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A b s t r a c t. ANN models were utilised in the case of orange 
(Citrus sinensis L.) cultivation in Adana Province to predict green- 
house gas emissions and total energy input. The share of chemi-
cal fertilizers in orange cultivation is high and was calculated as 
74.47%. Energy consumption and energy output values in large 
farms have the highest values with 34 972.38 and 35 305.92 MJ ha-1, 
respectively. Furthermore, there is no significant variance in ener-
gy use efficiency among the three different sizes of orange farms. 
In the orange cultivation, non-renewable energy sources (95.88%) 
have a significantly larger share than renewable energy sources 
(4.12%). Energy input in direct energy, indirect energy, renewable 
energy, and non-renewable energy sources configurations was cal-
culated as 6 819.99, 27 185.07, 1401.98, and 32 603.08 MJ ha-1. 
The greenhouse gas analysis showed greenhouse gas emissions 
equivalent to 759.58 kgCO2eq ha-1. 56.84% of greenhouse gas 
emissions come from chemical fertilizers. The best Artificial neu-
ral network model training data used for orange production and 
greenhouse gas emissions has root mean square error values of 
0.141 and 0.063, respectively, while the mean absolute percentage 
error values are 0.005 and 0.004, respectively. Due to the ability 
of Artificial neural networks to predict results, it can be effectively 
used in growing oranges and other plant crops.

K e y w o r d s: artificial neural network, energy productivity, 
greenhouse gas emissions, orange 

1. INTRODUCTION

Citrus spp. is a fruit cultivated for many years. According 
to Barry et al. (2020), four primary categories of citrus fruits 
are commonly consumed worldwide: sweet oranges, tange-

rines, lemons, and grapefruits. The most widely cultivated 
fruit group in the world is citrus fruits, with approximately 
124 million tons. When the shares in citrus production are 
considered, orange constitutes 56.12%, tangerine 17.23%, 
lemon 11.52%, golden balls 5.62%, and other citrus fruits 
9.51% (FAOSAT, 2021).

In Turkey, a total of 4.8 million t of citrus fruits were 
harvested from 140 thousand hectares of land in 2019. 
Orange, scientifically known as Citrus sinensis L., is a type 
of citrus fruit. It is a winter fruit with an orange color, shiny 
skin, and circular shape. Orange cultivation takes place on 
3.9 million ha of land globally. Brazil owns 16.4% of the 
area, India owns 15.6%, and China owns 13.1%. According 
to Ertek et al. (2020), Brazil yields 27.6 t ha-1, China yields 
25.9 t ha-1, and India yields 12.7 t ha-1. Orange production 
is rapidly growing worldwide as well as in Turkey. In 2020, 
Brazil took the lead by producing 17 million t of the total 
75 million t of orange production, while India produced 9.9 
million t, China 7.5 million t, and the USA 4.8 million t. 
Turkey held the 7th position with 1.8 million t (Carvalho 
et al., 2022).

As energy consumption (EC) in agriculture increases, 
the need for efficient energy use in sustainable agricultural 
practices also increases. Therefore, both costs and green-
house gas emissions (GHGE) are reduced at the same 
time protecting the environment (Klikocka et al., 2019). 
Artificial neural networks (ANNs) are used to model EC 
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and economic indicators in agriculture. In recent years, 
ANN techniques have been widely used to model agricul-
tural production efficiency and GHGE (Niedbala, 2019). 
Various examples include corn (Farjam et al., 2014), 
orange (Nabavi-Pelesaraei et al., 2014), watermelon 
(Nabavi-Pelesaraei et al., 2016), winter rapeseed (Niedbala, 
2019), almond (Yılmaz and Bayav, 2022), watermelon 
(Demir, 2023), peach (Demir and Gokdogan, 2023), vetch 
(Seydosoglu et al., 2023), garlic (Baran et al., 2023), and 
cherry (Gokdogan et al., 2024).

