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A b s t r a c t. This study investigates the dynamics of vegetation 
cover in the Yangtze river basin, separated into three sub-basins: 
upper basin, middle basin, and lower basin, concerning tempera-
ture and precipitation changes. The variations in the normalized 
difference vegetation index, precipitation, and temperature over 
22 years (2001-2022) were analyzed annually, seasonally, and 
monthly using remote sensing data. The relationship between 
normalized difference vegetation index changes and precipita-
tion and temperature was evaluated using Kendall’s correlation. 
The findings reveal a significant correlation between vegeta-
tion, surface temperature, and precipitation in the Yangtze river 
basin. Additionally, a significant (at p-value = 0.05) downward 
trend of vegetation coverage in the entire basin was observed for 
the classes between 0.2 and 0.5 (indicating poor and moderate 
vegetation). Conversely, a significant (at p-value = 0.05) upward 
trend in the area covered by denser vegetation (normalized dif-
ference vegetation index exceeding 0.5) was observed during the 
studied period in the Yangtze river basin. The largest vegetation 
coverage area was observed in middle basin, while the lowest val-
ues were seen in upper basin in 2008, middle basin in 2001, and 
lower basin in 2005. The highest vegetation coverage area in all 
three basins was recorded in 2021. In general, a significant (at 
p-value = 0.01) upward trend in vegetation coverage was observed 
in all three basins between 2001 and 2022. Finally, the results 
demonstrate that temperature exhibits a stronger correlation with 
increased vegetation cover in the Yangtze river basin, compared 
to precipitation.

K e y w o r d s: normalized difference vegetation index, land 
surface temperature, precipitation, vegetation coverage, Yangtze 
river basin, remote sensing

1. INTRODUCTION

One of the most critical aspects of vegetation manage- 
ment and control for sustainable development is inves-
tigating the sustainable process of vegetation change. 
Vegetation refers to the various types of trees, fodder, bush-
es, grass, and vegetables that grow on the Earth’s surface 
(Cheng et al., 2024; Wang et al., 2024; Xie et al., 2023). 
The absence of vegetation on the ground stands as a signifi-
cant factor contributing to soil surface erosion caused by 
rain and other factors (Zhang et al., 2022, 2023; Liu et al., 
2024; Zhao et al., 2024). Vegetation serves as the crucial 
interface between the atmosphere, soil, and water within 
terrestrial ecosystems (Kafarski et al., 2019; Majcher et al., 
2021; Li et al., 2024). Through such processes as photosyn-
thesis, evaporation, and transpiration, it plays a vital role 
in regulating the global carbon cycle, water cycle, energy 
exchange, and global climate stability (Guo et al., 2014; 
Xu et al., 2022; Zhou et al., 2023a, b; Chen et al., 2023). 
Given that alterations in vegetation cover can disrupt eco-
system conditions and functioning, the study of vegetation 
dynamics has become a pressing environmental concern, 
requiring both temporal and mechanistic investigations 
(Rannow and Neubert, 2014). Various factors drive chang-
es in vegetation over time and impact ecosystem conditions 
and functioning. These factors encompass human activities, 
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such as land use changes and management practices like 
vegetation revitalization, as well as natural influences like 
rainfall, temperature, and weather events (such as droughts, 
floods, fires, etc.) (Tang et al., 2020). Precipitation, in par-
ticular, plays a pivotal role in the growth and decline of 
vegetation. When rainfall is insufficient, vegetation starts 
to dwindle, and if temperatures rise while strong winds 
blow and relative humidity decreases, drought severity 
increases, subsequently leading to a more rapid decline 
in vegetation within an area (Katiraie Boroujerdy, 2016). 
The normalized difference vegetation index (NDVI), as 
a fundamental measure, stands out as one of the most exten-
sively employed indices for examining vegetation changes 
(Kundu et al., 2016). Analyzing the trend of this index 
carries significance in numerous scenarios, encompassing 
ecological assessments in response to global warming and 
desertification (Zhang et al., 2013). Consequently, moni-
toring the dynamics of biological vegetation is crucial in 
deepening our understanding and enhancing feedback 
mechanisms between vegetation and the atmosphere 
(Angelini et al., 2011). The vegetation index represents one 
of the frequently utilized measures, calculated based on the 
disparities between red and infrared bands near vegetation. 
It offers valuable insights into seasonal and annual varia-
tions in vegetation (Tucker and Choudhury, 1987; Hu et 
al., 2019). Traditional methods for investigating vegetation 
changes are often time-consuming and resource-intensive. 
Conversely, the challenges in obtaining precise historical 
vegetation location data and ensuring its continuous avail-
ability have prompted experts to seek faster, more accurate, 
and cost-effective approaches. Therefore, the utilization of 
the satellite information technology may hold advantages 
over other methods (Aronoff, 2004). Leveraging remote 
sensing, especially from the satellite level, and long-term 
time-series data analyses proves to be the most suitable 
approach for assessing the evolution in the processes gov-
erning the natural and anthropogenic phenomena (Sun et 
al., 2024; Gu et al., 2024).

