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A b s t r a c t. Remote sensing plays an increasingly important 
role in agriculture, especially in monitoring the quality of agri-
cultural crops. Optical sensing is often limited in Central Europe 
due to cloud cover; therefore, synthetic aperture radar data is 
increasingly being used. However, synthetic aperture radar data is 
limited by more difficult interpretation mainly due to the influence 
of speckles. For this reason, its use is often limited to larger ter-
ritorial units and field blocks. The main aim of this study therefore 
was to verify the possibility of using satellite synthetic aperture 
radar images to assess the within-field variability of winter wheat. 
The lowest radar vegetation index values corresponded to the 
area of the lowest production potential and the greatest damage to 
the stand. Also for VH and VV polarizations, the highest values 
corresponded to the area of the lowest stand quality. Qualitative 
changes in the stand across the zones defined by frost damage and 
production potential were assessed with the help of the logistic 
regression model with resampled data for 10, 50, and 100 m pixel 
size. The best correlation coefficients were achieved at a spatial 
resolution of 50 m for both options. The F-score still yielded 
a promising result ranging from 0.588 to 0.634 for frost damage 
categories. The regression model of the production potential per-
formed slightly better in terms of the F-score, recall, and precision 
at higher resolutions. It was proved that modern statistical meth-
ods could be used to reduce problems associated with speckles of 
radar images for practical purposes.

K e y w o r d s: Sentinel-1, polarizations, spring frost, field vari-
ability, logistic regression model

1. INTRODUCTION

Winter wheat (Triticum spp.) is the most frequently 
grown cereal in the Czech Republic, covering approximate-
ly 32% of arable land (ČSÚ, 2021). The yield of agricultural 
crops is influenced by many factors, including topography, 
soil properties, field management, fertilizing, and meteoro-
logical conditions during the growing season (Kumhálová 
et al., 2011; Madaras et al., 2018; Balážová et al., 2021; 
Rataj et al., 2022). Oerke (1994), Thielert (2006), and 
Kajla et al. (2015) investigated the causes of crop yield 
losses. According to their studies, abiotic factors account 
for 50% (of which 20% are high temperatures, 7% low 
temperatures, 9% drought, 10% salinity, and the remain-
ing 4% are other abiotic stressors. Depending on the local 
habitat conditions and geographical area, a cultivar with 
sufficient resistance to biotic and abiotic influences should 
be usually chosen (Jelínek et al., 2020). Weather extremes, 
which can be a consequence of climate change, are current-
ly a significant problem; therefore, winter wheat cultivars 
adapted to central European climatic regions also with 
ability to face local adverse biotic and abiotic influences 
were registered from 1976 to 2009 (Šíp et al., 2011). Rising 
average temperature is a sign of climate change and causes 
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a recurring frequency of weather extremes affecting  agri-
cultural production and yield (Fuglie, 2021); in the periods 
1850-1900 and 2006-2015 alone, the average surface tem-
perature increased by 1.53 °C (“Special Report on Climate 
Change and Land – IPCC site,” n.d.) (IPCC, 2020). One of 
the impacts of the increased average temperature indicates 
a lower risk of affecting crop growth at low temperatures. 
On the other hand, the risk of frost damage to crop may not 
be proportionally reduced by the interaction on the change in 
ambient temperature (Rapacz et al., 2014). Irregular frosty 
days lead to an increased risk of frost damage to crops, 
especially in an area where the vegetation is not covered 
with snow due to a decrease in snow cover (Dalmannsdottir 
et al., 2017). Currently, many wheat cultivars resistant to 
extreme weather have been bred and are commonly sown 
around the world. However, because of extreme weather 
changes in areas where spring frosts may appear, damage 
to the crop stand and subsequent loss of yields may occur 
(Zhong et al., 2008). Challinor et al. (2005) found that tem-
perature is one of the main factors for crop yield estimation 
and crop production. Various crop models are currently 
used to optimize production and predict crop growth, but 
their major drawback may be their limited ability to pre-
dict climatic extremes and the frequent requirement of 
a lot of input data (Sánchez et al., 2014; Rapacz et al., 
2022; Barlow et al., 2015; Persson et al., 2017). On the 
other hand, the damage to the crop stand can be monitored 
during the entire growth in individual phenological stages 
and using noninvasive methods. The information can also 
be converted into a quantitative form to estimate the eco-
nomic damage. Each plant organ is sensitive to frost to 
a different degree. The most important organ of winter 
wheat is undoubtedly the crown tissue (Persson et al., 
2017). In the case of spring frosts or extreme temperature 
during the winter, it enables the regeneration of other plant 
organs that are damaged (Fowler et al., 1999). Due to its 
high sensitivity to frost, it is very important to monitor the 
vitality and health of the crown tissue. Extensive informa-
tion about its condition and phenology can be obtained 
using remote sensing (Vaghela et al., 2020).