As a result of the literature review, it can been seen 
that there are not enough studies on increasing energy use 
efficiency and reducing GHGE through ANN modeling 
in orange cultivation in Adana Province. In this research 
conducted in Adana Province, Turkey, energy input (EI) 
indices in orange cultivation were determined and ANN 
models were developed for energy efficiency and GHGE 
prediction and evaluated using the best topology for predic-
tion accuracy.

2. MATERIALS AND METHODS

The data utilized in the survey were obtained from 65 
farmers producing oranges (Citrus sinensis L.) in Adana in 
the 2023 season. Adana is located in Turkey’s Mediterranean 
Region. Adana is located between 36° 32‘17.8 “N and 38° 
25’ 21.7” N North latitudes and 34° 39 ‘34.0 “E and 36° 24’ 
01.4” E East longitudes (GDM, 2022).

2.1. Calculation of energy indices

To predict the energy equivalent, the yield values of 
orange crops including seed amounts, biocides, chemical 
fertilizers, farm manure, electricity, fuel, human labor, and 
machinery were calculated per ha (Table 1) (Demir and 
Gokdogan, 2023).

Energy indexes include energy use efficiency (EUE) 
Eq. (1), energy productivity (EP) Eq. (2), specific energy 
(SE) Eq. (3), energy density (ED) Eq. (4) and net ener-
gy (NE) Eq. (5) computed using Table 1 for their sizes 
(Nabavi-Pelesaraei et al., 2016; Macedo et al., 2021).

(1)

(2)

(3)

(4)

(5)

In the calculation, EO – energy output (MJ ha-1), EI – 
energy input (MJ ha-1), product output (kg ha-1), and cost of 
production ($ ha-1) data were used.

The examples consist of three groups (<1 ha, 1-2 ha, 
>2 ha). EUE and SE in agricultural activities are comple-
mentary indices. They are referred to as direct energy (DE), 
indirect energy (IDE), renewable energy (RE), and non- 
renewable energy (NRE) (Demir, 2023). GHGE of orange 
cultivation was computed (Table 2) (Ozbek et al., 2024).

GHGE in orange cultivation was calculated according 
to Eq. (6) (Karaagac et al., 2019):

(6)

Here, GHGha – greenhouse gas emission (kgCO2eq ha-1), 
R(i) – amount of i input (unitinput ha-1), EF(i) – GHG emis-
sion equivalent of i input (kgCO2eq unit-1

input), IGHG, GHG 
rate, Y yield in kg per hectare was calculated using Eq. (7) 
(Houshyar et al., 2015):

Ta b l e  1 .  Energy equivalent of inputs and output in agricultural 
production

Inputs Unit Energy equivalent
(MJ unit-1)

Human labor h 1.96
Machinery h 62.7
Diesel fuel L 56.31
Chemical fertilizers
   Nitrogen (N) kg 66.14
   Phosphate (P2O5) kg 12.44
   Potassium (K2O) kg 11.15
Cattle manure kg 0.3
Pesticides  
   Insecticide kg 199
   Fungicide kg 92
Electricity kWh 5.9
Output Orange kg 5.9

Ta b l e  2. Greenhouse gas (GHG) emission parameters of agri-
cultural inputs

Input Unit GHG coefficient
(kg CO2eq unit-1)

Machinery MJ 0.071
Diesel fuel L 2.76
Chemical fertilizer
   Nitrogen kg 1.3
   Phosphate (P2O5) kg 0.2
   Potassium (K2O) kg 0.2
Pesticides
   Insecticide kg 5.1
   Fungicide kg 3.9
Electricity kWh 0.608
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(7)

2.2. Artificial neural network (ANN) modeling

To solve nonlinear mixed problems with ANN, the 
entered information continues until the input layer neurons 
and the output layer neurons are reached (Fig. 1) (Benti, 
2023).

