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A b s t r a c t. This study investigates the predictive performance 
of five models: Artificial Neural Networks (ANN), Adaptive 
Neuro-Fuzzy Inference Systems (ANFIS), Multivariate Adaptive 
Regression Splines (MARS), Piecewise Linear Regression (PLR), 
and Support Vector Regression (SVR) in estimating wind drift and 
evaporation losses (WDEL) in varying environmental conditions. 
Using a diverse dataset encompassing key environmental vari-
ables, such as riser height, operating pressure, nozzle diameters, 
wind speed, air temperature, and relative humidity, the models 
were trained and tested to assess their ability to capture complex, 
nonlinear relationships affecting WDEL. The results reveal that 
ANN outperformed all the other models, achieving the highest 
correlation coefficient values and the lowest root mean square 
error and mean absolute error, highlighting its superior ability to 
generalize to unseen data. In contrast, ANFIS and MARS exhib-
ited moderate success, with higher prediction errors, especially 
in extreme conditions. PLR and SVR, which assume linear rela-
tionships, struggled to model the nonlinear dynamics governing 
WDEL, resulting in significantly lower accuracy. These findings 
underscore the importance of employing nonlinear models, such 
as ANN, to accurately predict WDEL in complex environmen-
tal systems. The study concludes that ANN is the most robust 
and reliable model for WDEL prediction, offering insights into 
future research directions, including hybrid models and ensemble 
approaches to further enhance predictive accuracy.

K e y w o r d s: evaporation and drift losses, sprinkler irrigation, 
machine learning, regression

1. INTRODUCTION 

Sprinkler irrigation is widely acknowledged for its abili- 
ty to save up to 50% more water compared to traditional 
surface irrigation methods, offering such advantages as effi-
ciency, cost-effectiveness, and ease of installation (Li et al., 
2015). However, despite its potential for water conserva-
tion, some of the water sprayed by the system is lost in 
transit before it reaches the crop canopy or soil. This loss, 
referred to as wind drift and evaporation losses (WDEL), 
reduces the overall effectiveness of the irrigation system, 
as water that could be used by crops is dissipated into the 
environment (Sadeghi et al., 2017; Stambouli et al., 2013). 
Accurate estimation of WDEL is essential because it direct-
ly affects irrigation management decisions. The challenge 
lies in finding the optimal balance in the system design: 
overdesigning can result in unnecessary costs, while 
underdesigning may cause insufficient water supply, lead-
ing to crop stress. Moreover, WDEL plays a significant role 
in determining water rights, which are often subject to legal 
and financial disputes, as well as influencing general water 
management strategies in agriculture (Sarwar et al., 2021).

The effectiveness of sprinkler irrigation systems is 
subject to a variety of influencing factors. These can be 
broadly classified into design elements, such as the type 
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of sprinkler, nozzle diameter, and spacing, and operational 
considerations, including the pressure, sprinkler height, 
and timing of irrigation. Additionally, environmental con-
ditions, particularly meteorological factors, also impact the 
system’s performance (Carrión et al., 2001; Playán et al., 
2006). In practice, not all of the water emitted by sprinklers 
reaches its target. WDEL values reported in the literature 
range between 2 and 50%, depending on both the type of 
the system used and the local climate in which it is applied 
(Playán et al., 2005; Sarwar et al., 2019). Among the design 
factors, the nozzle diameter has been identified as critical: 
larger diameters produce bigger droplets that are less prone 
to WDEL (Keller and Bliesner, 1990). Conversely, raising 
the height of the nozzle increases WDEL due to the longer 
drop path, which exposes the water to wind for an extended 
period. Additionally, increasing operational pressure reduc-
es the size of water droplets, which exacerbates WDEL 
(Montero et al., 2003). Environmental conditions, such as 
wind speed, further influence the trajectory of water drop-
lets, intensifying both evaporation and WDEL (Dechmi et 
al., 2003; Playán et al., 2006; Zapata et al., 2007; Sanchez 
et al., 2010).

