithms considered in the research

Type Indicator RF SVM MD GTB Cart MLC

SAA
Overall 

accuracy 0.998 0.485 0.46 0.987 1 0.932

Kappa 0.998 0.362 0.332 0.985 1 0.935

CAA
Overall 

accuracy 0.853 0.750 0.665 0.890 0.808 0.820

Kappa 0.768 0.619 0.538 0.788 0.690 0.791

Ta b l e  5. Area of land cover classes of Shanghai, China

Class Area (km2)
2002 2005 2010 2015 2020

AL 1684.6 1281.5 1173.0 978.3 723.5
UIL 2250.9 2490.6 2686.9 2817.0 3013.4
VA 989.3 1122.6 1021.2 1075.1 1093.3
WB 576.6 606.8 620.4 631.0 671.2

Agricultural Lands (AL), Urban and Impervious surface Lands 
(UIL), Vegetation Area (VA) and Water Body class (WB), classes.

Fig. 2. Flowchart of the present study. 

Ta b l e  6. Sampling Accuracy Assessment (SAA) and Classifi- 
cation Accuracy Assessment (CAA) of land-cover maps

SAA Overall accuracy Kappa
Year SAA CAA SAA CAA
2002 0.98 0.77 0.98 0.71
2005 0.97 0.87 0.96 0.78
2010 0.98 0.76 0.98 0.70
2015 0.98 0.85 0.98 0.75
2020 0.99 0.79 0.99 0.74
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forecasting steps were repeated for 2020 and the predicted 
land coverage map was obtained (Fig. 5). The results of the 
prediction of areas of land cover classes for 2020 showed 
the difference in area at the highest of 95.4 km2 and the 
lowest of 13.5 km2 with RMSE 0.595 and MAE 0.496 
(Table 8). 

3.3. Assessment of environmental indices 
3.3.1. Assessment of changes in surface indices 

In order to monitor the changes in the land surface indi-
ces of the studied area in the same intervals as the land 
cover changes, the maps of three indices NDVI (Fig. 6), 

Fig. 3. Land cover map of Shanghai, China for the years 
2002, 2005, 2010, 2015 and 2020 by Water Body class (WB), 
Agricultural Lands (AL), Vegetation Area (VA).

Fig. 4. Predicted land cover map of Shanghai for 2030 (up) along 
with the change map compared to 2020 (bottom) for classes Water 
Body class (WB), Agricultural Lands (AL), Vegetation Area (VA) 
and Urban and Impervious surface Lands (UIL).

Ta b l e  7. User’s accuracy and producer’s accuracy for each clas-
sified land cover class

Year
User accuracy Producer’s accuracy

AL UAI VA WB AL UAI VA WB
2002 71.5 87.1 96.2 97.1 72.8 86.2 93.6 98
2005 72.5 88.3 97.8 98.8 72.9 89.9 98.7 97.8
2010 71.9 87.1 95.1 98.2 68.9 90.1 91.5 97.3
2015 76.9 89.6 95.4 97.8 75.8 92.2 91.9 98.9
2020 73.1 87.1 94.2 97.4 74.4 90.4 95.8 97.9

Explanations as in Table 5.

Fig. 5. Predicted land cover map of Shanghai for 2020 (up) along 
with its actual classified land cover map (bottom) in order to eval-
uate the accuracy of the prediction algorithm for classes Water 
Body class (WB), Agricultural Lands (AL), Vegetation Area (VA) 
and Urban and Impervious surface Lands (UIL).
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NDBI (Fig. 7), and NDWI (Fig. 8) for the years 2002, 2005, 
2010, 2015, and 2020 were calculated. The statistical infor-
mation extracted from these indices (Table 9) indicates a 
58.54% decrease in the NDVI index at the beginning of 
the period in 2020 compared to the end of the period in 
2002. The highest intensity of this decrease was recorded in 
2005 compared to 2002 and the lowest in 2015 compared to 
2010. On the other hand, the NDBI and NDWI index values 
increased in the same time period, with 83.33 and 75%, 
respectively, with the highest intensity in 2005 compared 
to 2002 and the lowest in 2020 compared to 2015 for NDBI 
and the highest intensity in 2010 compared to 2005 and the 
lowest in 2015 compared to 2010 and 2005 compared to 
2002 for NDWI.