ANN is a computing paradigm similar to the biological 
nervous system. There has been a great increase in studies 
on ANN in recent years. In this study, the ANN model was 
used for training and testing 48 and 17 units (orange crop 
units), respectively. Selected units were obtained randomly 
from all samples. The number of neurons was determined 
according to the number of input and output layers for 
orange production and GHG emission. Also, more than 
one hidden layer modeling has been propounded for ANN 
modeling. The most widely used Levenberg-Marquardt lear-
ning algorithm was used for practice in ANN. The weight 
(w) span value (x) and its value at each node controlling 
output (O) were changed using the value corresponding to 
Eq. (8) (Nabavi-Pelesaraei et al., 2016):

(8)

Here, f is a non-linear sigmoid function. T is a specific thres-
hold (bias) value for each node. In this study, parameters of 
root mean square error (RMSE), coefficient of determina- 
tion (R2), and mean absolute percentage error (MAPE) were 
utilized (Bhatti and Do, 2019). The models were trained 
with the training throughput and tested with the test throu-
ghput, and RMSE was computed using Eq. (9): 

(9)

In addition to RMSE, which is valuation used for statis-
tics, R2 predictive value was also found with Eq. (10):

(10)

Concerning the R2, m is the count of throughput tes-
ted, throughput predicted in Oi ANNs, yi is the quantity 
of computed throughput. If y is the mean of the computed 
throughput quantity (yi), O is the average value of the pre-
dicted throughput quantity (Oi) in the ANNs. In addition, 
MAPE values were calculated using Eq. (11):  

(11)

N indicates the number of training vectors, and output for 
the training vector “y” and “ y’ “ indicates observed and 
simulated values, respectively. In this study, basic infor-
mation about EI and outputs (energy efficiency, GHG 
emission) in orange cultivation was coded into Excel 2016 
and Matlab (R2019a), a program used to realize the ANN 
model.

3. RESULTS AND DISCUSSION

3.1. Analysis of energy use in orange cultivation

In the study, equivalent energy input (EI) and energy 
output (EO) in three groups of orange cultivation areas 
were examined (Table 3). The average energy requirement 
for orange production was approximately 31116.50 MJ 
ha-1. Orange cultivation has the highest EC and efficiency 
in the large scale farm models.

While the results revealed that there was no considerab-
le difference between the three farm groups in terms of EI, 
a considerable difference was monitored when compared in 
terms of orange cultivation. Among the fertilizers used in 
the orange production, N has the highest EC at approxima-
tely 53.66%, followed by electricity consumption at 6.47% 
and diesel fuel at 5.64%. Also, the share of the other inputs 
in orange production is lower than the average EI. Thus, 
in the orange production with the management of N con-
sumption, EUE can be improved by using farmyard manure 
instead of chemical fertilizers. The effect of orange produc-
tion inputs on total energy use is shown in Fig. 2.

In previous research, EI was declared to be approxi-
mately 46 349 MJ ha-1 for orange production, the highest 
EC was attributed to chemical fertilizers 28 566.22 MJ ha-1, 
and diesel fuel consumption was 3 025.77 MJ ha-1 (Nabavi-
Pelesaraei et al., 2014). EUE, EP, SE, NE, and ED are given 
in Table 4 according to the farm size levels specified in this 
study. EUE for orange production was determined as 1.01. 
The EUE results of other research are as follows: 2.49 for 
sesame (Ozbek et al., 2024) and 0.95 for cherry (Gokdogan 
et al., 2024). In another study, EI and EO in cotton culti-
vation were calculated as 54 617.62 and 65 984.42 MJ ha-1, 
respectively (Baran et al., 2021). In cherry, these valu-
es were calculated as 14 934.30 and 14 234.67 MJ ha-1 
(Gokdogan et al., 2024).

Fig. 1. Artificial neural network model.
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As can be seen in Table 4, small-scale farms have the 
lowest EUE in orange production (0.90) since the ratio of 
EO to EI is the lowest. Accordingly, the energy use in oran-
ge production on small-scale farms in Adana Province in 
Türkiye is not efficient. In addition, EP, SE, NE, and ED 
were calculated as 1.01 kg MJ-1, 1.00 MJ kg-1, 286.30 MJ 
ha-1 and 2.21 MJ $-1, respectively. According to the results, 
79.94% of the total EI share is IDE and 20.06% is DE. 
Moreover, 4.12% of the total EI used in orange cultiva-
tion was provided from quite low RE sources (Table 4). 
Therefore, the share of NRE in terms of EC in orange cul-
tivation is considerably higher than RE sources. Efficient 
use of fuel and irrigation can reduce the rate of NRE. The 
results obtained are consistent with the literature for diffe-
rent crops. 

