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A b s t r a c t. The wildfire temperature can affect many soil 
properties, such as aggregate stability. The water stable aggregate 
(WSA) is a soil property not typically considered in soil analy-
sis, so pedotransfer functions are an alternative for estimating it. 
This study provides a series of pedotransfer functions as models 
to predict the effect of heating on WSA using basic soil data. Soil 
samples were collected from 22 different sites and analyzed in the 
laboratory before and after being heated at 100 and 300°C. These 
temperatures represent low- and medium-severity wildfires. Bulk 
density, organic matter (OM), sand, silt, and clay contents, and 
pH were used to estimate WSA for unheated and heated soils. The 
results showed no significant differences in WSA between unheat-
ed soils and those heated at 100°C but a significant decrease at 
300°C. WSA correlated significantly with OM content and pH in 
unheated soils and 100°C heated soils (p<0.01), but not at 300°C. 
A non-linear model was developed to predict WSA in unheated 
soils, and two additional models were developed for heated soils. 
Finally, at 300°C, the organic matter, clay content, and water-sta-
ble aggregates decreased significantly while pH increased.

K e y w o r d s: bulk density, organic matter, pedotransfer func-
tions, water-stable aggregates, wildfires

1. INTRODUCTION

Wildfires occur regularly in ecosystems worldwide, and 
they are the leading cause of changes in natural ecosys-
tems, increasing the risk of soil erosion and redistribution. 
These events, primarily caused by human activities, lead 

to soil degradation and nutrient loss through volatilization 
and erosion (Farid et al., 2024). The effects on soils caused 
by fire primarily depend on fire intensity, duration, fre-
quency, fuel load, and soil properties (Chicco et al., 2023). 
Fire intensity is classified according to the temperature 
reached as low (below 100°C), medium (up to 250°C), and 
high (over 350°C) (Dhungana et al., 2024). However, the 
severity mainly depends on fuel load, soil type, moisture 
content, and fire intensity (Agbeshie et al., 2022). Wildfires 
can affect physical, chemical, and biological soil proper-
ties (Carkovic et al., 2015; Farid et al., 2024; Köster et al., 
2021). Fire significantly alters soil chemical properties by 
reducing nutrient retention, nutrient content, and organic 
matter while affecting soil fertility, pH, and electrical con-
ductivity (Ayoubi et al., 2021). Additionally, fire weakens 
soil structure, increases erodibility, and can lead to changes 
in soil texture. Fire changes in soil physical and chemical 
properties are often associated with more crumbly, less 
cohesive, and more erodible conditions. This is mainly 
due to the combustion of organic matter, which reduces 
aggregate stability (Chicco et al., 2023). Soil organic car-
bon is physically protected through its bonds with primary 
soil particles within aggregates, and these bonds can also 
enhance aggregate stability (Ayoubi et al., 2020). Then, 
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when aggregates are destroyed, organic matter stores 
become unprotected, reducing soil structure stability and 
accelerating soil erosion, especially in hilly regions.

Soil aggregate stability may increase, decrease, or 
remain unchanged as a result of fire or laboratory heating, 
depending on the influence of rising temperature on binding 
agents (Negri et al., 2024). The aggregate stability usually 
increases in soils with high clay content depending on fire 
severity (Mataix-Solera et al., 2011), so the higher the fire 
severity, the higher the aggregate stability (Albalasmeh et 
al., 2013). Despite this condition, different studies have 
found that high-intensity fires can increase or decrease the 
stability depending on the combustion of the organic mat-
ter (OM), microbial secretion, or the recrystallization of 
clay particles (Bai et al., 2020; Hrelja et al., 2020). Thus, 
some studies have reported no significant changes at 100°C 
in laboratory experiments (Zavala et al., 2010; Ibrahimi et 
al., 2019). However, Jiménez-Pinilla et al. (2016) found an 
increase in aggregate stability at 300°C despite the decrease 
in OM content. Contrary to these findings, Martínez et al. 
(2022) and Giraldo et al. (2024) showed a decrease in 
water-stable aggregates (WSA) at 300°C. 

Usually, measuring the changes in soil properties after 
a wildfire is challenging. There is limited access or restric-
tions to reach the affected area, and the sampling needs to 
be done as soon as possible to avoid the effect of other fac-
tors, such as wind and water erosion (Bonilla et al., 2014). 
For that reason, laboratory experiments have been used to 
simulate wildfire conditions (Li et al., 2022), controlling 
some of the variables to differentiate the effects of heating 
(Zhang et al., 2018). It also allows sampling and analyzing 
immediately after heating (Badía-Villas et al., 2014). 