To estimate WDEL, a common approach involves com-
paring the amount of water discharged by the sprinkler 
system with the amount collected using various measure-
ment devices and mathematical models (Yan et al., 2010; 
King et al., 2012; Sadeghi et al., 2015). Field and laboratory 
studies have attempted to analyze WDEL, but their results 
often vary due to differences in measurement techniques. 
These disparities underscore the challenges of accurately 
determining WDEL in real-world conditions. For example, 
using catch cans to measure water distribution often leads 
to experimental errors. Consequently, mathematical models 
have become essential for providing more reliable WDEL 
estimates. The accurate calculation of WDEL is crucial not 
only for optimizing the sprinkler system design but also 
for effective water resource management (Maroufpoor et 
al., 2018).

In recent years, advances in artificial intelligence (AI) 
have proven valuable in various domains of water engi-
neering, irrigation, and agriculture (Supharatid, 2003; 
Kumar et al., 2004; Cigizoglu and Kisi, 2006; Chang et 
al., 2010; Ismail et al., 2012; Kalra et al., 2013; Petković et 
al., 2017; Mattar and Alamoud, 2015; Mattar et al., 2015, 
2018; Kuzman et al., 2021; Lakovic et al., 2021; Roy et 
al., 2021). Several AI techniques have gained popularity, 
including Artificial Neural Networks (ANN), Adaptive 
Neuro-Fuzzy Inference System (ANFIS), Multivariate 
Adaptive Regression Spline (MARS), Probabilistic Linear 
Regression (PLR), and Support Vector Regression (SVR). 
These techniques are valued for their ability to handle 
nonlinear problems, their quick processing capabilities, 
parallel operation, self-learning abilities, and potential for 
generalization (Basheer and Hajmeer, 2000). By utilizing 
mathematics and statistical methods, these AI approaches 
can link input parameters with system outputs (Hamdia et 

al., 2015). For instance, ANN has the ability to learn from 
examples, identify data patterns, and process information 
quickly. ANFIS combines neural networks with fuzzy logic, 
allowing it to handle more complex reasoning tasks. These 
methods provide useful alternatives to traditional empirical 
or physically based formulas, such as the Christiansen uni-
formity coefficient or the F-factor for multiple outlets. These 
traditional models, while widely used in irrigation engi-
neering, often rely on simplifying assumptions that may not 
capture the nuanced, nonlinear interactions among environ-
mental and design parameters influencing WDEL (Hamdia 
et al., 2015). For instance, they are typically limited in rep-
resenting complex feedback mechanisms involving wind 
dynamics and temperature fluctuations. Consequently, soft 
computing techniques like ANN, ANFIS, and MARS offer 
more robust and flexible modeling capabilities, especially 
in variable field conditions. MARS, a flexible modeling 
technique suitable for high-dimensional data, does not 
assume a specific relationship between input and output 
variables. Instead, it constructs models using spline func-
tions, which are selected dynamically based on the data 
(Friedman, 1991; Friedman and Roosen, 1995). MARS 
serves as a bridge between parametric and nonparametric 
methods (Huang et al., 2019). Meanwhile, PLR applies 
Bayesian methods for parameter estimation by combining 
prior, likelihood, and posterior distributions (Permai and 
Tanty, 2018). SVR is rooted in constrained optimization 
theory, focusing on minimizing structural risk to produce 
optimal solutions (Tang et al., 2019).

Collectively, the cited studies form a strong foundation 
for this research, with each contributing specific insight 
that informs the selection and application of the soft com-
puting techniques used herein. For example, Cigizoglu and 
Kisi (2006) demonstrated the improved accuracy of ANFIS 
over empirical methods in modeling daily evaporation 
rates, which supports our selection of ANFIS for modeling 
WDEL. Zarei et al. (2021) explored how different climat-
ic variables influence potential evapotranspiration using 
machine learning methods like PLR and random forest, 
providing a methodological basis for integrating similar 
regression-based models in our study. Emamgholizadeh and 
Mohammadi (2021) combined SVR with hybrid optimiza-
tion techniques to estimate soil properties, highlighting the 
model’s capability in capturing nonlinear patterns in envi-
ronmental data. These works validate the relevance and 
applicability of AI-driven techniques in hydrological and 
agricultural modeling. 