Ta b l e  3. Energy input – Energy Output relationship in the orange cultivate

Inputs (MJ ha-1)
Farm size groups (ha) Average

(MJ ha-1)
Percentage

(%)Small (<1) Medium (1-2) Large (>2)

Human labor 1 2026 1 471 1 476 1 444 4.64
Machinery 1 366 1 550 1 640 1 515 4.87

Diesel fuel 1 211 1 817 1812 1 754 5.64

Chemical 
   Nitrogen (N) 14 249 16 306 19 979 16 697 53.66
   Phosphate 913 2 004 2 237 1 932 6.21
   Potassium 3 782 4 671 4 457 4 544 14.60

Cattle manure 551 614 585 603 1.94

Pesticides
   Insecticide 136 244 294 242 0.78
   Fungicide 158 387 418 369 1.19
Electricity 1 948 2 010 2 070 2 013 6.47
Total energy input 25 5211 31 079 34 9728 31 116 100.00
Output Orange 22 860 31720 35 305 31 402

Fig. 2. Effect of orange production inputs on total energy use.

Ta b l e  4. Energy input-energy output ratio in the orange cultivate

Energy types Unit
Farm size groups (ha)

Average Percentage
(%)Small (<1) Medium (1-2) Large (>2)

Energy use efficiency – 0.90 1.02 1.01 1.01 -
Energy productivity kg MJ-1 1.22 1.01 0.91 1.01 -
Specific energy MJ kg-1 0.73 1.01 1.12 1.00 -
Net energy MJ ha-1 -2660 640 333 286 -
Energy density MJ $-1 1.82 2.20 2.45 2.21 -
Direct energy MJ ha-1 5 5185 6 723 7 494 6 819 20.06
Indirect energy MJ ha-1 22 407 27 299 30 430 27 185 79.94
Renewable energy MJ ha-1 1 0694 1 302 1 452 1 401 4.12
Non-renewable energy MJ ha-1 26 8571 32 719 36 473 32 603 95.88
Total energy input MJ ha-1 27 926 34 022 37 925 34 005 100
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3.2. Greenhouse gas emissions in orange cultivation

GHGE from the three groups of orange cultivation is 
shown in Table 5. GHGE was found to be 759.58 kgCO2eq 
ha-1. In a similar study, it was reported that CO2 emission in 
tomato production was calculated as approximately 322.75 
kg CO2eq ha-1 (Sarkar et al., 2022). In another study, GHG 
emission in okra farming was calculated as 875.41 kg CO2eq 
ha-1 (Sarkar et al., 2022). In organic fig cultivation, the total 
greenhouse gas emission was calculated as 1109.02 kg 
CO2eq ha-1 (Oguz et al., 2022). The distribution of GHGE in 
this study is given in Table 5.

While the portion of GHGE in orange cultivation has 
the highest share in large farms, GHGE has the lowest share 
in small-scale farms. In the table, there is no significant dif-
ference in GHGE between the three different farm groups 
in orange production. According to the table, the nitrogen 
fertilizer has the highest ratio (41.89%) in the total GHGE, 

followed by diesel fuel (14.09%) and electricity consumpti-
on (13.77%). The contribution of orange production inputs 
to the use of GHGE is shown in Fig. 3.

In the case of sufficient rainfall, reduction of irrigati-
on water (electricity consumption) and good agricultural 
management (reduction of chemical fertilizers) in orange 
production can reduce GHGE.