3.3.2. Prediction of changes in surface indices

The predicted values for the environmental indicators 
of the studied area (Table 10) for 2030 indicate a 17.65% 
decrease in the average NDVI and an increase of 22.73 and 
25% in the average NDBI and NDWI indices, respectively. 

Ta b l e  8. Predicted area for the studied land cover classes in 
2030, compared to other studied years

Area 
(km2) 2002 2005 2010 2015 2020 2030

AL 1684.6 1281.5 1173.0 978.3 723.5 431.0
UIL 2250.9 2490.6 2686.9 2817.0 3013.4 3449.1
VA 989.3 1122.6 1021.2 1075.1 1093.3 938.2
WB 576.6 606.8 620.4 631.0 671.2 683.1

Explanations as in Table 5.

Fig. 7. NDWI index maps for Shanghai as the study area for the 
years 2002, 2005, 2010, 2015, and 2020.

Fig. 6. NDVI index maps for the years 2002, 2005, 2010, 2015 
and 2020 of Shanghai as the study area.

Fig. 8. NDWI index maps for the years 2002, 2005, 2010, 2015 
and 2020 of Shanghai as the study area.
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In all the indicators, a decrease in the STDV of the indica-
tors is observed in 2030, which indicates that the range of 
values has become smaller.

3.3.3. Assessment of thermal indices 

In this section, the results of the changes in the thermal 
indices of the studied area are discussed. Since the main 
purpose of the results of this section is to identify changes 
that occurred over time and to estimate the future situation, 
only the results of the first and last studied periods and the 
estimation period are presented.

3.3.3.1. Assessment of emissivity changes 

In order to compare the changes in the emissivity of 
Shanghai in the 20-year period, this index was calculated 
and evaluated for two years: 2002 as a representative of 
the beginning of the period and 2020 as a representative 
of the end of the study period (Fig. 9). The analysis of the 
information about this index during these years (Table 11) 
showed that the minimum of emissivity for the WB class 
and its maximum for the AL class did not change. In turn, 
the minimum of the other classes decreased and was the 
lowest in AL and VA with -0.05% and the highest in UIL 
with -3.872%. Additionally, the maximum of two classes: 
WB and VA decreased by -0.069 and -0.098%, respectively, 

and the maximum of UIL increased by 0.405%. On the oth-
er hand, the mean of emissivity increased in all the classes, 
and this increase was the lowest for the WB class with 
a 0.72% increase and the highest for the AL class with 
a 3.11% increase. The UIL class exhibited the second 
largest increase in the mean of emissivity with a 2.031% 
increase.

3.3.3.2. Assessment of thermal radiance changes 

Thermal radiance values of this area were also calculat-
ed and evaluated based on the same emissivity perspective 
for a 20-year period in 2002 and 2020 (Fig. 10). The statis-
tical analysis of this index (Table 12) shows an increase of 
125.56, 66.01, and 77.65% of the minimum of thermal radi-
ance (TRAD) in the VA, AL, and UIL land cover classes 
in 2020 compared to 2002. In the meantime, only the WB 
class exhibited a 55.65% decrease in the TRAD minimum. 
In turn, the maximum TRAD in the VA and AL classes 
decreased by 15.74 and 6.69%, respectively, and two classes: 

Ta b l e  9. Quantitative comparison of the predicted land cover 
map of Shanghai for 2020 and its actual classified land cover map 
in order to evaluate the accuracy of the prediction algorithm for 
classes

Area 
(km2)

2020 Error

Actual Predict Different RMSE MAE

AL 723.5 789.3 -65.8

0.595 0.496
UIL 3013.4 2989.5 23.9
VA 1093.3 997.9 95.4
WB 671.2 684.7 -13.5

Explanations as in Table 5.

Ta b l e  10. NDVI, NDBI and NDWI index statistics for the years 
2002, 2005, 2010, 2015 and 2020 of Shanghai as the study area

Year
NDVI NDBI NDWI

Mean STDV Mean STDV Mean STDV

2002 0.41 0.25 0.12 0.11 0.16 0.17

2005 0.36 0.19 0.17 0.14 0.18 0.19

2010 0.25 0.19 0.19 0.14 0.23 0.19

2015 0.24 0.15 0.21 0.15 0.25 0.2

2020 0.17 0.11 0.22 0.16 0.28 0.2

Fig. 9. Emissivity maps for 2002, and 2020 of Shanghai as the 
study area.