Remote sensing images and technology provide a glob-
ally valuable tool for studying natural and human-induced 
phenomena (Yu and Zhou, 2024; Yin et al., 2023a, b; Luo 
et al., 2024). In recent years, numerous studies have been 
conducted for the Central Asia region to explore the dynam-
ics and processes of plant changes, recognized as a pivotal 
influence on ecosystems (Yin et al., 2016). They studied 
climate change patterns by examining vegetation cover and 
demonstrated the predictability of climate using the NDVI 
vegetation index. Other authors (Dastorani, 2021) explored 
vegetation changes and rainfall variations during the statis-
tical period from 2001 to 2013 using satellite images. The 
outcomes highlighted the significance of both indicators 
at a 99% confidence level. The study showed a decline in 
the vegetation cover index within the lower class but an 
increasing trend in the middle and upper classes. In another 
study (Cui et al., 2018), authors employed modeling and 

mapping techniques to analyze the relationship between 
spatial and temporal changes in vegetation and temperature 
and precipitation in the Yangtze basin from 2001 to 2013. 
They observed regions in the Yangtze river basin (YRB) 
with decreasing annual averages. Conversely, some areas 
within the basin displayed increasing trends during spring 
and summer, coupled with declining trends in autumn and 
winter. Overall, climatic factors emerged as the primary 
driver of NDVI changes in recent years. In another paper 
(Luan et al., 2018), the spatial variations in vegetation 
within the Han River basin over the period 2000-2016 were 
analyzed using remote sensing data. The results indicated 
a noteworthy decrease of only 2.76% and an increase of 
13.47%, with an overall increasing trend in NDVI for the 
region. Notably, the Shangzhou region showed the high-
est proportion of area with an increasing vegetation index 
trend at 11.31%.

In another study (Zhang D. et al., 2020a), the stability 
and regression analysis methods were used to investigate 
the spatial changes in vegetation cover in the Marwarid 
River Delta area during the period from 2000 to 2015 on the 
basis of NDVI MODIS data. The findings revealed a con-
sistent increase in vegetation cover during this time frame, 
suggesting a correlation between vegetation changes and 
human activities around the city. In a separate investigation 
(Kai-feng et al., 2020), linear regression and Hurst’s index 
were used to assess the temporal and mechanical changes 
in plant life within Three Rivers National Park. The results 
demonstrated that vegetation was on the rise in most areas 
of the park, with many displaying a positive trend of stabil-
ity. In another study (Olafsson and Rousta, 2021), remote 
sensing was employed to explore the relationship between 
vegetation dynamics and weather patterns in Iceland from 
2001 to 2019. The results indicated that vegetation in 
Iceland reaches its peak during the period from mid-July to 
late August, covering approximately 65% of the total area 
(66 858 km2). In Rousta et al. (2022), ET, NDVI, and land  
surface temperature (LST) satellite images were utilized 
to investigate seasonal and annual vegetation dynamics 
and their connection to climatic factors in the Caspian Sea 
watersheds. The findings showed a positive and significant 
correlation between NDVI and ET in winter, NDVI and ET 
in spring, and NDVI and ET in summer, although the cor-
relation became negative and significant between NDVI 
and LST during the summer season. This suggested that, 
in the summer, with higher-than-average rainfall, the influ-
ence of LST on plant growth becomes more pronounced. 
Other researchers (Yuan et al., 2022) examined the tempo-
ral and spatial changes in vegetation in relation to climatic 
and human factors from 2000 to 2019 using the EVI veg-
etation index. The study highlighted the significant role 
of human factors in more than half of the green or brown 
areas, with changes being notable in only 9.9% of these 
areas. However, climate change emerged as the primary 
driver of EVI alterations and their mechanisms in mainland 
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China. Another study (Mahmood et al., 2022) used MODIS 
data and precipitation data (PDIR Now) to assess the sus-
tainability of spring vegetation changes in the watershed of 
northern Afghanistan from 2001 to 2020. The findings indi-
cated 45.21% vegetation cover during the entire statistical 
period. Notably, the years 2001, 2008, and 2011 recorded 
the lowest vegetation levels at 9.9, 9.9, and 3.19%, respec-
tively, coinciding with lower rainfall levels of 96.7, 133, 
and 117 mm. Conversely, the years 2003, 2009, and 2010 
exhibited the most vegetation due to lower LST and higher 
precipitation, compared to the average period, resulting in 
wetter years.