Building on the insights and methodologies established 
by these previous studies, the current research addresses 
the critical need for efficient and accurate estimation of 
WDEL, especially given the practical limitations and vari-
ability associated with direct field measurements. In this 
context, mathematical modeling offers a viable alternative 
by enabling the analysis of WDEL across a broad range of 
operational and environmental conditions. Accordingly, the 
primary objectives of this study are threefold: (1) to evaluate 
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the applicability of three machine learning techniques 
(ANN, ANFIS, and SVR) and two regression techniques 
(MARS and PLR) for modeling WDEL in sprinkler irri-
gation systems; (2) to assess and compare the predictive 
performance of these models; and (3) to identify the most 
influential input variables driving WDEL through a com-
prehensive contribution analysis.

2. MATERIAL AND METHODS
2.1. Experimental datasets

The modeling in this study is based on experimental 
data compiled from several peer-reviewed sources, includ-
ing Abo-Ghobar (1993), Dechmi et al. (2003), Sanchez 
et al. (2010, 2011). These studies investigated wind drift 
and evaporation losses (WDEL) in diverse environmental 
and operational conditions, providing a total of 109 data 
points from multiple field locations. The data were used 
to train and test the five predictive models developed in 
this study: Artificial Neural Networks (ANN), Adaptive 
Neuro-Fuzzy Inference Systems (ANFIS), Multivariate 
Adaptive Regression Splines (MARS), Probabilistic Linear 
Regression (PLR), and Support Vector Regression (SVR). 
Before detailing each experiment individually, it is impor-
tant to describe the field measurement techniques employed 
in the original studies, as these methods directly influence 
the quality and interpretation of the dataset.

2.1.1. Field measurement techniques

In all referenced experiments, WDEL was assessed 
using standard field measurement tools, primarily catch 
cans and pluviometers. Catch cans were strategically 
placed across the irrigated plots to collect water droplets 
during sprinkler operation, allowing the calculation of the 
average irrigation depth received at the ground surface. 
In studies like Sanchez et al. (2010), pluviometers were 
additionally used to capture water applied over vegetative 
surfaces such as maize and alfalfa, improving the preci-
sion of drift and evaporation loss estimates in crop canopy 
conditions. Despite their practicality, these techniques are 
subject to experimental uncertainties due to wind variabil-
ity, spray overlap, and spatial distribution inconsistencies. 
Nonetheless, they remain widely accepted for WDEL 
assessment and form the basis of the dataset used in this 
research.

2.1.2. Summary of experimental studies
The individual experiments contributing to the dataset 

are summarized below:
First Experiment (Abo-Ghobar, 1993): Conducted at 

the educational farm in Riyadh, Saudi Arabia, this study 
measured WDEL in a wide range of meteorological and 
operational conditions during the period from April to July 
1991. Ten types of impact sprinklers with varying nozzle 
sizes were tested. Catch cans were used for water collec-
tion, and the systems operated for durations between 1 to 2 h 

depending on nozzle configuration. The experiment provid-
ed valuable baseline data on how nozzle characteristics and 
environmental variables influence WDEL in arid climates.

Second Experiment (Dechmi et al., 2003): This experi-
ment took place at the Zaragoza experimental farm in 
Spain from May to August 2000. It focused on evaluating 
the performance of a solid-set sprinkler system irrigating 
maize. The sprinklers were equipped with a 4.4 mm main 
nozzle and a 2.4 mm auxiliary nozzle, both mounted at 
a riser height of 2.3 m. Operating at a pressure of 300 kPa, 
the system achieved a wetted radius of 11 meters. Data on 
water application and losses were collected using standard 
field instrumentation in varying environmental conditions.

Third Experiment (Sanchez et al., 2010): Conducted 
in 2006, this study also took place at the Zaragoza experi-
mental farm. It focused on assessing WDEL in solid-set 
sprinkler systems irrigating alfalfa and maize. A 4 mm main 
nozzle with a jet-straightening vane and a 2.4 mm auxiliary 
nozzle were used, and pluviometers were deployed over 
crop canopies to capture applied water. The experiment was 
designed to evaluate the impact of vegetation, wind speed, 
and humidity on water losses, offering critical insights into 
how plant cover affects WDEL measurement.