Remote sensing offers a contactless way of monitor-
ing crops. With the development of modern technologies 
in plant production (including satellite images with high 
spatial and temporal resolution), digital information from 
sensors is increasingly being used for agrotechnical pur-
poses (Atzberger, 2013; Nasrallah et al., 2018). Especially, 
optical remote sensing is often used for assessment, inven-
tory, and modeling purposes with its tradition of more than 
a hundred years. A significant development in this field 
was mainly the launch of Landsat satellites of the U.S. 
Geological Survey (USGS) and NASA in 1972 (Landsat 
Science, (n.d.), 2023) and the Copernicus program satellites 
of the European Space Agency (ESA) in 2014 into orbit 
(ESA – Copernicus (n.d.), 2023). Although optical data 
is a valuable source of information, it has its limitations. 

One of them is limitations caused by weather conditions, 
such as frequent cloud cover, which is a significant prob-
lem over the area of the Czech Republic, and the limited 
availability of cloud-free images during the growing season 
(Domínguez et al., 2015). However, these limitations can 
be reduced by the use of microwave remote sensing, i.e. 
images from Sentinel-1. As reported by Kim et al. (2012), 
Malenovský et al. (2012), Fieuzal et al. (2013) and Jin et 
al. (2015), the great advantage of the microwave part of the 
spectrum is that it can penetrate through clouds and thus 
data can be obtained regardless of the time of day.

Growth prediction and periodicity models in the crop 
life cycle with emphasis on the phenology and health sta-
tus of the crops in the field or individual parts of the field 
are crucial for crop management. The crop life cycle can 
fluctuate according to weather conditions in seasons and 
cultivars. Domínguez et al. (2015) developed predictive 
models for winter wheat and winter oilseed rape for local 
field conditions and cultivars. They used the normalized 
difference vegetation index (NDVI, Rouse et al., 1973) for 
its simulation and easy interpretation. On the other hand, 
the use of time series from optical data requires a large 
data set with homogenous atmospheric conditions, which 
can be limited due to frequent cloud cover. It is also ne-
cessary to focus on individual spectral bands. Jelínek et al. 
(2020) considered the use of spectral bands B8 and B8A 
of Sentinel 2 images for calculating NDVI and their suit-
ability for evaluating winter wheat varieties. During the last 
years, many studies have been published concerning yield 
potential and its modeling. Basic rules about this issue (e.g. 
photosynthesis, water uptake, nutrition) were already set by 
Evans (1996). Yield potential is primarily defined as the re-
lative yield of a variety, which is already adapted and grown 
in conditions with non-limiting water and nutrient access 
and biotic stresses, also effectively controlled. However, as 
pointed out by Guilpart et al. (2017), the definition of crop 
yield is not static in the real world and evolves based on 
the intensity of the cropping system. Because it was neces-
sary to transfer the models to a clear visualization and thus 
improve the interpretation of the variability of the annual 
yield map, Maphanyane (2017) published a concept of a nor- 
malized yield frequency map. Such a model converts abso-
lute yield into relative yield and thus identifies places with 
higher or lower production capacity.

Synthetic aperture radar (SAR) data and radar back-
scatter in general can serve as an alternative to optical 
data for monitoring the growth of various agricultural 
crops (Kumar Sahadevan et al., 2013; Mandal et al., 2020; 
Kaplan et al., 2021; de Blas et al., 2021; Saad El Imanni 
et al., 2022 and others). The authors often combine opti-
cal and radar satellite data for wheat monitoring, as 
in Saad El Imanni et al. (2022). However, as it turned 
out in the study by Tůma et al. (2022), a major problem in 
the usability and interpretation of Sentinel-1 radar images 
may be the backscatter anisotropy caused by the different 
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incidence and azimuthal angles. For this reason, it is nec-
essary to choose at least the same orbit for all images in 
the time series. Speckle filtering is also one of the neces-
sary procedures for increasing image quality by reducing 
speckle (Filipponi, 2019) and plays a significant role for the 
final visualization and interpretation of results.

In addition to the Radar vegetation index (RVI, 
Charbonneau, 2005), dual polarizations are also very often 
used in agriculture. The signal from the cross-polarized 
channels (HV and VH) is sensitive to structural parameters, 
where the resulting value is high for multiple backscatters, 
while the resulting value is low for a single backscatter, 
e.g. from bare soil. On the other hand, co-polarized chan-
nels (HH or VV) are more sensitive to water content or 
surface roughness (soil, vegetation) (Moreira et al., 2013; 
Harfenmeister et al., 2019). Alternative equations using 
VH and VV channels have been proposed for dual-polar-
ized SAR sensors, such as Sentinel-1 (Trudel et al., 2012; 
Mandal et al., 2020).

Since SAR images are not affected by clouds, they can 
supplement information on the canopy if properly pro-
cessed. Just as the commonly used optical spectral indices 
or spectral bands can predict and quite clearly describe 
the state, structure, and vitality of crops, information from 
SAR can also contribute to supplementing and completing 
information on the structural parameters of biomass, water 
content, or surface roughness (growth phases).