The assessment of vegetation dynamics in the Yangtze 
river basin concerning climatic factors presents a complex 
challenge that necessitates a thorough evaluation. This basin 
holds immense significance within China, exerting a sub- 
stantial influence on the country’s economy, environment, 
and society. However, it grapples with numerous chal-
lenges, including climate change, alterations in land use 
and land cover, and human activities, all of which impact 
vegetation dynamics in the region. The crux of the issue 
lies in the limited understanding of how these factors 
affect vegetation cover within the basin and its sub-basins 
and how to effectively mitigate these effects. Hence, there 
arises a pressing need for a comprehensive assessment of 
vegetation dynamics in the Yangtze river basin and its cor-
relation with climatic factors. This endeavor is essential to 
formulate effective strategies for ecosystem management 
and ensure sustainable development. Consequently, the 
primary objective of this study is to analyze the impact of 
climatic factors on vegetation dynamics within the Yangtze 
river basin during the period from 2001 to 2022, employing 
remote sensing data.

2. MATERIAL AND METHODS
2.1. Study area

The Yangtze river basin (YRB) stands as the largest 
river basin in China, and the Yangtze is one of the most sig-
nificant rivers globally from socio-economic perspectives. 
Covering an extensive area of 1 808 500 km2, it accounts 
for nearly a fifth of China’s landmass and is inhabited 
by over 400 million people. Stretching over 6 300 km, it 
traverses more than halfway across China, ranking as the 
longest river in Asia and the third longest globally. The 
YRB is renowned for its rich biodiversity, housing over 
10 000 species of plants and animals within its borders. 
Moreover, the YRB plays a pivotal and indispensable role 
in China’s economy, serving as a crucial source of water 
for agriculture, hydroelectric power generation, and trans-
portation. In this research, we have divided the YRB into 
three sub-basins: the upper sub-basin (UB), the middle sub-
basin (MB), and the lower sub-basin (LB). The YRB plays 
a pivotal role in shaping food and agricultural production 
in China. Encompassing over 246 000 km2, representing 
approximately 27% of China’s total cultivated land area, 

the basin is characterized by its abundant water resources, 
rendering it highly conducive to rice cultivation. Notably, 
rice accounts for the largest proportion of cultivated lands 
within the basin, with approximately 70% of China’s total 
rice output emanating from the YRB (Zhou et al., 2024; 
Liang et al., 2022) (Fig. 1). The average elevation of these 
three sub-basins is approximately: 3 493 m for UB, 900 m 
for MB, and 207 m for LB. Notably, the majority of the 
elevation is: 4 713, 31, and 26 m in: UB, MB, and LB, 
respectively. The annual precipitation in the three sub-
basins is 9 74.6, 1 510.2, and 2 140.4 mm, respectively. 
Furthermore, the variations in LST for the three sub-basins 
are 14.9, 20.5, and 22.4°C, and the mean NDVI values are 
0.41, 0.54, and 0.52, respectively (Table 1). 

2.2. Data and methods

Remote sensing enables the collection of data from 
various points, objects, and environmental phenomena 
through different sensors, making it a fundamental branch 
of science (Gu et al., 2007). In this research, the 16-day 
250 m NDVI (MOD13Q1) and 8 day 1 km LST (MOD11A2) 
products from the MODIS sensor were analyzed, covering 
the statistical period from 2001 to 2022. These data were 
sourced from the United States Geological Survey website 
(https://Ipdaacsvc.cr.usgs.gov/appeears/task/area). Additio- 
nally, monthly and annual CHIRPS rainfall data were 
downloaded (https://www.chc.ucsb.edu/data/chirps). All 
the calculations necessary to investigate the process of 
vegetation changes and their correlation with temperature 
and precipitation parameters were conducted using ArcGIS 
PRO and EXCEL software.

2.2.1. Normalized difference vegetation index (NDVI)

The most common and valuable index for assessing 
vegetation status is NDVI, which relies on measurements 
of the leaf area index (LAI) and production patterns (Dutta 
et al., 2015; Dall’Olmo et al., 2003). NDVI has been 
widely employed by scientists in various studies during the 
modern era (Martínez and Gilabert, 2009; Running et al., 
1995). The fundamental concept behind NDVI is rooted in 
the fact that the internal mesophyll of healthy green leaves 
strongly reflects near-infrared (NIR) radiation, while leaf 
chlorophyll and other pigments absorb a significant por-
tion of red visible (RED) radiation (Broge and Leblanc, 
2001). This relationship within the internal leaf structure 
is reversed in the case of unhealthy or water-stressed 
vegetation (Ghafarian Malamiri et al., 2018). NDVI is cal-
culated as:

https://Ipdaacsvc.cr.usgs.gov/appeears/task/area
https://www.chc.ucsb.edu/data/chirps
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Fig. 1. Maps of a) geographical location of Yangtze River Basin with the elevation map, and b) YRB land cover map with the subpanels 
showing the locations of croplands for each Yangtze River subbasins separately (maps from MODIS MCD12Q1, 061, for 2018).