Ta b l e  11. NDVI, NDBI and NDWI index value prediction for 
the years 2002, 2005, 2010, 2015 and 2020 of Shanghai as the 
study area

Year
NDVI NDBI NDWI

Mean STDV Mean STDV Mean STDV

2030 0.14 0.05 0.27 0.35 0.35 0.01
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WB and UIL showed an increase by 1.58 and 11.21%, 
respectively. On the other hand, the mean of TRAD of all 
classes increased, and the increase was higher by 24.46 and 
11.41% for the WB and UIL classes, respectively, and low-
er by 1.684 and 3% for the AL and VL classes, respectively.

3.3.3.3. Assessment of land surface temperature changes 

The results of the Shanghai LST analysis show that 
all the land cover classes experienced an increase in tem-
perature from 2002 to 2020 (Fig. 11 and Table 13). The 
maximum of LST in both years was recorded in the UIL 
class and its minimum in the WB class. This increase in the 
minimum of LST was the highest with 61.6% for the AL 
class and the lowest with 50% for the WB class. This pat-
tern is also present in the maximum of LST with 61.2% for 

UIL and 36.2% for jointly AL and VA. However, the mean 
of LST exhibited the highest increase with 63.2% in WB 
and the lowest with 31.5% in VA.

3.3.3.4. Estimation of future land surface temperature

Compared to 2020, the estimated LST for Shanghai in 
2030 also shows an increase in the maximum, minimum, 
and mean of LST in all the land cover classes (Fig. 12 and 
Table 14). This increase in the minimum of LST was esti-
mated at 32.1% for the UIL class as the highest and 14% 
for the VA class as the lowest. This increase in the maxi-
mum of LST was estimated at 24% for UIL as the highest 
and 15.7% for the WB class as the lowest. However, the 
mean of LST was estimated as the highest increase of 35 
and 31.9% for the VA and UIL classes, respectively, and 
17.8% for the AL class as the lowest in 2030.

Ta b l e  12. Emissivity statistics for Shanghai, for classes

LC 
type

Min Max Mean

2002 2020 2002 2020 2002 2020

AL 0.986 0.986 0.990 0.990 0.958 0.988

UIL 0.963 0.926 0.986 0.990 0.969 0.989

VA 0.986 0.986 0.990 0.989 0.978 0.987

WB 0.986 0.986 0.990 0.989 0.980 0.987

Explanations as in Table 5.

Ta b l e  13. TRAD statistics for Shanghai, for classes

LC 
type

Min Max Mean
2002 2020 2002 2020 2002 2020

AL 23.15 38.44 60.03 56.01 29.56 30.06
UIL 28.52 50.67 64.17 71.36 29.49 32.85
VA 14.85 33.50 61.19 51.55 29.98 30.88
WB -12.15 -5.39 45.45 46.17 30.85 38.39

Explanations as in Table 5.

Fig. 10. Thermal Radiance (TRAD) maps for 2002, and 2020 of 
Shanghai as the study area.

Fig. 11. Land Surface Temperature (LST) maps for 2002, and 
2020 of Shanghai as the study area.
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3.3.3.5. Assessment of the accuracy of future land surface tem-
perature estimation 

The performance evaluation results of the GBM machi-
ne learning model indicate that this model has generally 
performed well with an RMSE error of 4.2 and an MAE 
of 3.7 (Fig. 13 and Table 15). The difference between the 
performance of the model in the estimation of LST and real 
data was better by 1 and 5.4°C in the minimum and ave-
rage, respectively.

3.4. Correlation between environmental indices

The analysis of the results of calculating the correla-
tion coefficient between the land surface indices of the 
studied area (Fig. 14) showed a high correlation between 
these parameters, such that the NDVI values exhibited 
a negative correlation of over 95% with the three indices: 
NDBI, NDWI, and TRAD and a positive correlation of 
91% with emissivity. NDBI also had a positive correlation 
of 94% with the NDWI and TRAD indices and a nega-
tive correlation of 98% with emissivity. The NDWI index 
exhibited a negative correlation with emissivity and a posi- 
tive correlation with TRAD, 97 and 95%, respectively. 
The relationship between emissivity and TRAD was also 
negative with 99%. The correlation of the LST values with 
NDBI, emissivity, and TRAD was estimated as positive. 
The correlation (99.8%) was the highest with TRAD and 
the lowest (98.1%) with emissivity. However, the correla-
tion of LST with NDVI and NDWI was negative with 90.2 
and 92%, respectively.