As is clear from the previous text, the advantageous 
combination of optical and microwave remote sensing, or 
remote sensing in the pure microwave spectrum, is increas-
ingly being used to monitor the growth and condition of 
agricultural crops. However, current publications show that 
this monitoring is most often used at the level of entire plots 
of land. For example, Mandal et al. (2020) used Sentinel-1 
SAR data to monitor the growth of canola, soybean, and 
wheat. Subsequently, Kaplan et al. (2021) used Sentinel-1 
images for monitoring processing potatoes and cotton, 
de Blas et al. (2021) predicted crop biophysical variables 
from Radarsat-2 imagery, and Saad El Imanni et al. (2022) 
investigated the efficiency of Sentinel-1 and Sentinel-2 
data to study wheat phenological stages. Recently, Bao et 
al. (2023) extracted vegetation descriptors from Sentinel-1 
SAR data for wheat, canola, corn, and soybeans. Crop 
NDVI time series construction by fusing Sentinel-1 and 
2 was also discussed for corn and soybean by Chen et al. 
(2023), while Qu et al. (2023) monitored corn lodging 
based on Sentinel-1 images. Gao et al. (2023) used a com-
bination of Sentinel-1 and 2 images for large scale rice 
mapping, and finally, Ya’nan et al. (2024) used a combina-
tion of data from Sentinel-1 and 2 for surface soil moisture 
mapping over agricultural regions. 

However, there are also studies that try to capture vari-
ability at the field scale. For example, Hernández et al. 
(2022) used a combination of Landsat-8/OLI optical imag-
es and Sentinel-1 radar images to map wheat plants stressed 

by a soil aluminum effect, and Lapaz Olveira et al. (2023) 
used a combination of data from Sentinel-1 and 2 to create 
empirical models of remotely sensed corn nitrogen status 
within field during the vegetative period. Nevertheless, we 
have no information that only radar data itself was used to 
evaluate the within-field variability.

These recently published studies encouraged us to try 
to use pure radar satellite imagery to assess the within-field 
variability of winter wheat frost damage or its production 
potential. The first case happens increasingly often in the 
conditions of the Czech Republic in the early spring season 
in connection with climate change. We have no information 
that these issues were resolved in the past. That is why the 
novelty of this paper lies primarily in the fact that we have 
attempted to address this challenge.

Therefore, the main objective of this study was to verify 
the possibility of using satellite SAR images to assess the 
variability of vegetation within one plot. It was assessed 
whether it was possible to capture the qualitative changes 
in the winter wheat stand across the defined zones based on 
(1) frost damage and (2) production potential maps using 
the potential of SAR Sentinel-1 images. 

2. MATERIALS AND METHODS

2.1. Study area

For the purposes of this experiment, four agricultural 
fields with winter wheat were selected, partially damaged 
by spring frosts and secondarily by photooxidative radiation 
in April 2020. The study area was located near Lišany vil-
lage (50.1563328N, 13.7396500E) in the Czech Republic, 
belonging to the Agricultural Company Lupofyt s.r.o. The 
total area of the monitored plots was 67.2 ha with 350.30 m 
a.s.l. average elevation and 3.3% slope. An overview of 
the topographic parameters for individual monitored fields 
is given in Table 1. Topographic attributes, such as slope 
and topography wetness index (TWI), were derived from 
the Digital Terrain Model of the Czech Republic of the 5th 
Generation (DMR5G). Data were processed according to 
methodology described in Kumhálová et al. (2013, 2014) 
and Rataj et al. (2022).

Ta b l e  1. Topographic attributes derived from the digital terrain 
model of the Czech Republic of the 5th generation (DMR5G)

Name Area
(ha)

Average
elevation
(m) a.s.l.

Slope
(°) TWI Aspect

(°)

NK 19.45 360.08 4.12 7.01 209.14

PS   7.19 335.24 1.89 7.68 194.20

PV 21.60 353.31 5.22 6.57 260.66

ZTC 18.96 349.02 2.91 7.33 246.94
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The soil of the monitored fields belongs to eutrophic 
cambium soils and, in terms of soil particle grain size, 
mainly to loamy soils (ČGS, 2023). The conventional 
arable soil tillage technology (plowing) was used on the 
experimental plots.

Weather conditions, i.e. data on total daily precipitation 
as well as average daily and minimum temperatures in the 
main vegetation season 2020 provided by the official hydro-
meteorological station Heřmanov in district Rakovník, are 
shown in Figure 1. In terms of climatic conditions, the area 
of interest is located in a moderately warm area, where the 
typical summer is reasonable with 10-20 summer days, 
moderately warm with an average temperature of 13‑15°C 
and moderately humid with precipitation of 200-400 mm 
and 100-140 days with precipitation greater than 1 mm per 
day. According to the characteristics, winter is normally 
long with 50-60 icy days, slightly cold with an average 
temperature of -2 to -3°C, precipitation of 200-400 mm, 
and a snow cover duration of 50-80 days. The transition 
period (spring, autumn) is reasonably long with 140-160 
frost days, a cool spring with an average temperature of 
5‑7°C, and a slightly warm autumn with an average tem-
perature of 6‑8°C (WMS – Climatic regions of the Czech 
Republic: https://micka.cenia.cz/record/basic/4e64bc59-
65b0-4475-aae2-06a8c0a80138, 2024).

The crop rotation during the previous years was based 
on changing winter rape and winter wheat as the main pro-
duction crops.