a)

b)
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The NDVI index ranges from -1 to +1 (Rouse et al., 
1974). In this study, we obtained 506 images of Terra 
MODIS 16-day composite NDVI with a 250 m resolution 
(MOD13Q1, collection v006) from the Application 
for Extracting and Exploring Analysis Ready Samples 
(AppEEARS) software available at https://lpdaacsvc.
cr.usgs.gov.appeears for the period 2001-2022 (Kalpoma 
et al., 2019). NDVI values indicating vegetation range 
from 0.2 to 1, corresponding to areas with varying degrees 
of greenness or vegetation. It should be noted that NDVI 
values above 0.5 typically indicate a healthy and dense vege- 
tation canopy, while values falling within the range of 0.2 
to 0.5 are indicative of sparsely vegetated areas (Drori et 
al., 2020). In the current study, the daily vegetation cover 
data were transformed into monthly, seasonal, and annu-
al assessments and categorized into six classes (0.2-0.3, 
0.3- 0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, and > 0.7). To calculate 
vegetation coverage (VegC), first the number of pixels in 
each NDVI class was calculated, then the number of pixels 
was multiplied by 250 m and finally converted to km2.

2.2.2. Land surface temperature (LST)

Land surface temperature (LST) can be effectively 
derived using remote sensing tools (Şahin, 2012; Şahin 
et al., 2013, 2014; Şenkal, 2010; Marj and Meijerink, 
2011), which facilitate the examination of the radiative 
properties of the Earth’s surface through an atmospheric 
window, without requiring a physical connection with the 
objects being investigated (Curran and Wardley, 1985). 
In this study, LST data were extracted from the Moderate 
Resolution Imaging Spectroradiometer (MODIS) radiom-
eter onboard NASA-built satellites. It is important to note 
that the MODIS satellite has two primary sensors: Terra and 
Aqua (Wan, 1999; Wan et al., 2002). In general, MODIS 

operates within the visible light and infrared spectrum, 
encompassing approximately 36 spectral bandwidths rang-
ing from 0.4 to 14.4 µm wavelengths. For this research, to 
study the influence of temperature trends on vegetation, the 
8 day LST data were transformed into monthly, seasonal, 
and annual datasets.

2.2.3. Precipitation (CHIRPS)

The CHIRP/S algorithm combines three main data 
sources: (a) Climate Hazards group Precipitation climatol-
ogy (CHPclim), a global precipitation climatology at 0.05° 
latitude/longitude resolution, estimated for each month 
based on station data, averaged satellite observations, 
elevation, latitude, and longitude; (b) TIR-based satellite 
precipitation estimates (IRP); and (c) in-situ rain-gauge 
measurements. The CHPclim stands out from other precipi-
tation climatologies because it utilizes long-term average 
satellite rainfall fields as a guide for deriving climatological 
surfaces, resulting in improved performance in mountain-
ous regions like Ethiopia (Funk et al., 2012; Peterson et al., 
2015). The CHIRPS product compiles over thirty years of 
global rainfall data, with a spatial resolution of approxi-
mately 0.05° worldwide. In the CHIRPS product, not only 
is satellite information utilized, but it is also verified by 
ground stations, making it a valuable resource for drought 
monitoring. CHIRPS data cover the region between 50°N 
and 50°S, spanning all longitudes, and has temporal cover-
age from January 1981 to the present day, offering daily, 
monthly, and seasonal values. These images were acquired 
monthly and annually during the statistical period from 
2001 to 2022. 

Ta b l e  1. Statistical features of the YRB divided into three sub-basins

Variable Basin name Area (km2) Min Max Mean Majority

Elevation (m)
MB 694 293.8 11 5 411002 900.9 31
UP 622 112.5 265 7 213 3 493.6 4 713
LB 492 093.7 -147 2 064 207.3 26

Precip. (mm)
MB 651 2 536 1 510.2 1 567
UP 258 2 555 974.7 1 082
LB 953 3 836 2 140.4 2 265

LST (℃)
MB -1 31 20 22
UP -11 33 14.4 11
LB 11 28 21.9 22

NDVI
MB -0.77 0.78 0.548 0.59
UP -0.13 0.84 0.417 0.53
LB -0.12 0.79 0.52 0.48

YRB – Yangtze river basin, MB – middle basin, UP – upper basin, LB – lower basin, LST – land surface temperature, NDVI – norma-
lized difference vegetation index.
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3. RESULTS

3.1. Vegetation coverage variations: 

In Figure 2, changes in the average values of Vegetation 
Coverage (VegC), precipitation, and land surface tempera-
ture (LST) in the Yangtze river basin from 2001 to 2022 
are presented. From this figure, it is evident that there is 
a correlation among all these parameters within the basin. 
Specifically, the highest VegC, precipitation, and LST occur 
during June and July, while the lowest values are observed 
in December, January, February, and November. This 
observation underscores the interconnectedness between 
precipitation and LST in the basin, which collectively influ-
enced the VegC dynamics in the area throughout the study 
period (2001-2022).