3.3. ANN model structure and evaluation 

Various nets were trained in the Matlab (R2019a) 
program using the method of the Levenberg-Marquardt 
algorithm to predict orange production and GHGE and pro-
vide the best model. Using training sets, prediction models 
contain 75% of data. Test data sets containing 48 samples 
were used to test the developed network. As seen in Table 6, 
statistical indicators were used to predict orange produc- 
tion yield and GHGE to evaluate the ANN models. After 

Ta b l e  5. Greenhouse gas (GHG) emission of inputs used in orange cultivation

Inputs
Farm size groups (ha)  Average

(kg CO2eq ha-1)
Percentage

(%)
Small (<1) Medium (1-2) Large (>2)

Machinery 75.75 90.09 106.44 94.63 12.46
Diesel fuel 79.37 99.10 118.83 107.01 14.09
Chemical fertilizer
    Nitrogen 280.07 320.51 392.70 318.19 41.89
    Phosphate (P2O5) 14.68 32.23 35.98 30.07 3.96
    Potassium (K2O) 67.84 83.79 79.95 83.51 10.99
Pesticides
    Insecticide 3.51 6.27 7.55 6.11 0.80
    Fungicide 6.74 16.43 17.74 15.45 2.03
Electricity 99.28 102.47 105.50 104.60 13.77
Total GHG emissions 627.24 750.89 864.69 759.58 100.00

Fig. 3. Contribution of orange production inputs to the use of greenhouse gas emission.
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trial and error processing, the best performance was obtained 
with an ANN model with a 10-6-2 topology with a sta- 
tistical indicator. The structure of the selected ANN is 
shown schematically in Fig. 4. Training and test results are 
shown in Table 6. Therefore, the best topology in orange 
farming and GHGE, the highest R2, and the lowest RMSE 
and MAPE values tend to closely follow the predicted oran-
ge farming and GHG emission in the ANN models, both 
training and testing. The amount of R2 varies in the range 
of 0.907-0.986 for the training data and 0.903-0.989 for the 
test data.

An ANN model of winter rapeseed yield was developed 
to predict indices EC, and it was found that the best model 
was the 21-13-6-1 topology. The best R2 and MAE values 
showing the superiority of this ANN model to the predic- 
tion models were 0.98 and 0.00943, respectively (Niedbala, 
2019). The coefficient of determination (R2) for waterme-
lon yield and GHGE of the ANN model with an 11-10-2 
structure was calculated as 0.969 and 0.995, respectively 
(Nabavi-Pelesaraei et al., 2016). For the ANN model (R2) 
with a 6-3-9-1 topology, the coefficient of determination 
for grain corn yield and GHGE was calculated as 0.982 
(Farjam et al., 2014). The distribution graph of the predic-
ted EO, GHG emission in orange cultivation, training, and 
test data sets for real values are shown in Figs 5 and 6. The 
predicted and real output energy values are consistent with 
each other. The determination coefficient for these indices 
showed the suitability of the output energy of the develo-
ped network and the GHG emission in orange farming in 
the areas examined. For the training data, the R2 coeffi-
cient of orange yield and GHGE was found to be 0.974 and 

Ta b l e  6. Result of different models

Topology Model 
categories

Statistics 
indices

Output layer

Orange 
yield

Greenhouse
gas

emissions
R2 0.911 0.925

Train RMSE 0.154 0.068
10-7-2 MAPE 0.011 0.010

R2 0.904 0.935

Test RMSE 0.122 0.027
MAPE 0.010 0.008

R2 0.974 0.986

Train RMSE 0.141 0.063
10-6-2 MAPE 0.005 0.004
(Best) R2 0.959 0.989

Test RMSE 0.114 0.031
MAPE 0.004 0.002

R2 0.907 0.918

Train RMSE 0.182 0.094
10-5-2 MAPE 0.019 0.016

R2 0.903 0.937

Test RMSE 0.147 0.049
MAPE 0.019 0.017

Fig. 4. Artificial neural networks model with 10-6-2 topology.

Fig. 5. Correlation between predicted and real outputs energies based on the best topology.
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0.986. Also, the coefficient of determination R2 of orange 
yield and GHGE for the test data was found to be 0.959 
and 0.989.

In Fig. 7, the perpendicular axis indicates uniform out-
puts; it shows the predicted number of data sets on the 
horizontal axis. Blue and green lines represent the actual 
output values. The red and magenta color lines show the 
accuracy of the model as the predicted values were close.