Furthermore, even though aggregate stability is an indi-
cator of soil health due to its relation with soil erodibility 
and improved soil-water dynamics (Rieke et al., 2022), 
there is no standard measurement methodology to meas-
ure the effect of heating on aggregate stability (Thomaz, 
2021). Also, some of the methods can be time-consuming 
and expensive, making them rarely included in soil analysis 
routines (Mataix-Solera et al., 2011). Because of this and 
the previously described sampling and measuring limita-
tions, an alternative option is using pedotransfer functions 
(PTFs) and machine learning techniques to create useful 
models to predict aggregate stability (Rivera and Bonilla, 
2020). Although aggregate stability prediction using 
pedotransfer functions has been used in unheated soils, 
there are not enough studies or models after heating con-
ditions. These functions could assist post-fire assessments 
where direct measurements are not feasible. Therefore, we 
selected 22 soils in Central Chile from diverse sites with 
different conditions to ensure a wide range of soil proper-
ties. In this context, the main objective of this study was to 
create models based on variables usually measured in soil 
analysis routines or predicting the effect of heating at 100 
and 300°C on soil aggregate stability. 

2. MATERIALS AND METHODS
2.1. Soil sampling sites 

Different locations in Central Chile were selected as 
sampling sites. These areas consist of a geological depres-
sion that extends for about 1000 km from Valparaíso to La 
Araucanía from 32°S to 42°S (Bonilla and Johnson, 2012). 
Average annual rainfall ranges from 270 mm in northern 
Central Chile to 1 150 mm in the southern areas. The tem-
perature in this region follows a seasonal pattern, with cold 
winters (minimum 0°C) and hot summers (maximum 28°C). 
In general, sites near the mountains experience greater dai-
ly temperature variation, while coastal locations have more 
stable temperatures throughout the day (Contreras and 
Bonilla, 2018). The Köppen-Geiger classification of the 
study area includes Mediterranean (Csb) and Marine West 
Coast (Cfb) climates (Sarricolea et al., 2017). According to 
the Natural Resources Information Center (1996a, 1996b, 
1997a, 1997b, 2002), most soils between the Valparaíso 
and Maule regions are sedimentary, primarily formed from 
alluvial deposits. In contrast, the soils of La Araucanía pre-
dominantly consist of volcanic ash deposits. Thus, clay 
minerals of some soils of the first group of regions include 
montmorillonite (Molina-Roco et al., 2018), while volcan-
ic soils of the south of Central Chile contain allophane and 
imogolite (Valle et al., 2018). Central Chile was selected as 
the study area due to its records as the area with the highest 
number of fire events (92%) and burnt surface areas (89%) 
in the country from 1964 to 2022 (Corporación Nacional 
Forestal., 2024; Giraldo et al., 2024). 

2.2. Soil sampling

Twenty-two sites were selected for collecting soil samp- 
les between 2017 and 2022 (Fig. 1). Sixteen of those samp-
les were described previously in Giraldo et al. (2024). Soil 
types included Alfisols, Inceptisols, Mollisols, Andisols, 
Entisols and Ultisols. These soils were predominantly 
loamy or sandy loam texture classes, with OM contents 
between 1.57 and 21.53%. Samples were collected from 
topsoil (0-15 cm depth) using plastic bags, then, they were 
air-dried, and sieved using a 2-mm sieve in the laboratory. 
Soil samples were divided into three aliquots for heat-
ing treatments. Sieved soil samples were heated at 100 
and 300°C. We selected these temperatures because they 
can simulate low and medium-severity burns which are 
common in wildfires in Mediterranean-type ecosystems 
(Marcos et al., 2018) such as Central Chile. In addition, 
100°C treatment because at these temperatures the soil de- 
hydrates without significantly altering the properties (Aedo 
and Bonilla, 2021). In contrast, at 300°C, the organic mat-
ter and the soil structure are significantly affected (Terefe et 
al., 2008). These temperatures were also selected because, 
according to Marcos et al. (2007), heating soils at low tem-
peratures (100°C) at long exposure times produces similar 
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effects to high temperatures. To heat the soil samples to 
300°C, three 250 mL ceramic containers were placed into 
a muffle for two hours, according to Martínez et al. (2022). 