Fourth Experiment (Sanchez et al., 2011): Performed 
between 2003 and 2004 at the same Zaragoza facility, this 
study investigated the influence of different nozzle diam-
eters, operating pressures (ranging from 180 to 420 kPa), 
and meteorological conditions on sprinkler performance. 
The system utilized a 4.4 mm main nozzle and a 2.4 mm 
spreader nozzle in low wind conditions. Each test was con-
ducted over a two-hour period, and measurements were 
taken using catch cans to determine the spatial distribution 
and quantify WDEL.

The experiments compiled in this study utilized solid-set 
sprinkler systems arranged in a rectangular configuration. 
This layout provides statistically consistent coverage and 
uniform spatial sampling, which is advantageous for ana-
lyzing water distribution and WDEL. It contrasts with 
center-pivot systems, where radial variability in droplet 
trajectory and coverage patterns introduces additional com-
plexity in estimating losses. The parameters presented in 
Table 1 encompass both system design features and envi-
ronmental conditions that influence WDEL. In addition 
to the core input variables used in model development, 
we also considered two derived hydraulic parameters: 
discharge coefficient (CD) and discharge exponent (n) to 
provide further context. These were obtained either directly 
from the literature or inferred using manufacturer data and 
typical sprinkler operating ranges. Although CD and n were 
not included as direct inputs in model training, they offer 
valuable insight into how sprinkler design characteristics 
interact with operating pressure to affect discharge beha-
vior and water distribution in field conditions.

WDEL was calculated by comparing the applied irriga-
tion depth (IDC) with the average irrigation depth (IDD), 
following Christiansen’s (1942) formula. The Christiansen’s 
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(1942) method applied in this study refers specifically to 
the uniformity coefficient (CU) approach, which evaluates 
the evenness of water distribution based on catch can data. 
This method is particularly relevant for systems with mul-
tiple outlets and is widely accepted in sprinkler irrigation 
evaluations. By using CU, the study ensures a standardized 
and comparable estimation of distribution uniformity and 
associated water losses across experimental setups.

(1)

(2)

where: CD is the discharge coefficient, A is the nozzle orifice 
area, g is the acceleration due to gravity, n is the discharge 
exponent, t is the operation time, and both SS and SL are the 
sprinkler’s allocated area.

The findings from these experiments indicate that a por-
tion of the applied irrigation water was consistently lost due 
to evaporation and wind drift, with droplets often displaced 
beyond the intended irrigated area. Table 1 summarizes the 
experimental data used to develop the predictive models. 
Data were collected under a broad spectrum of design, 
operational, and meteorological conditions. The modeling 
variables include riser height, pressure, nozzle dimen-
sions, discharge rates, wind speed, air temperature, and 
relative humidity. To estimate wind drift and evaporation 
losses (WDEL), five models ANN, ANFIS, MARS, PLR, 
and SVR were developed using this dataset. A total of 109 
observations were compiled from four independent experi-
mental studies. The dataset was randomly divided into 70% 
for training and 30% for testing, ensuring consistent model 
evaluation across all methods. To promote transparency 
and reproducibility, the complete dataset is available from 
the authors upon reasonable request, along with supporting 
metadata and documentation.

Table 2 offers a statistical overview of the input and 
output parameters utilized for training and testing the mod-
els. The parameters include maximum (Xm), mean (Xa), 
minimum (Xn), standard deviation (Sx), kurtosis coefficient 
(Kx), and skewness coefficient (Csx). The maximum values 
for both design and operational parameters (Hr, P, dm, da, qm, 
qa) were consistent across both training and testing datasets, 
as were the minimum values. For wind speed (WS) and rel-
ative humidity (RH), maximum values reached over 7 m s-1 
and 80%, respectively, in both datasets. Of all the variables, 
the auxiliary nozzle diameter (da) showed the highest kurto-
sis and skewness coefficient.