Figure 3 shows the changes in VegC during 2001-2022 
in the YRB in the form of a yearly averaged time series. It 
is evident that there is a notable and statistically significant 

Fig. 2. Average values of precipitation, vegetation coverage 
(VegC), and land surface temperature (LST) in the Yangtze river 
basin (YRB) during the years 2001-2022 (to enhance visibility, 
the LST values have been multiplied by 4).

Fig. 3. Yearly averaged time series of changes in VegC (km2 104) separated into different categories of NDVI in the YRB during 2001-
2022, namely a) 0.2-0.3, b) 0.3-0.4, c) 0.4-0.5, d) 0.5-0.6, e) 0.6-0.7, and f) > 0.7. (*Denotes a correlation significant at p-value = 0.05).

a) b)

c) d)

e) f)
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declining trend in VegC for categories 0.2-0.4, with cor-
relation coefficients R = -0.88 and -0.85 (at p-value = 0.05), 
respectively. Additionally, there is a decreasing trend, albeit 
not statistically significant, in VegC for category 0.4-0.5 in 
the study area during this time frame. Conversely, the fig-
ure demonstrates a clear and statistically significant upward 
trend in VegC for categories > 0.5 across the entire basin 
during 2001-2022, with R = 0.6, 0.76, and 0.84 (at p-val-
ue = 0.05), respectively. As a result, there was a declining 
trend in the area covered by more sparse vegetation and 
a concurrent increasing trend in the area covered by denser 
vegetation within the YRB throughout the study period.

3.2. Anomaly of VegC

Figure 4 presents the time series of anomalies in yearly 
vegetation coverage (VegC), precipitation, and land surface 
temperature (LST) within the Yangtze river basin (YRB) 
for the years 2001-2022. The figure suggests a stronger cor-
relation between VegC and LST, compared to precipitation. 
It is noticeable that years with the lowest VegC correspond 
to the lowest LST (e.g., 2005 and 2012), while years with 
the highest VegC coincide with normal or above-normal 
LST (e.g., 2013 and 2021). However, there are exceptions, 
such as 2004 and 2019, which exhibit high and low VegC 
values during 2001-2022. For these two years (2004 and 
2019), it appears that other factors influenced VegC in the 
area, and these factors may not have had a uniform impact 
across all regions of the YRB, potentially exerting a nega-
tive effect on VegC in some areas and a positive effect in 
others.

Figure 5 illustrates the time series of annual changes in 
VegC across different seasons, while Figure 6 shows the 
anomaly of annual changes in VegC. The largest VegC area 
is observed during the summer season, while the smallest is 
noted during the winter season. Winter and spring in 2012 
recorded 1 131 ,793 km2 and 1 501 190 km2 of VegC, respec-
tively, with summer in 2020 reaching 1 563 193 km2 and 
fall in 2001 at 1 376 283 km2, which is the lowest. Winter 
and summer in 2021, spring in 2011, and fall in 2012 all 
exceeded the normal levels. Conversely, winter and spring 
in 2012, summer in 2020, and fall in 2001 all fell below 
normal levels.

In Table 2, the correlation between yearly and seasonal 
vegetation with LST and precipitation in the YRB is pre-
sented. An upward trend and a significant increase in winter 
and summer VegC with yearly VegC (R = 0.88 and R = 0.42, 
at p-value = 0.05) and a significant positive correlation 
between LST and yearly VegC (R = 0.75, at p-value = 0.05) 
were observed.

Table 3 shows the correlation between monthly VegC 
and LST and precipitation. Significant positive correlations 
between VegC and LST in several months (Jan, Feb, Mar, 

Fig. 4. Anomaly of yearly VegC, precipitation, and LST in the 
YRB during 2001-2022.

Fig. 5. Yearly average seasonal changes in VegC in the YRB dur-
ing 2001-2022.

Fig. 6. Anomaly of seasonal VegC in the YRB during 2001-2022.
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May, Jun, Jul, Aug, Sep) and a negative correlation between 
VegC and July precipitation (r = 0.53, p-value = 0.05) were 
observed.

Table 4 displays the monthly VegC in the YRB. The 
most significant decreases in VegC occurred in Jan 2005 
and 2008, Feb 2012 and 2019, Mar 2010, Apr 2002, May 
2012, Jun 2017, Aug 2007, Sep 2020, Nov 2001, 2006, and 
2020, and Dec 2019. In contrast, the highest increases in 
VegC were observed in Mar 2007 and 2018, May 2018, 
Jun 2022, Jul 2006, 2021, and 2022, Aug 2002, 2011, and 
2020, Oct 2020, and Dec 2021. Figure 7 highlights the 
four instances with the most significant reductions in VegC 
in the YRB. According to the figure, the most substantial 
VegC reduction occurred in Apr 2002 in MB and LB, in 
Mar 2010 in MB and UB, in Dec 2019 in UB and MB, 
and in Sep 2020 in MB. Based on the histograms of each 
image, the highest amount of VegC falls within the 0.2 to 
0.5 classes, representing weak to medium vegetation. On 
the other hand, Fig. 8 illustrates the highest monthly VegC 
increases in August, October, and July. In the images, the 
north of UB exhibits the lowest vegetation. In October 
2020, due to the autumn season and a decrease in VegC 

density in MB and LB, the density of dense vegetation also 
decreased. The histograms of each image show the highest 
amount of VegC in the upper 0.5 layers, representing dense 
vegetation.