3.4. Sensitivity analysis (SA) 

Sensitivity analysis is carried out to test the accura-
cy of the consequence of a model. In the SA with ANN, 
entry variants were listed by handling fractional differential 
study (Table 7).

4. CONCLUSIONS

The aim of the study was to assess the ANN model’s 
accuracy in predicting GHGE and EI for orange farming 
in Adana. The EI in orange farming was computed as tota-
led 31 116.50 MJ ha-1 due to the use of chemical fertilizers 
(74.47%), with an Energy output (EO) of 31 402.8 MJ 
ha-1. Large farms have the highest EC and EO values with 
34 972.38 and 35 305.92 MJ ha-1, respectively. Furthermore, 

the difference in performance between the EUE is not 
important for the three different scales of orange plantati-
ons. The average values for EUE, EP, SE, NE, and ED were 
calculated to be 1.01, 1.01 kg MJ-1, 1.00 MJ kg-1, 286.30 MJ 
ha-1, and 2.21 MJ $-1, respectively. The findings indicate that 
medium farms have notably higher EUE and NE, compared 
to other farms. This demonstrates that energy is effectively 

Fig. 6. Correlation between predicted and real outputs greenhousegas emission based on the best topology.

Fig. 7. Predicted and real output energy values.

Ta b l e  7 . Sensitivity analysis results for input energies

Inputs Orange
yield

Greenhouse gas 
emissions

Human labor 0.016 0.058
Machinery 0.002 0.001
Diesel fuel 0.024 0.003
Nitrogen 0.004 0.045
Phosphate 0.006 0.050
Potassium 0.006 0.051
Farmyard manure 0.011 0.048
Biocides 0.008 0.034
Electricity 0.009 0.017
Seed 0.026 0.027

Real output energy
Predicted output energy
Real output emissions
Predicted output emissions

Exampler

N
or

m
al

iz
ed

 o
ut

pu
ts
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utilized in the process of growing oranges. Furthermore, it 
is concluded that improving vegetative efficiency or decre-
asing EC can further enhance energy efficiency. The EUE 
index indicates that growing oranges requires a significant 
amount of energy. Regarding energy production, operation-
al efficiency and its EO can be increased by implementing 
various strategies such as reducing EI (diesel fuel, natural 
gas), saving electricity.

In the field of orange cultivation, NRE sources account 
for a significantly larger portion (95.88%) than RE sources 
(4.12%). The EI values for DE, IDE, RE, and NRE con-
figurations were calculated as 6 819.99 MJ ha-1, 27185.07 
MJ ha-1, 1 401.98 MJ ha-1, and 32 603.08 MJ ha-1, respe-
ctively. The analysis of greenhouse gas (GHG) emissions 
indicated 759.58 kg CO2eq emitted per hectare. The lar-
gest contribution to GHGE is from chemical fertilizers at 
56.84%, followed by diesel fuel at 14.09% and electricity 
at 13.77%. Additionally, there is no substantial difference 
in GHGE among the three farm groups. Several ANNs 
were created in this research to simulate EC, with the most 
effective being the ANN model utilizing the Levenberg-
Marquardt Algorithm. This model, with a 10-6-2 structure 
across all energy indices, is superior in predicting orange 
production efficiency and GHGE. In the best topology, 
training data, R2 values for the yield of orange production 
and GHGE were 0.974 and 0.986, respectively, while the 
RMSE values were 0.141 and 0.063, and the MAPE values 
were 0.005 and 0.004, respectively. It was concluded that 
a well-trained ANN could be widely applied to other crops 
and other areas of work, thanks to its considerable predic-
tive ability. 

According to the EUE analysis results, it was determined 
that the ANN model is advantageous in terms of modeling 
energy indices in orange production with high accuracy. 
In sensitivity analysis, the share of seed and human labor 
in the prediction of efficiency and GHGE, respectively, in 
orange farming has the highest share in terms of EI and 
CO2 emissions. In terms of EUE in orange cultivation, vari-
ous measures should be taken to reduce the consumption of 
chemical fertilizers, fuel, EC, and GHGE.
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