2.2. Artificial neural network (ANN)

Artificial Neural Networks (ANNs) inherently possess 
the capability to identify and model complex, nonlinear 
relationships by learning from data inputs (Swingler, 2001). 
The architecture of an ANN is comprised of three primary 
layers: the input layer, which holds the independent vari-
ables (i); the hidden layer (j); and the output layer, where 
the dependent variables (k) reside (Fig. 1). Developing an 
efficient ANN involves careful selection of several struc-
tural components, including the number of hidden layers, 
the number of neurons in each hidden layer, the learning 
algorithm, and the activation functions (Dogan et al., 2008) 
(Table 3). One of the most commonly utilized algorithms 
for training feed-forward ANNs is the back-propagation 
algorithm (Thirumalaiah and Deo, 1998; Ciĝizoĝlu, 2003; 
Jain and Srinivasulu, 2004; Fernando and Shamseldin, 
2009), which is particularly suited for modeling nonlinear 
and complex functions (Salehi and Razavi, 2012). In line 
with this, the current study implemented back-propagation 
to train the ANN, featuring a hidden layer and an output 
layer. Prior to training, the input and output data undergo 
automatic normalization within a range of 0.15 to 0.85. This 
normalization accelerates the training process and enhanc-
es the model’s generalization abilities. Once normalized, 

Ta b l e  1. Summary of the experimental data used to construct the models

Input variables Output 
variable

Location References
Hr 
(m)

P 
(kPa)

dm 
(mm)

da 
(mm)

qm 
(L s-1)

qa 

(L s-1)
WS 
(m s-1)

T 
(oC)

RH 
(%)

WDEL
(%)

1 200-
300 5.5-6.1 3.0-4.2 0.41-

0.50
0.10-
0.12

2.33-
3.65 34-42 42.0-

56.7 22.6-34.0 Saudi 
Arabia Abo-Ghobur (1993)

2.3 300 4.4 2.4 0.26 0.08 0.6-6.5 12-31 31-64 6-39.6 Spain Dechmi et al. (2003)

2.3 290-
355 4 2.4 0.10-

0.33
0.04-
0.12 0.8-5.6 19-27 44-68 3-33 Spain Sanchez et al. (2010)

2 230-
420 4.0-4.8 2.4 0.19-

0.37
0.07-
0.09 0.4-8.0 5.0-

27.1 40-86 2.4-35.6 Spain Sanchez et al. (2011)

Hr – riser height, P – operating pressure, dm – main nozzle diameter, da – auxiliary nozzle diameter, qm – discharge from main nozzle, 
qa – discharge from auxiliary nozzle, WS – wind speed, T – air temperature, RH – relative humidity, WDEL – wind drift and evapora-
tion losses.
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data is fed unidirectionally through the network, beginning 
from the input layer, passing through the hidden layer, and 
finally reaching the output layer.

Each neuron in the ANN operates as an independent 
processing unit, comprising three fundamental elements: 
input links, a central processing unit, and output links. 
Connections between neurons are assigned weights (W), 
which quantify the strength of associations between neu-
rons across adjacent layers. Additionally, a bias term (B), 
or threshold, is applied within the central processing unit 
to refine the processing of weight information (Izadifar, 
2010). The activation functions (f), responsible for trans-
forming input signals in both the hidden and output layers, 
are executed at this point. In many engineering applica-
tions, the hyperbolic tangent (tanh) function is one of the 
most widely employed activation functions (Dawson and 
Wilby, 1998; Zanetti et al., 2007). In this study, the tanh 
function was adopted for both the hidden and output lay-

ers to optimize the network’s training process. The general 
mathematical form of the tanh activation function is as 
follows:

(3)

The output of the neural network can be described by 
the following expression (Haykin, 1999):

(4)

where: Yk represents the network’s output; Xi is the normal-
ized input parameter; (W1)ji is the weight of the input layer 
in connection to the hidden layer; (W2)kj is the weight of the 
hidden layer in connection to the output layer; ni and nj rep-
resent the number of neurons in the input and output layers, 
respectively; (B1)j and (B2)k denote the biases in the hidden 
and output layers, respectively.