2.2. Yield data

Combine harvester Claas Lexion 750 Terra Trac was 
used for yield measurements. This machine was equipped 
with a yield monitor and a DGPS receiver. The EGNOS cor-
rection ensured the accuracy of this system (± 0.1-0.3 m in 
horizontal and ± 0.2-0.6 m in vertical direction). The yield 
data were saved every 1 s with coordinates to the exter-
nal memory. The yield data were processed with a basic 
statistical method in order to eliminate errors of the yield 
measurement system. The yield data sets were then inter-

polated to kriging maps using experimental variograms and 
common procedures. The method is described in detail in 
Kumhálová et al. (2011).

2.3. Remote sensing data

Sentinel-1 A/B SAR and Sentinel 2A/B optical satellite 
images for the main vegetation season 2020 (see Table 2) 
were downloaded from the Copernicus Open Access Hub 
(https://scihub.copernicus.eu/). Images from the Sentinel 
2 satellite were used only for the purpose to evaluate the 
results obtained from radar data processing. Sentinel 2 
images in the level of Bottom of Atmosphere (BOA) reflec-
tance L2A were resampled to 10 m spatial resolution with 
the help of SW ENVI 5.5 (Excelis, Inv. Mc Lean, USA) 
or SNAP 6.0.4 (ESA, http://step.esa.int/main/). SAR data 
were downloaded for the same relative orbit 44 accord-
ing to Tůma et al. (2022) recommendation to maintain the 
same properties of the images. SAR data processing con-
sisted of several steps as follows: radiometric calibration, 
multi-temporal speckle filtering with using Lee sigma fil-
ter, and range-doppler terrain correction. Table 3 shows the 
vegetation indices and variables calculated and evaluated 
for the purpose of this study.

In SW QGIS (version 7.8.3), the centroids of the raster 
pixels inside the monitored plots were created, exported 
from optical satellite images (basically at a spatial resolu-
tion of 10 m). The centroids were then converted to text 
format and uploaded via the “Pin manager” tool to SW 
SNAP. Based on these points, variables, mentioned in 
Table 3, were quantified for each pixel of the given plots, 
which served as the basic data source for statistical analy- 
sis. Topographic attributes (Slope and TWI) and crop yield 
were then considered for advanced statistical analysis. 
Pixels were resampled to the spatial resolution 50 and 100 m 
with the aim to improve the information of raster data 
regarding to speckle filtering during the SAR data pro-
cessing. These data sets were also taken to the advanced 
statistical analysis.

Ta b l e  2. Optical and SAR satellite images available for the main vegetation season for 2020

Satellite Dates of images
Sentinel 1 SAR 22.3., 28.3., 3.4., 9.4., 21.4., 9.5., 15.5., 21.5., 2.6., 14.6., 20.6.
Sentinel 2 MSI 24.3., 8.4., 18.4., 23.4., 28.4., 8.5., 18.5., 2.6., 27.6.

Ta b l e  3. Vegetation indices and variables calculated in this study

Variables Equation / property Used for
Normalized difference vegetation index (NDVI) (NIR-RED) / (NIR+RED) Structure, vigor, health of vegetation
Radar vegetation index (RVI) (4σ°VH) / (σ°VV + σ°VH) Structure, moisture content
B8 (NIR) band of Sentinel 2 image 0.842 nm Quality of cellular structure in crop tissue
VV polarization co-polarized backscatter Vertical structure of crops (height), moisture 
VH polarization cross-polarized backscatter Crop volume, moisture

https://micka.cenia.cz/record/basic/4e64bc59-65b0-4475-aae2-06a8c0a80138
https://micka.cenia.cz/record/basic/4e64bc59-65b0-4475-aae2-06a8c0a80138
http://step.esa.int/main/
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All the data were evaluated inside the individual cat-
egories derived from “production potential maps (MPP)” 
and “damage zones”. The damage zones of the wheat stand 
were determined based on the resulting yield data, which, 
according to the previous analysis and personal communi-
cation with an agronomist, corresponded to the degree of 
freezing of the wheat stand at the beginning of the main 
growing season. The winter wheat stands were visually 
monitored by an agronomist, who checked the individual 
fields and assessed the degree and extent of their damage. 
Three basic levels of damage were determined (Fig. 2) 
where: Category 0 – damaged wheat stands; Category 
1 – medium vigor; Category 2 – best vigor. The produc-
tion potential maps were derived according to common 
procedures mentioned e.g. in Jelínek et al. (2020) as the 
calculation of “yield frequency map” expressed in percent-
age as the level of average productivity of surveyed plots in 
five categories (Fig. 2). The information about the size of 
the individual damage zones and MPP categories is given 
in Tables 4 and 5. 

2.4. Data analysis

Data analysis was performed with resampled data for 
10, 50, and 100  m pixel size with the aim to reduce the 
effect of speckles on the resulting analysis. The Python 
programming language with relevant libraries (Pandas, 
Scikit-Learn and Matplotlib) was utilized for data wran-
gling, statistical analysis, statistical model building, and 
performance measurements. The first step dealt with the 
merging data from the entire vegetation season together to 
one dataset. The number of samples was n = 6219 for 10 m, 
n = 2 860 for 50 m, and n = 744 for 100 m. However, in the 
case of logistic regression model training, the total number 
of initial training points was much higher, a total of 83619. 
It should be considered that several images (NDVI and RVI 
in several terms) were obtained from each sampling point 
of 10 x 10 m, not just one. Each of these images is then 

a training point. After these initial data wrangling steps, 
the basic statistics was performed – correlation matrix and 
scatter matrices between zones of production potential 
(five zones) and other variables. Subsequently, the logistic 
regression model was built with three damage zones, TWI, 
Crop Yield, Slope, VV and VH polarization as explana-
tory variables and five zones of production potential as the 
dependent variable with a test data size of 0.3 for all the 
resolution variants. Finally, the confusion matrix, F-score, 
recall, and precision of the test were used for performance 
measurement. The reason for using the logistic regression 

Fig. 2. Damage zones A ) where: 0 – damaged wheat stands, 1 – medium vigor, 2 – best vigor and map of production potential (MPP); 
B) where: 1 – the lowest, 5 – the highest. 