2.3. Soil properties measurements

The water-stable aggregates (WSA) were measured 
in triplicates by using a wet sieving apparatus (Royal 
Eijkelkamp, 2022) according to Kemper and Rosenau 
method (1986). Four grams of air-dried 1-2 mm aggre-
gates were wet sieved using a 0.25 mm sieve immersed in 
distilled water for 3 min. The unstable aggregates passed 
through the sieve and were collected in the distilled water-
filled can underneath the sieve. The process was repeated 
with a dispersing solution, either sodium hexametaphos-
phate (2 g L-1) for pH > 7.0 or sodium hydroxide (2 g L-1) 
for pH < 7.0 for 8 min. The collected cans, with water or 
dispersing solution, were dried at 110°C until the water 
was evaporated. The WSA is calculated as the percent-
age of stable aggregates, calculated by dividing the weight 
of the stable aggregates obtained from the dispersing 
solution containers by the total weight of both stable and 

unstable aggregates. A 100% value indicates no breakage, 
and 0% states a complete aggregate breakage (Rivera and 
Bonilla, 2020).

In addition, the bulk density, OM content, pH, and 
soil texture were also measured in triplicates. The bulk 
density was measured using the 3B USDA method, which 
used 250 cm3 stainless steel cylinders (Soil Survey Staff, 
2022). The OM was measured using the Walkley-Black 
method (Walkley and Black, 1934). The pH was meas-
ured using deionized water with a 1:2.5 soil-to-solution 
ratio, with measurements taken from the supernatant. 
Soil texture was determined using a PARIO device soft-
ware version 1.0.4.0 (METER Group, Inc, Pullman, WA, 
USA) as described by Acevedo et al. (2021). For each sam-
ple, three duplicate beakers were prepared: The first and 
second beakers were treated with 100 mL of sodium hex-
ametaphosphate (50 g L⁻¹) and 250 mL of distilled water, 
then shaken overnight to ensure proper dispersion. The 
third beaker was placed in an oven at 105°C and weighed 
to determine organic matter loss and accurately measure 
the solid mass. The dispersed solutions were transferred to 
a standard 1-L sedimentation cylinder and agitated for 1 min 

Fig. 1. Sampling locations employed in this study. The map represents the administrative division from Valparaíso to Los Lagos.
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to initiate the measurement. Results were recorded at 8 h 
and 60 s, following the approach described by Durner et 
al. (2017).

2.4. Data analysis and statistics

The analysis included: a) the  descriptive analysis of 
how soil properties are affected by heat, b) the correla-
tions between WSA and other soil properties, and c) the 
use of models to estimate WSA affected by heating. The 
descriptive statistics were computed using the R Software, 
version 4.2.2 (R Core Team, 2022), tidyverse, version 
1.3.2. (Wickham et al., 2019) and ggplot2, version 3.4.0 
(Wickham, 2016).The descriptive analysis included the 
Wilcox test in determining if there were significant differ-
ences between unheated soils and soils heated at 100 and 
300°C. Correlations were calculated using the R package 
complot, version 0.95 (Wei and Simko, 2024).  In addi-
tion, the generalized reduced gradient (GRG) was used 
in Excel with Solver to fit the models. The GRG method 
is more parsimonious and easily interpretable because it 
uses fewer parameters (Archontoulis and Miguez, 2015). 
In addition, nonlinear models were used to compare the 
model proposed by Rivera and Bonilla (2020) and a pro-
posed model for unheated soils. To estimate WSA at 100 
and 300°C, we developed two types of models: The first 
one with only measured soil properties, including WSA in 
unheated soils, and the second with measured soil proper-
ties and predicted WSA using the most accurate model for 
unheated soils. The explanatory variables of the unheated 
WSA model were bulk density (BD), soil texture, OM 
content, and pH, while the output was the WSA. In heated 
conditions, the explanatory variables included also meas-
ured WSA or predicted WSA in unheated conditions.In 
addition, the generalized reduced gradient (GRG) was used 
in Excel with Solver to fit the models. The GRG method 
is more parsimonious and easily interpretable because it 
uses fewer parameters (Archontoulis and Miguez, 2015). 
In addition, nonlinear models were used to compare with 
the model proposed by (Rivera and Bonilla, 2020). Using 
measured data and predicted data, WSA at 100 and 300°C 
were estimated based on soil properties in unheated soils in 
two different models. The explanatory variables were bulk 
density (BD), soil texture, OM content, and pH, while the 
output was the WSA. Although properties such as the CEC, 
EC, and cations could be relevant, their measurement can 
be expensive and time-consuming (Khaledian et al., 2017; 
Rivera and Bonilla, 2020). To evaluate the fitting between 
measurements and estimates, we used the coefficient of 
determination (R2), and the root mean square error (RMSE) 
by using the following equation:

where: Oi corresponds to the observed data, Pi corre-
sponds to the model prediction data, and n is the number 
of observations.