3.3. Vegetation variations in three sub-basins of YRB

Figure 9 illustrates changes in the total area of VegC 
in UB, MB, and LB. MB consistently has the largest area 
of VegC. The lowest VegC values were recorded in UB 
in 2008 (520 518.8 km2), MB in 2001 (689 353.8 km2), 
and LB in 2005 (480 419.7 km2). Conversely, the largest 
VegC areas in all three basins occurred in 2021, totaling 
581 461.8, 743 734.2, and 587 089.5 km2, respectively. 
A significant upward trend and a substantial increase in 
VegC (at p-value  =  0.01) observed in all three basins 
between 2001 and 2022 was observed (Table 5).

3.3.1. Anomaly of VegC in UB, MB, and LB

Figure 10 presents the anomaly of the annual VegC 
time series in UB, MB, and LB. The figure shows a strong 
correlation between VegC and LST in all three basins. For 
instance, in 2011, LST and VegC were within the normal 
range in all three basins, despite below-normal precipita-
tion. In 2021, when there was the largest area of VegC in all 
three basins, the conditions varied. In UB, LST and precipi-
tation are within the normal range, in MB, LST is within the 
normal range and precipitation is above normal, and in LB, 
precipitation is within the normal range, but LST is above 
normal. However, it is important to note that this pattern 
is not consistent across all years and basins. For instance, 
in UB in 2001, despite LST and precipitation being in the 
normal range, VegC is lower than normal. In MB in 2006, 
although LST was higher than normal, VegC was lower 
than normal. In LB in 2008, despite higher than normal LST 
and normal precipitation, VegC decreased. Therefore, it can 
be concluded that the relationship between the increase in 
VegC, LST, and precipitation (especially LST) cannot be 
generalized to the entire basin at all times.

Table 6 displays the correlation between VegC, precipi-
tation, and LST in all three basins. It indicates an upward 
trend and a significant increase in VegC correlated with 
LST. Figure 11 illustrates the distribution of annual VegC 
with LST and precipitation in UB, MB, and LB. The results 
presented in this figure indicate an overall upward trend 
in annual VegC across all three basins, which is particu-
larly prominent in LB and significantly associated with an 
increase in LST (at p-value = 0.05).

4. DISCUSSION

Vegetation coverage (VegC) is frequently used to assess 
natural habitats, playing a key role in determining the impact 
of changes in farmland on the surrounding environment 
(Zhang Y. et al., 2020c; Gou et al., 2024). In this research, 
the vegetation changes and the impact of temperature and 

Ta b l e  2. Correlation coefficients (R) between yearly VegC, sea-
sonal and yearly precipitation, and LST in YRB during 2001-2022

Correlation Winter Spring Summer Fall Yearly
VegC

Yearly VegC 0.88* 0.38 0.42* 0.18 1

LST 0.75 0.31 0.23 -0.04 0.75*
Precipitation 0.08 -0.32 -0.20 0.43 0.08

LST – land surface temperature, YRB – Yangtze river basin.

Ta b l e  3. Correlation coefficients (R) between monthly VegC 
and monthly precipitation and LST in YRB during 2001-2022

Correlation
VegC LST Precipitation

Jan 0.59* -0.04

Feb 0.56* -0.14

Mar 0.47* -0.18

Apr 0.04 -0.29

May 0.58* 0.02

Jun 0.56* -0.14

Jul 0.73* -0.53*

Aug 0.47* -0.37

Sep 0.42* -0.23

Oct 0.31 0.09

Nov 0.21 0.11

Dec 0.28 -0.28

Explanations as in Table 2.
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precipitation variations on these changes were investigated 
using remote sensing data over the past 22 years (2001-
2022) in the Yangtze river basin. The analysis of vegetation 
coverage in the Yangtze river basin reveals several trends. 
The highest values are observed in June and July, while the 
lowest values occur in December, January, February, and 
November. This pattern underscores the significant influ-
ence of precipitation and temperature on vegetation in the 
region. Furthermore, a decreasing trend in the area covered 
by sparse vegetation (0.2-0.5) and an increasing trend in 
denser vegetation areas (above 0.5) were identified dur-
ing the study period. While vegetation coverage exhibits 
a stronger correlation with temperature than with precipita-
tion, it is important to note that this relationship cannot be 
generalized to the entire basin at all times. Seasonal varia-
tions reveal that vegetation, temperature, and precipitation 
interact in complex ways, likely influenced by such factors 
as climate, topography, and human activities. Based on our 
analysis of annual maps, we found that the middle basin 
(MB) consistently had the largest vegetation area, while 
the lowest area was recorded in the upper basin (UB) in 

2008, the middle basin (MB) in 2001, and the lower basin 
(LB) in 2005. The largest vegetation area in all three basins 
was observed in 2021, highlighting the spatial variability in 
environmental conditions and factors affecting vegetation 
across the Yangtze river basin.