A) B)

Ta b l e  4. Area (ha) of damage zones, where 0 – damaged stands, 
1 – medium vigor, 2 – best vigor

Field / 
Damage zones 0 1 2 Total area

(ha)
NK 5.17 5.63 8.65 19.45
PS 1.19 4.44 1.56 7.19
PV 6.98 6.43 8.19 21.60
ZTC 3.29 11.48 4.19 18.96

Total area (ha) 16.63 28.98 24.59 67.20

Ta b l e  5. Area (ha) of map of production potential (MPP) 
categories, where 1 – the lowest, 5 – the highest

Field /
MPP
cate-
gories

1 2 3 4 5
Total 
area 
(ha)

NK 1.52 4.53 7.84 4.33 1.23 19.45
PS 6.54 0.65 7.19
PV 1.86 4.84 8.95 4.70 1.25 21.60
ZTC 3.25 5.17 4.75 4.57 1.22 18.96
Total 
area (ha)

6.63 14.54 28.08 14.25 3.70 67.20
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Fig. 3. Average values of three damage zones on the four monitored winter wheat plots: NK (A), PS (B), PV (C), ZTC (D) for selected 
variables during the main vegetation season 2020 (date on the “x” axis).

Fig. 4. Five MPP (production potential) categories for the given average values of selected variables and plots: NK (A), PS (B), PV (C), 
ZTC (D) during the main vegetation season 2020 (date on the “x” axis).

A)

A)

C)

C)

B)

B)

D)

D)
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model was the small number of training points for the 50 
and 100 m resolution. This is not advantageous, for exam-
ple, for the use of the Random Forest model, which for 
this reason appeared to us to be inappropriate. A frequently 
used model for a smaller number of training points is also 
the support vector machine (SVM). However, the first test 
indicated that training nonlinear SVM models would be 
time-consuming, considering the different resolutions.

3. RESULTS AND DISCUSSION
3.1. Evaluation of crops in individual zones

Four plots of winter wheat were evaluated using imag-
es from the Sentinel 2 satellite: spectral band B8 – a near 
infrared part of the spectrum to determine the state of plant 
cell structure (1); the normalized difference vegetation 
index (NDVI) as an indicator of plant health, structure, and 
vitality (2); and Sentinel-1: the radar vegetation index (3); 
and VV and VH polarization (4) as indicators of the state 
of the wheat stand in terms of biomass growth (its mois-
ture and structure). The variables were evaluated for five 
MPP classes and three frost-induced damage zones of the 
monitored plots. Figure 3 shows the average values of the 
selected variables in the damage zones on the four moni-
tored winter wheat plots. Figure 4 then shows the five MPP 
categories for the given average values of the variables. 
The evaluated variables were plotted depending on the date 
and the BBCH scale (Meier et al., 2009).

RVI clearly showed differences in the damage zones 
and also between the MPP categories. The lowest RVI 
values corresponded to the area of the lowest production 
potential and the greatest damage to the wheat stand. As 
can be seen from Fig. 2, the places with the most extensive 
damage to the wheat stand roughly corresponded visually 
to the places with the lowest production potential. This is 
a proof that the vegetation in these places is more stressed 
by abiotic factors and vice versa. It can be seen from Fig. 4 
that the values between the categories can fluctuate (e.g. up 
to 1.34 for RVI) depending on the current state of the wheat 
stand in the given phenological phase and according to the 
damage to the crops induced by frost at the beginning of 
the main growing season. However, the trend between the 
categories was maintained. As follows from the literature, 
SAR data in agriculture was used more for the evaluation 
of larger areas (e.g. Mandal et al., 2020; Saad El Imanni 
et al., 2022), Bao et al., 2023 and others). Compared to 
that, our study focuses on the evaluation of smaller units 
within agricultural plots. These areas can represent, for 
example, areas of production potential or yield categori-
zation for targeted agrotechnical interventions. Within the 
course of the RVI curves (Figs 3 and 4), a gradual increase 
in values with a local maximum (up to 0.95) on March 28 
can be observed at the beginning of the monitored period 
(end of March) of the main vegetation season, which may 
be associated with the low amount of precipitation during 