3. RESULTS AND DISCUSSION

3.1. Heating effect on chemical and physical properties

The average and the standard deviation of the measured 
variables of this study, categorized by temperature, are 
shown in Table 1. Unheated soil samples showed an aver-
age bulk density of 1.15 g cm-3, linked to the predominantly 
loamy or sandy loam texture classes. Soils also showed OM 
contents between 1.6 and 21.5%. The samples’ WSA was 
around 65%, indicating that 35% of the aggregates are eas-
ily destroyed in water. The medium value for stability is 
explained by the fact that half of the soil samples had OM 
contents below 5%, and more stable aggregates are found 
with larger OM contents (Topa et al., 2021).

When heated at 100°C, the chemical and physical soil 
properties did not differ from the unheated soils. This 
condition was reported in previous studies by Inbar et al. 
(2014), Ye-Yang Chun et al. (2021), and Martínez et al. 
(2022). Shrublands and open vegetation characterize cen-
tral Chile (Meserve et al., 2020). Under fire conditions, the 
limited availability of fuel in these types of ecosystems and 
vegetation leads to low-severity burn (Stavi, 2019), with 
temperatures similar to 100°C (Marcos et al., 2018). At 
300°C, clay significantly decreased (p<0.001), from 19% in 
unheated soils to 10% after burning. These results are like 
those reported by Inbar et al. (2014), in which the decrease 
in clay was attributed to the aggregation of clay particles 
into larger particles resembling silt or sand. In addition, 
the OM content decreased significantly (p<0.001), from 
8.83% in unheated soils to 2.95% after heating. These 
results agree with previous studies conducted by Negri et 
al. (2021), Martínez et al. (2022), Acevedo et al. (2023), 
and Giraldo et al. (2024). The WSA significantly decreased 
(p<0.05) from 74% in unheated soils to 62% at 300°C. This 
means that 26% of aggregates broke apart quickly in water 
when soils were unheated but increased to 38% when the 
soils were heated at 300°C. These results were expected 
and can be attributed to the oxidation of the OM that leads 
to the disaggregation of the soil structure and macropo-
res breakdown (Agbeshie et al., 2022). According to Fox 
et al. (2007), when the OM content decreases, the WSA 
decreases, showing a correlation between them (Ayoubi et 
al., 2021; Martínez et al., 2022). Fires contribute to soil 
aggregate breakdown, affecting soil structure, health, and 
quality by reducing porosity and degrading soil functions 
(Roshan and Biswas, 2023). The pH significantly increased 
(p<0.001) from 6.53 to 7.41, attributed to the denaturaliza-
tion of organic acids (Chicco et al., 2023). These results are 
like those reported by Terefe et al. (2008) and Martínez et 
al. (2022).
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Ta b l e  1. Main properties of the soil samples based on heating temperature 

Site Lat. S Long. W Texture Heat 
temperature

Bulk 
density 
(g cm-3)

Sand Silt Clay Organic 
matter pH

Water 
stable 

aggregates
(%)(%)

1 33°15’ 71°26’ Loam Unheated 1.14 51 34 15 7.87 5.85 97
Sandy loam 100°C - 55 29 16 8.40 6.09 94
Loam 300°C - 51 37 12 1.67 7.60 55

2 32°27’ 71°15’ Sandy clay 
loam Unheated 1.67 61 18 21 2.10 7.02 36

Sandy clay 
loam 100°C - 59 21 20 1.73 7.12 32

Sandy loam 300°C - 64 20 16 0.73 7.39 70
3 33°28’ 71°16’ Sandy loam Unheated 1.79 67 16 17 3.40 5.89 87

Sandy loam 100°C - 69 16 15 3.20 6.27 87
Sandy loam 300°C - 69 13 18 1.33 6.81 92