In summary, our findings indicate an overall upward 
trend and a significant increase in vegetation in all three 
basins during the 2001-2022 period, aligning with previous 
studies (Qu et al., 2020; Zhang Y.-X. et al., 2020b; Cui et 
al., 2019; Liu et al., 2022). The observed decline in scat-
tered vegetation cover and the rise in dense vegetation align 
with the global trends of increased vegetation in response 
to climate change (Xu et al., 2013; Zhu et al., 2016). The 
stronger correlation between vegetation cover and land sur-
face temperature, compared to precipitation, underscores 
the pivotal role of temperature in driving vegetation chang-
es in the Yangtze river basin, in line with the concept of 
thermal adaptation, which underscores plant sensitivity to 
temperature fluctuations (Wu et al., 2011).  

Ta b l e  4. Anomaly of monthly vegetation coverage (VegC) in YRB during 2001-2022

Year
Vegetation coverage (VegC) anomaly

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2001 0.54 0.79 -0.04 -0.61 -1.08 0.92 0.57 -1.29 -0.42 0.11 -2.09 -0.92

2002 -0.14 -0.40 1.11 -4.03 0.29 0.99 0.33 1.37 0.42 -0.44 0.35 -0.19

2003 0.43 0.27 0.74 0.35 -1.86 -0.43 -0.13 -0.78 -0.13 1.10 -0.16 0.17

2004 0.58 0.96 0.72 0.50 0.31 0.49 -0.01 -1.34 0.74 -0.08 0.47 -0.53

2005 -2.50 0.08 -0.37 -0.10 -0.86 0.49 -1.56 -0.01 0.05 -1.16 -0.81 0.45

2006 0.03 0.21 -0.20 -0.02 -0.63 0.87 1.26 0.19 0.32 -0.61 -2.08 0.64

2007 0.66 0.42 1.33 0.57 0.32 0.71 -0.21 -2.01 -0.40 -1.39 0.00 0.10

2008 -2.32 -0.02 -0.23 0.19 0.54 0.84 -0.44 -0.69 0.69 0.07 0.68 0.42

2009 0.96 -0.51 -1.01 0.72 0.78 -0.77 -1.55 1.04 0.86 0.31 0.08 0.64

2010 -0.73 0.89 -2.64 0.41 -0.32 -1.32 -0.98 0.38 0.27 0.87 0.60 0.73

2011 -0.80 0.26 -0.26 0.44 1.05 0.82 1.02 1.35 0.18 -0.43 -0.09 -0.97

2012 -1.04 -2.50 -0.83 0.18 -2.07 -0.98 -1.56 0.66 -0.60 1.12 0.76 -1.16

2013 0.02 1.11 0.05 -0.84 0.83 1.00 0.48 -0.74 1.00 -1.13 0.92 1.05

2014 0.27 -0.47 -0.62 0.15 -1.35 -1.66 -0.97 -0.89 0.99 0.36 0.36 1.14

2015 1.01 -0.91 1.08 0.22 0.29 0.39 0.90 -0.89 0.48 0.35 -0.47 0.34

2016 0.70 0.74 -0.51 -0.05 1.07 -0.05 0.30 0.91 0.24 -1.93 1.13 -0.56

2017 1.05 -1.05 0.70 -0.04 1.04 -2.08 0.48 0.10 -1.23 0.71 0.69 0.44

2018 0.23 0.96 1.31 -0.39 1.31 -0.71 -0.55 0.71 -0.41 0.70 0.34 -1.59

2019 -0.10 -2.42 0.66 0.63 1.11 -1.32 0.67 0.14 0.02 1.11 0.15 -2.60

2020 0.51 0.39 -1.42 0.09 0.01 0.03 -1.21 1.46 -3.49 1.93 -2.20 0.03

2021 1.23 0.46 -0.64 0.98 0.12 0.40 1.55 -0.64 1.19 0.00 1.37 1.76

2022 -0.60 0.75 1.05 0.65 -0.90 1.37 1.59 0.97 -0.77 -1.57 0.00 0.59

YRB – Yangtze river basin.
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Fig. 7. Maps presenting the months with highest VegC reduction in the YRB during 2001-2022.
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Fig. 8. Maps presenting the highest increase in monthly VegC in the YRB during 2001-2022.
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After analyzing vegetation cover, precipitation, and 
land surface temperature in the Yangtze river basin (YRB) 
for the 2001-2022 period, a complex interplay between 
these parameters was identified. Notably, temperature 
exerts a more pronounced influence on vegetation changes 
than precipitation, consistent with findings from previous 
studies (Zhang and Jin, 2021; Qu et al., 2018). However, it 
is essential to acknowledge that, in certain years, this cor-
relation appears to be absent, suggesting the involvement 
of other influential factors in driving vegetation changes. 
These additional factors may encompass disturbances, such 
as wildfires or localized weather events, each of which can 
have varying impacts across the watershed. Understanding 
these nuances in vegetation dynamics within the Yangtze 
river basin holds significant importance for effective 
land management and conservation strategies. This study 
contributes to the existing knowledge base by offering 
a comprehensive analysis that sheds light on these intricate 
relationships within the YRB. The observed trends in vege-
tation underscore the urgency of implementing sustainable 