the end of the tillering growing stage. After that, there is 
again a gradual decrease in values with a local minimum 
(up to 0.90) on April 3. From this date, there was a gradual 
increase in RVI values (up to 1.25) until May 15, as the 
wheat stand grew during the stem elongation stage and the 
volume of biomass increased. After that, there was a gra- 
dual decrease again, apparently due to phenology and 
surface structure changes (flowering, ripening). The date 
June 2, when the local minimum values (up to 0.84) were 
recorded, corresponded to the flowering growing stage. 
The application of a fertilizer in the phenological phase of 
BBCH 32 (2nd node – April 8) proved to be important from 
the point of view of RVI. After the next application on May 
29 (BBCH 59 - end of heading), the values were equalized 
in terms of RVI (the difference between the categories is on 
average 0.08), which may have been caused by the uniform 
maturation of the wheat stand, i.e. a change in structure, 
when the surface of the wheat stand is no longer a green 
tissue – a leaf, but a maturing ear. Harvest prediction using 
SAR data was also discussed in the study of Harfenmeister 
et al. (2019), who found an influence of bending of the 
ears on backscattering. Likewise, Wiseman et al. (2014) 
reported that SAR data can react to dry biomass and can 
thus unambiguously identify changes in crop structure and 
phenology, which has proven to be a useful indicator for 
cereal harvest timing.

The backscatter from cross-polarized channels, for 
Sentinel-1 VH polarization, is sensitive to structural param-
eters. For multiple backscatter, the resulting value is high, 
while for a single backscatter, e.g. from bare ground, the 
resulting value is low. On the other hand, co-polarized 
channels, with Sentinel-1 VV polarization, are more sensi-
tive to water content or surface roughness (soil, vegetation). 
Both polarizations clearly showed differences among the 
categories, while the highest values for both polarizations 
correspond to the area of the lowest wheat stand quality. 
The VV polarization reached higher values and was more 
differentiated according to the degree of damage to the 
wheat stands (Fig. 3) than the VH polarization. The VH 
polarization as an expression of surface structure and 
roughness had a relatively stable, homogeneous course, 
which pointed to balanced growth during the initial phe-
nological phases (tillering). The increase in values (from 
0.019 to 0.042), which probably caused a multiple back-
scatter, only occurred in the period from the beginning of 
June, i.e. during the phenological phase of flowering and 
ear formation. This is also where the difference between 
the damage classes was most noticeable. The VV polari-
zation had a heterogeneous course and greater differences 
between the classes of crop damage.

For MPP, the VV polarization reached higher values 
(0.035 on average) at the beginning of the main growing 
season due to the very low height of the wheat stand in 
all categories, and at the beginning of growth it was more 
differentiated than the VH polarization, apparently due to 
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the different water content in the soil as well, which sig-
nificantly affects the backscatter. The VH polarization as 
an expression of the structure (volume) of the surface had 
a relatively stable, homogeneous course at the beginning 
of the main growing season, which indicated balanced 
growth and tillering during the initial phenological phases. 
The slight increase in values, which was probably caused 
by a multiple backscatter, already occurred in the period 
from the beginning of April, i.e. at the beginning of stem 
elongation. In the later phenological phases, there was also 
a relatively high variability of the VH backscatter among 
the MPP categories due to the different quality of vegeta-
tion on individual parts of the plots. As can be seen from 
the literature, e.g. Harfenmeister et al. (2019), Frate et al. 
(2004), Brown et al. (2003), and the present results, the VV 
polarization values decreased with the increase in biomass 
from 0.035 to 0.006 due to the signal attenuation caused by 
the development of the vertical plant structure (elongation 
growth) and the development of the flag leaf. This trend was 
already visible at the beginning of April. In contrast, the VH 
polarization was generally more sensitive to the volume 
(thus structure) of the vegetation and was not as affected by 
the vertical resolution as the resulting value was inherently 
affected by the bidirectional scattering (VH) on the plant 
stem. In the early growth stages, the resulting values were 
also greatly influenced by changes in the soil moisture of 
the plots. As confirmed by El Hajj et al. (2016), at lower 
vegetation involvement and height, the signal was signifi-
cantly affected by the soil contribution. In April and May, 
the BBCH 30-39 and BBCH 41-49 growth phases began, 
when both the stem elongation and the flag leaf developed. 
In these phases, there was also an increase in leaf area cov-
erage up to 100% due to the increase in longer and stronger 
leaves. In the growth phase of the development of the flag 
leaf, the values of the VV polarization backscatter usually 
reached a minimum (0.006). This period is usually char-
acterized by a maximum of leaf area (LAI) values with a 
high amount of wet biomass, which also dampens the back-
scatter down to the minimum typical for the given crop. 
As also confirmed in the study by Hernández et al. (2022), 
VV polarization significantly detects exogenous stress, in 
this study crop canopy Al stress. In the following growth 
phase, i.e. “heading” (BBCH 51-59), the backscatter val-
ues increased again in both polarizations (0.042 for VH and 
0.014 for VV), which was mainly caused by a change in 
the structure of the crop surface. Undoubtedly, the water 
content in the wheat stands also played a significant role, 
when in the late phenological phases with decreasing water 
content and decreasing LAI, the backscatter values also 
steadily decreased, which is in accordance with the findings 
of Nasrallah et al. (2019). In their study, they mentioned 
that the VV backscatter was at its lowest value during these 
late phenological stages.