4 33°40’ 70°35’ Loam Unheated 1.12 48 40 12 1.57 8.13 25

Loam 100°C - 49 42 9 1.30 7.97 40
Sandy loam 300°C - 53 41 7 0.39 7.84 59

5 33°27’ 70°50’ Loam Unheated 1.07 46 38 16 4.57 6.91 55
Loam 100°C - 45 43 12 4.10 7.38 20
Loam 300°C - 48 45 7 1.70 8.44 23

6 33°31’ 70°45’ Loam Unheated 1.30 50 30 20 4.97 7.94 78
Sandy loam 100°C - 56 33 11 4.77 8.18 48
Sandy loam 300°C - 58 37 6 2.00 8.88 24

7 33°26’ 70°49’ Clay loam Unheated 1.28 21 43 36 3.83 6.99 72
Clay loam 100°C - 21 41 38 3.83 6.64 57
Silt Loam 300°C - 26 55 19 1.10 7.75 43

8 33°29’ 71°11’ Sandy loam Unheated 1.22 63 24 13 12.80 6.40 86
Sandy loam 100°C - 58 28 14 10.83 6.26 79
Sandy loam 300°C - 63 29 8 4.70 9.07 81

9 33°34’ 71°9’ Silty clay Unheated 1.33 13 47 40 4.53 8.29 75
Silty clay 
loam 100°C - 19 44 37 5.13 7.69 56

Loam 300°C - 37 43 20 1.17 7.97 100
10 33°14’ 70°37’ Sandy loam Unheated 1.23 63 24 13 5.50 7.47 52

Sandy loam 100°C - 61 23 16 4.43 7.09 35
Sandy loam 300°C - 64 32 4 2.00 7.75 69

11 33°27’ 70°50’ Loam Unheated 1.34 50 33 17 2.10 7.49 53
Loam 100°C - 52 32 16 2.37 7.35 59
Sandy loam 300°C - 54 37 9 0.98 7.85 61

12 33°26’ 70°49’ Loam Unheated 1.19 40 46 14 1.63 6.55 73
Loam 100°C - 42 42 16 1.70 6.47 76
Loam 300°C - 44 48 8 0.42 7.38 68

13 33°26’ 70°49’ Silt loam Unheated 0.84 18 63 19 12.97 6.51 86
Silt loam 100°C - 19 56 25 13.10 6.24 55
Silt loam 300°C - 23 66 11 4.33 8.36 28
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Figure 2 shows the relations between selected soil prop-
erties before and after heating. Properties such as the clay 
(Fig. 2a) and the OM (Fig. 2b) contents showed a strong 
linear relation in the unheated soils and those exposed at 
100°C (R2 > 0.7) because low-severity burn conditions do 
not lead to drastic changes in soil properties. Despite this, 
the WSA (Fig. 2c) showed a moderate relation (R2 = 0.66) 
between unheated soils and heated to 100°C, which is attrib-
uted to the increment in instability when the aggregates are 
subjected to heat. In shrublands, temperatures related to 
low-severity burn may cause a slight decrease in OM and 
aggregate stability (Stavi, 2019), similar to our results. On 
the other hand, when heated to 300°C, linear regressions 

showed weaker relations for the clay content (R2 < 0.3) and 
no relation for the WSA (R2 < 0.02). However, the OM con-
tent still showed a linear relation (R2 = 0.75). 

3.2. Relations between WSA and soil properties affected 
by the heating

Heating conditions affected the WSA and its correlation 
with other soil properties. Thus, in unheated soils, WSA 
showed a positive correlation with the OM content (R2 = 
0.69, p = 0.001) and a negative correlation with pH (R2 
= -0.66, p = 0.001). At 100°C, the correlations remained 
almost the same due to the slight change in the soil prop-
erties. Correlations between OM content, pH, and WSA 
were also reported by Ramírez et al. (2020) and Rivera 

Ta b l e  1. Continuation 

Site Lat. S Long. W Texture Heat 
temperature

Bulk 
density 
(g cm-3)

Sand Silt Clay Organic 
matter pH

Water 
stable 

aggregates
(%)(%)

14 34°34’ 71°48’ Loam Unheated 1.27 51 31 18 3.43 6.01 74
Sandy clay 
loam 100°C - 52 28 21 3.50 6.12 63