4. DISCUSSION

This study was conducted in order to investigate and 
predict the changes in agricultural land and three major 
land cover classes and, subsequently, the indices of the 
land surface conditions in Shanghai, China, in 6 periods of 
2002, 2005, 2010, 2015, 2020, and 2030. For this purpose, 
remote sensing images were used, whose useful applica-
tion in monitoring agricultural land changes was mentioned 
earlier (Knauer et al., 2017). Based on the results obtained 
from the evaluation of what algorithm should be used, the 
GTB algorithm showed the best results among the tested 

Ta b l e  14. Land surface temperature (LST) statistics for Shanghai, for 
classes

LC 
type

LST (°C)
Min Max Mean

2002 2020 2002 2020 2002 2020
AL 12.4 32.3 25.0 39.2 18.1 36.5
UIL 20.4 41.4 24.9 64.2 22.7 47.5
VA 11.7 27.6 22.4 35.1 17.2 25.1
WB 1.1 2.2 5.2 9.7 2.1 5.7

Explanations as in Table 5..

Fig. 12. Estimated Land Surface Temperature (LST) maps for 
2030 of Shanghai as the study area.

Ta b l e  15. Estimated land surface temperature (LST) statistics 
for Shanghai, for classes

LC type

LST (°C)
Min Max Mean

2030 2030 2030

AL 41.7 49.9 44.4
UIL 61.0 84.5 69.8
VA 32.1 43.4 38.6
WB 3.1 11.5 7.5

Explanations as in Table 5.

Fig. 13. Comparison of the predicted Land Surface Temperature 
(LST) map of Shanghai for 2020 (up) along with its actual LST 
map (bottom) in order to evaluate the accuracy of the prediction 
algorithm for classes Water Body class (WB), Agricultural Lands 
(AL), Vegetation Area (VA) and Urban and Impervious surface 
Lands (UIL).
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algorithms, and this algorithm also exhibited high power 
and accuracy in previous research (Rushin et al., 2017; 
Sigrist and Hirnschall, 2019; Krauss et al., 2017). The 
Markov chain model was used to predict future land cover 
changes in Shanghai in 2030. The GBM machine learn-
ing model was used to estimate LST for 2030. With an 
RMSE of 4.2°C for 2020, it showed an adequate accuracy 
for the input data employed. In 2020, the LST prediction 
also demonstrated an acceptable level of reliability in 
comparison to the actual LST, having a mean absolute 
error (MAE) of 3.7°C. This is within the allowable error 
range of ±3°C for LST computation using the given meth-
odologies (Li et al., 2013). In several earlier studies (Liu 
et al., 2022; Mansourmoghaddam et al., 2024; Wu et al., 
2019; Keramitsoglou et al., 2013; Ghosh and Joshi, 2014), 
including geographical data, the GBM model which creates 
regression trees on each component of the data set in a com-
pletely distributed manner (Elith et al., 2008) was deemed 
an accurate and appropriate model. In earlier studies, vari-
ous machine learning models like support vector machine 
(SVM) (Khan et al., 2023), boosted regression tree (BRT), 
random forest (RF) (Han et al., 2023), and generative 
adversarial networks (GAN) (Li and Zheng, 2023) were 
likewise investigated and assessed and can be explored 
in later investigations. Regarding various approaches and 
methodologies, Markov chains and cellular automata (CA) 
are two digital-based methods for projecting the future in a 
range of fields, including ecology, land use estimation and 
urban planning, and climate change simulation (Ali et al., 
2019; Mansourmoghaddam et al., 2021, 2023c; Hussain et 
al., 2024; Luo et al., 2023).

The results showed that the reduction of agricultural 
land in favor of the urban expansion and urban land has 
been an almost permanent and clear trend in Shanghai. 