land use practices and ecosystem protection measures in 
the region. These measures could encompass initiatives 
related to reforestation, forestry management, and water 
resource management, all of which can support the growth 
and preservation of vegetation in the YRB. Furthermore, 
further research is warranted to fully grasp the factors driv-
ing vegetation changes in the region, including the roles of 
human activities, climate shifts, and natural disturbances.

In summary, these findings contribute significantly to 
our comprehension of ecosystem dynamics in the Yangtze 
river basin and highlight the necessity of informed sustain-
able approaches to safeguard its natural resources.

Fig. 9. Time series of yearly averages of VegC in UB, MB, and 
LB in the YRB.

Ta b l e  5 .  Trends in annual VegC changes in UB, MB, and LB 
in YRB

Yangtze river 
basin

UB MB LB

Year 0.651* 0.593* 0.498*

Explanations as in Table 1. *Denotes a correlation significant at 
p-value = 0.01.

Fig. 10. Anomaly of yearly VegC, precipitation, and LST in: 
a) UB, b) MB, and c) LB during 2001-2022.

Ta b l e  6. Correlation between VegC with LST and precipitation 
in UB, MB, and LB during 2001-2022

Correlation LST Precipitation

VegC Upper 0.165 0.52

VegC Middle 0.004 0.255

VegC Lower 0.377* 0.108

Explanations as in Table 1. *Denotes a correlation significant at 
p-value = 0.05.

a)

b)

c)
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5. CONCLUSIONS

In this study, the dynamics of vegetation cover and 
its sensitivity to temperature and precipitation changes 
in the Yangtze river basin were investigated. The basin 
was divided into three sub-basins: the upper basin (UB), 
middle basin (MB), and lower basin (LB). By analyzing 
a 22-year time series (2001-2022) of the normalized vege-
tation difference index (NDVI), precipitation, and LST 
from remote sensing data, changes on an annual, seasonal, 
and monthly basis were analyzed. The relationship between 
NDVI changes and precipitation as well as temperature 
was evaluated using Kendall’s correlation. The Yangtze 
river basin exhibited the highest NDVI values in July and 
August, while the lowest values were observed in February 
and January. Similarly, peak precipitation occurred during 
the summer months of June, July, and August, with the high-

est land surface temperatures recorded in May, June, July, 
and August. Regarding vegetation coverage (VegC), the 
most extensive areas were seen in winter and spring 2012 
(1 131 793 and 1 501 190 km2, respectively), summer 2020 
(1 563 193 km2), and fall 2001 (1 376 283 km2). Conversely, 
the smallest VegC areas were recorded in winter and sum-
mer 2021 (1 561 014 and 1 703 521 km2, respectively). In 
terms of NDVI classes, we observed a declining trend with 
a significant decrease (p-value = 0.05) in the 0.2-0.5 range. 
Conversely, classes 0.5-0.7 and higher exhibited an upward 
trend with a significant increase (p-value = 0.05). This sug-
gests a decrease in the weak and moderate NDVI and an 
increase in the high and very high NDVI across the entire 
Yangtze river basin. Furthermore, the middle basin (MB) 
displayed the most substantial increase in the NDVI area, 

Fig. 11. Distribution of annual VegC (km2) with precipitation and LST in UB, MB, and LB in the YRB.
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while the upper basin (UB) in 2008, middle basin (MB) in 
2001, and lower basin (LB) in 2005 recorded the lowest 
values.

In summary, the overall increase in VegC throughout 
the Yangtze river basin demonstrated a stronger correlation 
with temperature than with precipitation. However, to gain 
a more comprehensive understanding of these results, it is 
imperative to consider additional factors, such as sunlight, 
soil moisture, and other variables that may influence the 
ecosystem. Nonetheless, these findings provide valuable 
insights for future research and management strategies 
aimed at preserving and enhancing the ecological health of 
the Yangtze river basin.
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