Loam 300°C - 51 31 18 2.23 7.18 41
15 36°4’ 71°39’ Loam Unheated 1.26 47 43 10 8.17 5.83 72

Sandy loam 100°C - 57 34 9 7.60 5.83 43
Sandy loam 300°C - 61 37 2 3.27 5.67 61

16 35°31’ 72°16’ Silt loam Unheated 0.88 21 62 17 13.23 5.22 78
Silt loam 100°C - 30 63 7 15.83 5.00 74
Silt loam 300°C - 34 64 2 6.77 6.25 75

17 38°39’ 73°7’ Silt loam Unheated 0.68 35 54 11 20.97 5.46 95
Loam 100°C - 40 46 14 19.40 5.65 85
Silt loam 300°C - 36 51 13 3.97 6.54 84

18 38°39’ 72°37’ Silty clay 
loam Unheated 1.18 16 47 37 12.03 5.30 96

Silty clay 100°C - 16 43 41 12.37 5.59 87
Silt loam 300°C - 22 67 11 3.73 6.85 88

19 39°1’ 72°13’ Silt loam Unheated 0.62 20 59 21 19.27 6.15 97
Silt loam 100°C - 35 53 12 19.90 6.33 92
Silt loam 300°C - 19 71 10 6.37 8.06 43

20 39°1’ 72°37’ Clay loam Unheated 1.01 23 46 31 13.57 4.94 96
Loam 100°C - 27 47 26 13.43 5.55 85
Silt loam 300°C - 37 53 10 3.20 6.54 87

21 39°10’ 72°22’ Loam Unheated 0.76 36 45 19 21.53 5.63 83
Silt loam 100°C - 37 50 13 18.87 4.89 87
Sandy loam 300°C - 52 47 1 8.63 5.91 73

22 41°19’ 72°59’ Sandy loam Unheated 0.69 59 39 2 14.77 6.30 93
Sandy loam 100°C - 60 30 10 13.17 6.27 85
Sandy loam 300°C - 55 39 6 2.67 7.07 53
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and Bonilla (2020). After heating to 300 °C, there were no 
significant correlations with other soil properties though 
previous studies reported relevant relationships between 
OM content and WSA (Fox et al., 2007; Martínez et al., 
2022). This condition could be attributed to changes in 
other soil cementing agents, which may not be related to the 
OM content. According to Campo et al. (2014), these varia-
tions in aggregation by heating could respond to variations 
in soil inorganic compounds or changes in clay fraction. 

Table 2 shows the models developed in this study. The 
table compares the model proposed by Rivera and Bonilla 
(2020) and a new model (#1) generated for unheated soils 
using measured values at controlled conditions (Fig. 3a). 
The relative importance of explanatory variables in non-
linear models was calculated using the R package relsimpo 
(Groemping, 2007). Rivera and Bonilla’s model consists 
of a linear regression based on OM content, clay, and pH 
designed using machine learning and 109 soil samples. 
When used to predict the measured values of this study, 
the R2 was 0.58 (p<0.0001), with an RMSE of 12.91%. 
The proposed model #1 is a non-linear model based on 
bulk density, pH, OM, sand, and silt content built on a set 
of 22 independent samples. This model showed an R2 of 
0.66 (p<0.0001) and an RMSE of 11.55%. The variable 
that showed the highest importance in this model was silt 
(99%), followed by pH (0.6%). In a study conducted by 
Ozlu and Arriaga (2021), there was a correlation between 
silt and 1-2 mm aggregates attributed to the high silt con-
tent of those soils. Half of the soil samples in the present 
study showed more silt than sand. Both models were com-
pared, and the regression between the predicted WSA of 
both models had an R2 of 0.92 (Fig. 3b), which implies that 
both models are equivalent, making model #1 an option to 
be used to predict WSA in unheated conditions.

The model by Rivera and Bonilla (2020) was not 
designed to predict soils subjected to heat, so two mod-
els for heated soils were developed using unheated basic 
soil properties (Table 2). The measured WSA values in 
unheated soils (WSAUH_measured) are used as input in the first 
model (#2), and the predicted WSA values (WSAUH_predicted) 
obtained from the proposed model are used in the second 
model (#3). In this way, the user can select model #2 or #3 
depending on the access to measured WSA values.