It follows from the literature (Vreugdenhil et al., 2018; 
Harfenmeister et al., 2019) that the fluctuations of the back-
scatter during the growing season can be explained by the 
changing influence of soil contribution and low vegetation 
as well as by structural changes of crops and their water 
content. This is in accordance with our results. Usually, in 
the early phenological stages, i.e. in March, when wheat 
crops begin to develop tillers (BBCH 20-29), the height of 
the plants is still low (approx. 10-15 cm) and the growth is 
not very involved. Thus, soil is still the main factor affecting 
the backscatter. During this period, the backscatter values 
were still strongly affected by changes in soil moisture. 
The backscatter values decreased with the increasing veg-
etation development due to the higher signal attenuation. 
This mainly concerned the VV backscatter and was less 
pronounced for the VH backscatter. The VV backscatter is 
dominated by the direct contribution of the soil/vegetation 
combination, where the signal was weakened mainly by 
the growing vertical parts of the plants (stems). The VH 
backscatter was generally more sensitive to scatter by the 
vegetation volume (rather than vertical structure). Double 
backscattering of VH polarization occurred on the stem. 
The same development of polarizations during the growth 
of winter cereals was also mentioned by Vreugdenhil et al. 
(2018). The VV backscatter decreased until the beginning of 
the stem elongation. The backscatter of VH also decreased 
slightly during the final tillering stages but increased again 
with the stem elongation stage due to the increase in the 
wheat stand volume.

NDVI had a less pronounced curve compared to RVI. 
The results showed a gradual decrease in NDVI values 
(from 0.84 to 0.80 on average) for all categories at the 
beginning of the main growing season. On April 8 (BBCH 
32 – 2nd node of stem elongation), fertilizers were applied 
for the growth and recovery of plants, on April 15 precipita-
tion came, and since April 18 there was a gradual increase 
in NDVI values (from 0.8 to 0.85). The small fluctuations 
may have been caused by changes in the structure and vital-
ity of the wheat stand in the individual phenological phases. 
In terms of damage classes, there is a noticeable fluctuation 
of values between class 0 and 1, i.e. areas with more dam-
age, which is a positive result of the appropriate application 
of the fertilizer to support plant growth. For MPP, the great-
est variability between individual categories was found for 
the PV and PS plots.

The NIR curve (bands B8 of the Sentinel 2 satellite 
image) corresponds to the state of the cellular structure of 
the winter wheat stand. For all four evaluated plots, there 
was a noticeable increase in reflectance values (from 0.37 
to 0.43) at the beginning of April, which was replaced by 
a decrease due to unfavourable weather (low temperatures) 
at the beginning of the main growing season. After that, 
the NIR reflectance values increased again (up to 0.49 on 
average), which indicates an increase in the volume of bio-
mass during the development of the wheat stand. From the 
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beginning of May, there was again a gradual decrease in 
values (from 0.42 to 0.29) related to the change in the 
growth surface depending on the phenological phase and 
the structure of the crop tissue. The reflectance values in the 
NIR fluctuated according to the phenological phase and the 
state of the cell structure in the given category.

3.2. Processing and evaluation of remote sensing data

First, the data used to assess the damage to the wheat 
crops induced by frost was evaluated. The correlation coef-
ficients showed a positive correlation between the damaged 
zones, MPP categories, yield, and TWI and a negative cor-
relation with VV, VH, and Slope (see Table 6). The course 
of crop growth over time, taken into account as a Calendar 
Day in the model, showed a negligible correlation in all 
cases. Neither Damaged zones nor MPP Categories are 
independent of the course of crop growth. The procedure 
of data resampling from a spatial resolution of 10 to 50 m 
increased the values of correlation coefficients in most 
cases, while resampling to 100 m, on the contrary, reduced 

it back (sometimes even below its value at a resolution of 
10 m). The only exception was the correlation coefficients 
between damaged zones and MPP, which always decreased 
when the spatial resolution was reduced.

Regression models (e.g. Lapaz Olveira et al., 2023) 
are used to describe the dependencies obtained from radar 
images, similar to Random Forest machine learning models 
(Chen et al., 2023; Qu et al., 2023). Because of better results 
(F-score for Random Forest was 0.528 and for Support 
Vector Classifier 0.351) and for the reasons stated in section 
2.4, we finally decided to use the logistic regression model. 
In its upper part, Fig. 5 graphically represents the results of 
building logistic regression. It follows from this part of fig-
ure that the built model was able to predict damaged zones 
with sufficient (1,2) or worse (0) performance. 

In terms of performance metrics of the damage zone 
logistic regression model, the results are shown in Table 7. 
The precision score, which shows what percentage is truly 
positive from all positive ones, yielded the best results for 
the assessed model. However, the F-score, which is the 

Ta b l e  6. Correlation between damage zones and MPP categories and chosen explanatory variables. All coefficients are significant at 
a 5% significance level

Damage zones MPP Categories

Variables
Spatial resolution

Variables
Spatial resolution

10 m 50 m 100 m 10 m 50 m 100 m
TWI 0.135 0.170 0.136 TWI 0.448 0.393 0.573
Yield 0.543 0.590 0.460 Yield 0.369 0.321 0.081

MPP categories 0.557 0.506 0.387 Damage zones 0.557 0.506 0.387

Slope -0.017 -0.031 -0.022 Slope -0.271 -0.298 -0.390
VV -0.226 -0.251 -0.156 VV -0.200 -0.182 -0.066
VH -0.186 -0.193 -0.045 VH -0.221 -0.213 -0.089
Calendar day -0.000 0.000 -0.000 Calendar day 0.000 0.000 0.000

Fig. 5. Confusion matrices for logistic regression. a) 10 m data, b) 50 m data, c) 100 m data for damage zones and MPP categories.
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harmonic mean of precision and recall, still yields a prom-
ising result ranging from 0.531 to 0.611, with the best result 
achieved at a spatial resolution of 10 m.