Other researchers (Seto et al., 2002) have also confirmed 
that the most land conversion in China was related to the 
conversion of agricultural land to urban areas. The area of 
two classes of vegetation (VA) and agricultural land (AL) 
and urban impervious areas (UIL) have experienced differ-
ent but almost related and irregular changes. The first is an 
irregular and decline trend of changes in growth, the other 
is a continuous but irregular decreasing trend, and the third 
is a continuous and irregular increasing trend. Usually, the 
process of changes in agricultural land was much more 
intense than the process of changes in vegetation and urban 
areas. In 2005, when the area of vegetation increased by 
13.47% compared to the previous period, agricultural land 
decreased by 23.93%. In the same year, the area of urban 
land increased by 10.65%, which may indicate that the 
share of agricultural land decreased in favor of vegetation 
and urban land. However, in this year, the mean of NDVI 
decreased by 12.2% and the mean of NDBI exhibited an 
increase of 41.67%. In 2010, when the area of both classes 
decreased by 9.03 and 8.46% for VA and AL, respectively, 
the area of UIL continued to grow and increased by 7.88%. 
It is also necessary to remember that this period was one 
of the major periods of WB class area growth. This period 
had the largest decrease in the average NDVI with 30.56% 
in the entire study period and the second largest increase in 
the mean of NDBI with 11.76% growth during the 20-year 
period. Afterwards, in the two periods of 2015 and 2020, 
the area of vegetation increased by 5.28 and 1.69%, respec-
tively, and the area of agricultural land decreased by 16.60 
and 26.05%, respectively. At the same time, the class of 
urban areas showed an increase in area with 4.84 and 6.97% 
in an upward trend exactly contrary to the downward trend 
of vegetation growth. It seems that again, like in 2005, the 
decrease in the growth rate of the vegetation class in these 

Fig. 14. Correlation coefficients of the values of land surface indices for Shanghai as the study area. 
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two years was accompanied by an increase in the negative 
growth of agricultural land and an increase in the growth of 
urban areas and water areas. This has led to the fact that, in 
2015, when the negative growth of vegetation changed into 
positive, the negative growth of NDVI also decreased, and 
its mean negative growth reached only 4%. Meanwhile, the 
strong negative growth of vegetation in 2020 and the con-
tinuous increase in urban areas caused a 29.17% decrease 
in the average NDVI values as the second largest nega-
tive growth in the entire study period and a 4.8% increase 
in NDBI. This trend is repeated in the forecast of 2030, 
the area of class VA with 14.19% and the area of class AL 
with 40.43% will go through a decreasing trend, while the 
growth of water areas with a downward trend, compared 
to 2020, will have a positive growth of 1.77% and it will 
be replaced by a sharp increase of 14.46% in UIL. In this 
year, a 17.65% decrease in the average NDVI values and 
a 27.73% increase in the average NDBI values are also 
predicted.

According to the land cover classification map statis-
tics, the WB class exhibited a slight increase throughout the 
period, so that in 2005, the area of this class showed a 5.25% 
growth compared to the previous period. This increase in 
the next period, 2010, compared to its previous period, 
was 2.23% and in 2015, it was 1.72%. It also increased by 
6.38% in 2020 compared to 2015. It is clear that the three 
years: 2005, 2010, and 2020 were characterized by more 
changes. Also, the area of this class is predicted to grow 
by 1.77% for the period of 2030. Due to Shanghai’s loca-
tion near high seas, the increase in the water class area may 
have occurred due to climate change and global warming 
and, as a result, an increase in the sea level, as previous 
research (Murali and Kumar, 2015; Mansourmoghaddam 
et al., 2023c; Pramanik, 2017; Meilianda et al., 2019; 
Alavipanah et al., 2022) has confirmed the effect of a sea 
level rise on the land cover of cities. These results are also 
consistent with the results obtained from the NDWI index. 
The three years: 2005, 2010, and 2020, which showed the 
highest growth of the area of water classes, also showed the 
highest percentage of changes in the average NDWI with 
12.5, 27.8, and 12% of growth, respectively, compared to 
their previous period. It is also predicted that the average 
NDWI values for 2030 will increase by 25% to reach 0.35. 
At the same time, the WB class exhibited a 0.72% increase 
in emissivity and a 24.46% increase in thermal radiance, 
which seems reasonable considering the increase in the 
water area (Snyder et al., 1998) and the effect of earth’s 
climate warming as an atmospheric variability (Merchant 
et al., 2014) in the past years.