When predicting the WSA after heating at 100°C, both 
models (#2 or #3) use sand, silt, clay, OM content, and 
pH. The regression between the measured WSA at 100°C 
(Fig. 4a) and the predicted WSA using model #2 had an R2 
of 0.76 (p<0.001) with an RMSE of 10.75%. This model 
tends to overestimate measured values. The variable with 
the highest importance in model #2 was OM (49%), fol-
lowed by WSAUnheated_measured (46%). This was expected due 
to the correlation between the WSA and the OM content. 
On the other hand, model #3 showed an R2 of 0.53 (p = 
0.0001) with an RMSE of 14.92%. However, this model 
underestimated the measured values. The variable that Fi
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showed the highest importance in model #3 was pH (92%), 
followed by clay (5%). The interaction between clay, OM, 
and WSA is affected by pH according to Rivera and Bonilla 
(2020). In addition, a linear regression between models #2 
and #3 showed an R2 of 0.60, so in the absence of measured 
data, it is possible to use predicted unheated WSA to have 
a fair estimate. Traditional methods for measuring aggre-
gate stability are costly and impractical for routine soil 
surveys (Rivera and Bonilla, 2020). In addition, field cam-
paigns require samplings in both areas affected by wildfires 
and in adjacent unburnt areas to minimize edge effects 
(Dhungana et al., 2024), making them time-consuming 

and expensive (Rieke et al., 2022). However, pedotransfer 
functions offer a more affordable alternative, allowing for 
higher sampling (Clergue et al., 2023). As a result, using 
typical soil properties proved to be useful for creating sim-
ple models to predict WSA at 100°C. 

When estimating the WSA after heating to 300°C 
(Fig. 4b), both models (#4 or #5) use silt, clay, OM, and 
pH and either, measured or predicted unheated WSA values 
(Fig. 4b). The relation between the measured and predicted 
WSA values at 300°C using model #4 had an R2 of 0.54 
(p<0.001) with an RMSE of 14.77%. The variable that 
showed the highest importance in model #4 was pH (55%), 

Ta b l e  2. Models for predicting WSA using basic soil properties. One model is proposed for unheated soils and two for specific heat-
ing temperatures (100 and 300°C)

Temperature Model Equation R2 RMSE

Unheated Rivera and Bonilla 
(2020)

WSA = 122 + 1.1 OM + 0.19 Clay + 9.1 pH 0.58 12.91

#1 WSA = 376 BD0.03 - 250 Sand0.03 - 333 Silt0.71 + 4073 OM0.003 - 0.01 
pH3.59 - 11.46 0.66 11.15

100°C #2 WSA = 6.43 Sand0.34 + 3.26 Silt-0.21 + 2.05 Clay0.47 + 2.93 x 10-7 OM5.68 
- pH0.12 + 2.19 x 10-4 WSAUH_measured

2.74 + 0.08 0.76 10.76

#3 WSA = -13.82 Sand-42.93 + 251.25 Silt-19.56 + 2315 Clay-7.30 + 0.04 OM2.07 
+ 487 pH-0.82 -9.70 x 10-7 WSAUH_predicted

3.51 - 43.43 0.53 14.92

300°C #4 WSA = 1154 Silt-1.21 + 1.07 x 10-9 Clay6.66 + 1.13 x 10-4 OM3.90 + 1496 
pH-2.10 + 0.46 WSAUH_measured

-1.86 + 0.79 0.54 14.77

#5 WSA = 723 Silt-0.76 + 1.67 x 10-10 Clay7.19 + 348 OM-4.07 + 87.47 pH-0.34 
+ 0.45 WSAUH_predicted

31.17 - 114 0.63 13.22

BD – bulk density (g cm-3), OM – organic matter content (%). WSAUH_measured – water-stable aggregates measured in unheated (UH) 
soils, WSAUH_predicted – water-stable aggregates in unheated soils predicted using the proposed model. Sand, silt, and clay are expressed 
in %.