In the case of evaluation of the MPP categories, the cor-
relation coefficients showed a positive correlation between 
the MPP categories and damage zones, TWI, and Yield var-
iables and a negative correlation with the Slope, VV, and 
VH (Table 6). The data resampling procedure sometimes 
weakened and sometimes strengthened the correlation, 
while the aforementioned 6 variables were important in the 
10 m spatial resolution and for this reason it was chosen.

The results of building logistic regression can be again 
seen in the lower part of Fig. 5, where the test outcomes 
are visualized. As can be seen, the built model was able to 
predict some of the MPP categories with sufficient or worse 
performance (2, 3 and 4); nevertheless, it seems that other 
classes are problematic for it (1 and 5).

The performance metrics of the logistic regression 
model of the MPP categories in the case of F-score showed 
the best value of 0.333 for the 50 m spatial resolution, the 
precision score showed the best value at 10 m (0.407), 
while the recall score showed the best value of 0.338 again 
at the 50 m spatial resolution.

It is clear from Table 7 that, in the case of evaluation of 
the MPP categories, the logistic regression model performs 
slightly better in terms of the F-score, recall, and precision 
at the smaller resolution (10 and 50 m), compared to the 
performance at the 100 m resolution. The precision score 
is the largest of all the monitored performance metrics val-
ues at 10 m resolution, indicating that the model is more 
accurate in its positive predictions, compared to the other 
resolutions. The F-score value was the best for the 50 m 
spatial resolution. The recall score indicates that the mod-
el’s ability to detect positive instances becomes slightly less 
effective as the resolution decreases. Finally, it could be 
said that the overall performance (all metrics) decreases as 
the resolution decreases from 10 to 100 m, suggesting that 
the model’s ability to correctly classify instances diminish-
es with the smaller resolution.

In terms of comparing both built models, it follows 
from Table 7 at first glance that the performance metrics 
were always significantly better for the logistic regression 
model of damaged zones (the coefficients reached around 
0.6 and more in the case of the damage zones and around 
0.35 in the case of the MPP categories). 

It is clear from the previous statistical analysis that the 
logistic regression models performed better in the case of 
a larger spatial resolution (e.g. the precision score for the 
damaged zones was 0.549 for the 100 m spatial resolution, 
0.619 for 10 m, and 0.558 for 50 m, see Table 7), with a pixel 
of 10 m appearing to be the best (in the case of the MPP cat-
egories 0.285 for the 100 m spatial resolution, compared to 
0.407 for 10 m and 0.404 for 50 m). This is probably due to the 
fact that, in the case of larger spatial resolutions, more data 
are available to create a logistic regression model (83 619 
for the 10 m spatial resolution against 744 only for 100 m). 
This is also apparently in accordance with the fact that, 
in the case of dividing the plots into 3 management zones 
(frost damage), the results of logistic regression models 
were better than in the case of dividing them into 5 zones 
(production potential zones). Based on the results obtained 
by us, it is perhaps possible to propose an assumption that 
modern statistical methods can be used to reduce problems 
associated with radar images speckles for practical purpos-
es. However, confirmation of this finding requires further 
research.

4. CONCLUSIONS

The results of our experiments proved that the radar 
data from Sentinel-1 SAR aperture radar has the potential 
to capture within-field variability in the case of assessing 
damage to winter wheat plots caused by spring frosts and 
in the case of assessing their production potential. The 
radar vegetation index clearly showed differences in dam-
age zones and between production potential categories. The 
lowest RVI values corresponded to the area of the lowest 
production potential and the greatest damage to the wheat 
stand. Also, VH and VV polarizations showed differences 
among the categories. For both polarizations, the highest 
values corresponded to the area of the lowest wheat stand 
quality. The logistic regression model indicated that the 
larger spatial resolution, with a pixel of 50 m, appeared 
to be the best in its performance, both in the case of the 
assessment of damaged zones and MPP categories. It was 
predominantly true that the greater spatial resolution was 
more effective for its use. In the case of assessing damage 
to winter wheat stands caused by spring frosts, correlation 
coefficients of up to 0.7 were reached. Modern statistical 
methods can probably be used to reduce problems associ-
ated with speckles of radar images for practical purposes, 
but confirmation of this finding requires further research.

Ta b l e  7. Performance metrics of the built logistic regression models for detection of damaged zones and MPP categories

Parameter Damage zones MPP categories
Spatial resolution 10 m 50 m 100 m 10 m 50 m 100 m
F-score 0.611 0.531 0.536 0.323 0.333 0.291
Recall score 0.605 0.523 0.542 0.333 0.338 0.336
Precision score 0.619 0.558 0.549 0.407 0.404 0.285
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