Considering these descriptions, a further decrease of 
0.1% in the maximum and an increase of 0.72% in the emis-
sivity of WB can be seen. Also, the average emissivity in 
the 20-year period has been increasing in all the other three 
classes: VA, AL, and UIL. The second highest increase 
with 2.03% for the UIL class may indicate the warming of 

this class and its greater thermal energy storage (Cheng et 
al., 2009) due to its gradual and incremental growth dur-
ing the study period. Also, the AL class showed the highest 
growth rate with 3.11%, which may be due to the gradual 
reduction of agricultural land and its transformation into 
urban areas with high thermal energy storage (Cheng et al., 
2009). The VA class, which has less area fluctuation than 
the other two classes, showed an increase of 0.98% in aver-
age emissivity. Contrary to this trend, in the 20-year period, 
the WB class with 24.46% as the highest, VA with 3.01% as 
the second highest, and AL and UIL classes with 1.68 and 
1.23%, respectively, as the lowest exhibited an increase in 
TRAD. This may be due to the increase in the area of the 
water class and as a result of the increase in its thermal 
radiance as well as climatic and atmospheric effects such 
as heating (Merchant et al., 2014). On the other hand, a de- 
crease in the area of two classes: VL and especially AL 
and an increase in the area of UIL prone to high thermal 
absorption cause an increase in thermal absorption related 
to heat islands in cities (Nichol, 2009, Kikon et al., 2016; 
Mansourmoghaddam et al., 2022e). The results of the LST 
changes during the first period from 2002 to 2020 indicated 
that the maximum temperature was measured in the UIL 
class in this period. This can clearly explain the role of this 
class in increasing temperature. Considering the gradual 
and constant increase in the values of this class during the 
study period (Table 5), the increase in the LST values in 
the studied period also seems logical. Recording the high-
est increase in the maximum and minimum temperature in 
the AL class can also prove the claim that the conversion of 
the class of agricultural lands AL into the class impervious 
lands UIL played an important role in increasing the LST 
in this region during the studied period. Other researchers 
(Pal and Ziaul, 2017; Zhou and Wang, 2011; Tran et al., 
2017; Kumari et al., 2018) have also mentioned the role of 
transforming agricultural lands into built-up areas and the 
expansion of impervious lands in increasing the LST. The 
LST changes, however, showed a different trend in the VA 
class. In accordance with the fluctuating and usually increas-
ing (insignificant) trend of the VA class area, the mean of 
LST in the study period in this class increased less than in 
the other classes, which may indicate an increase in vegeta-
tion in the area but in the vicinity of the UIL class lands, 
which may cause an  increase in LST values to be recorded 
in this class. Several researchers (Mansourmoghaddam 
et al., 2022e, 2023a, b; Duncan et al., 2019; Zhou et al., 
2019; Alavipanah et al., 2015) have previously mentioned 
the role of temperature controlling vegetation and its effects 
on LST. In line with these results, the results of the LST 
estimation for 2030 have shown the greatest increase in the 
mean of LST in the VA class, followed by the UIL class, 
with a slight difference. The UIL class is also estimated at 
the maximum and minimum of LST with the highest LST 
increase. These results can well reveal the prospective trend 
of the destruction of vegetation lands and its replacement 
with impermeable UIL lands.
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5. CONCLUSIONS

This research has investigated the changes in the three 
major land covers of Shanghai: water, agriculture, vegeta-
tion, and urban and impervious areas in a 20-years period 
along with a forecast for 2030. The results of this research 
showed a significant decrease in agricultural land and the 
expansion of urban land in this city during these years. 
The sum of these changes was recognized as one of the 
most important factors of changes in the land surface ther-
mal characteristics in this city, which can be a warning for 
urban management. Also, this was faced with a period of 
an increase followed by a decrease of vegetation cover. 
The drastic reduction of agricultural land has been the kill-
ing factor of these lands in favor of the other three covers, 
especially in urban areas. We also saw an increase in emis-
sivity and thermal radiance, which indicates an increase in 
energy storage; as a result, the city is getting warmer. These 
results help the city managers to provide more welfare for 
their citizens with the correct and principled management 
of urban development along with the management of urban 
green space. It is recommended that future research use the 
results of the current study to calculate and monitor chang-
es in other land surface indicators, mainly related to the soil 
of the region, so that the changing status of those indica-
tors can be determined during the years under study. Their 
accuracy should also be evaluated along with ground data. 
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