Fig. 3. Comparison between: a) measured and predicted water-stable aggregates (WSA) in unheated soils and b) the data predicted by 
both models. White dots represent the model proposed by Rivera and Bonilla (2020), and the black dots represent the proposed model 
#1. Lines represent the linear regression between measured and predicted values by Rivera and Bonilla´s model (dashed) and model #1 
(dotted). The 1:1 line is shown as a reference (solid line).
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followed by clay (33%). Although the pH showed signifi-
cant changes at 300°C, it was expected that OM content 
could show more relevance in the model. Model #5 showed 
an R2 of 0.63 (p<0.001) with an RMSE of 13.22%. The var-
iable that showed the highest importance in model #5 was 
clay (83%), followed by silt (14%). Both models tend to 
overestimate measured values. A linear regression between 
models #4 and #5 showed an R2 of 0.68. The model that 
used predicted WSA was more accurate at 300°C than at 
100°C probably because there were no differences between 
unheated soils and 100°C. However, the model that used 
measured WSA was more relevant at 100°C. Despite this, 
at 300°C, the changes in WSA were significant, making the 
measured data less accurate for the model. These results 
show that a reliable WSA prediction is more difficult as 
the heating temperature increases. These can be attributed 
to the carbonization of soil, where OM content and clay 
decreased significantly. 

This study focused on two specific temperatures (100 
and 300°C), which may not fully capture all the possible 
effects observed in natural burnt or heated soils. Fire may 
increase or decrease aggregate stability, and in some cas-
es, both effects can occur within the same soil affected by 
fire, depending on the severity gradient (Thomaz, 2021). 
Given this complexity, laboratory experiments are crucial 
for maintaining a constant temperature over a set period 
and minimizing spatial variability in results. Such con-
trolled conditions allow a better understanding of how soils 
affected by fire interact with their environment (Martínez 
et al., 2022). However, despite these controlled conditions, 
Varela et al. (2015) found that the effects of heating on 
water-stable aggregates (WSA) in laboratory experiments 

were comparable to those observed in naturally burnt soils, 
suggesting that laboratory experiments can effectively sim-
ulate wildfire impacts.  

High-severity burn temperatures (>300°C) may also 
induce critical changes on soil water-stable aggregates, but 
these were not tested. On the other hand, the pedotransfer 
functions were developed based on soils with specific prop-
erties (texture, OM content, bulk density, and pH). Their 
applicability to other fire or heating regimes and inorganic 
cementing agents should be explored and validated with 
additional data. The study captures immediate post-heating 
changes but does not account for long-term recovery pro-
cesses such as organic matter and mineral transformation.

4. CONCLUSIONS

This study provides a series of models to predict the 
effect of heating on the water stable aggregate (WSA) 
using variables typically measured in soil analysis routines. 
Overall, the soil properties selected in this study did not 
change significantly when the soils were exposed to 100°C. 
However, when heated at 300°C, organic matter (OM) 
and clay contents decreased significantly while the pH 
increased. These changes highlight the difference or lack 
of correlation between unheated soils and those exposed at 
300°C, demonstrating that some soil properties are highly 
sensitive to high temperatures. The WSA decreased with 
heating, particularly at 300°C. This indicates that soil prop-
erties, such as soil quality or soil health, can be highly 
affected by heating due to aggregate breakdown. 

Fig. 4. Comparison between: a) measured and predicted water-stable aggregates (WSA) at 100°C using measured unheated water-
stable aggregates (Model #2) and predicted unheated water-stable aggregates (Model #3), and b) measured and predicted water-stable 
aggregates (WSA) at 300°C using measured unheated water-stable aggregates (Model #4) and predicted unheated water-stable aggre-
gates (Model #5). White dots represent models #2 and #4, and black dots represent models #3 and #5, respectively. Dashed lines show 
the linear regression between measured and predicted values using models #2 and #4, and dotted lines show the linear regression 
between measured and predicted values using models #3 and #5, respectively. The 1:1 line is shown as a reference (solid line).
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Using basic or typical soil measurements proved to be 
useful for creating simple models to predict WSA in unheat-
ed soils and at 100°C. These models are an alternative when 
reducing the amount of extended laboratory experiments or 
field campaigns. After comparing the model developed by 
Rivera and Bonilla (2020) to an equivalent non-linear new 
model, this last one showed a better fit and accuracy, and 
it can be used as an alternative to predict WSA in unheated 
soils. On the other hand, four different models were devel-
oped for predicting the effect of heating on the WSA using 
basic properties from unheated soils, either using meas-
ured or predicted WSA. These models to predict WSA in 
heated soils showed that the pH, OM, and clay contents 
were key variables when predicting the temperature effects. 
Using the WSA values in unheated soils when predicting 
the effect of the temperature varies depending on the tem-
perature itself. Using the measured WSA in unheated soils 
(model #2) was better for predicting the WSA at 100°C. 
However, the predicted WSA in unheated soils (model #5) 
proved to be better for the estimates at 300°C.
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