After each forward pass through the network, the error, 
defined as the difference between the predicted output and 
the target values, is computed. If this error surpasses the 
predetermined threshold, the network adjusts the associ-
ated weights through a process called back-propagation. 
Conversely, if the error falls within acceptable limits, 
the training process is considered complete. The optimal 
number of neurons in the hidden layer is determined using 
a trial-and-error approach (Jain et al., 2008). Upon the 
completion of training, the model is evaluated by testing it 
on previously unseen data to assess its predictive accuracy 
and performance.

Ta b l e  2. Descriptive analysis of the training and testing variables

Variable
Training set Testing set

Xm Xa Xn Sx Kx Csx Xm Xa Xn Sx Kx Csx

Hr (m) 2.3 2.11 1 0.27 9.26 -2.67 2.3 2.05 1 0.37 4.38 -2.16

P (kPa) 420 313.2 200 59.34 -0.53 0.29 420 311.91 200 59.69 -0.17 0.34

dm (mm) 6.1 4.35 4 0.4 4.6 1.74 6.1 4.42 4 0.56 3.42 1.86

da (mm) 4.2 2.46 2.4 0.3 31.53 5.64 4.2 2.49 2.4 0.34 21.31 4.45

qm (L s-1) 0.5 0.28 0.1 0.06 2.7 0.3 0.5 0.3 0.19 0.07 2.27 1.28

qa (L s-1) 0.12 0.09 0.04 0.02 -0.52 0.12 0.12 0.09 0.07 0.02 -1.51 0.28

WS (m s-1) 8 2.71 0.4 2.14 -0.4 0.92 7.1 3.28 0.8 1.93 -1.03 0.2

T (ºC) 36 20.73 5 6.41 0.31 -0.3 42 21.17 7 7.96 1.38 0.85

RH (%) 86 55.42 31 10.82 0.32 0.64 85 54.02 42 9.03 2.97 1.31

WDEL (%) 39.6 15.92 2.4 9.13 -0.38 0.6 34 18.83 3.5 8.47 -1.14 0.08

Xm – maximum value, Xa – mean value, Xn – minimum value, Sx – standard deviation, Kx – kurtosis coefficient, Csx – skewness coef-
ficient, Hr – riser height, P – operating pressure, dm – main nozzle diameter, da – auxiliary nozzle diameter, qm – water discharge by main 
nozzle, qa – water discharge by auxiliary nozzle, WS – wind speed, T – air temperature, RH – relative humidity, and WDEL – wind 
drift and evaporation losses.

Fig. 1. Structural diagram of a standard artificial neural network 
(Li et al., 2017).
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2.3. Adaptive Neuro-Fuzzy Inference System (ANFIS)

The process of developing an Adaptive Neuro-Fuzzy 
Inference System (ANFIS) starts with creating an initial 
Fuzzy Inference System (FIS), whose parameters are fine-
tuned through a hybrid optimization algorithm to complete 
the ANFIS structure. To construct the initial FIS, the fuzzy 
c-means (FCM) clustering algorithm (Bezdek et al., 1984) 
was used. FCM is an effective method for organizing data-
sets into clusters, thereby reducing both the linear and 
nonlinear parameters in the FIS. The number of clusters 
influences the number of rules generated in the FIS (Table 3). 
For this study, a Sugeno-type FIS-commonly referred to as 
the Takagi-Sugeno-Kang model, introduced by Sugeno in 
1985-was chosen as the initial FIS (Sugeno, 1985). Sugeno-
type FISs are founded on the principles of fuzzy logic, 
which integrates fuzzy set theory, fuzzy “if-then” rules, and 
fuzzy reasoning. The fundamental components of an FIS 
consist of: (i) a rule base composed of fuzzy “if-then” rules, 
(ii) a database specifying the membership functions (MFs) 
in terms of type, number, and range, and (iii) an inference 

mechanism that governs the reasoning process (Jang et al., 
1997). These “if-then” fuzzy rules enable the FIS to model 
nonlinear correlations between input and output variables. 
In a Sugeno FIS, the input variable membership functions 
are typically Gaussian, while the output functions are lin-
ear. The Gaussian membership function is characterized by 
two key parameters and is mathematically defined as fol-
lows (Jang et al., 1997):

(5)

where: c represents the center of the membership function 
(MF) and σ denotes its width.

In this study, a Sugeno-type Fuzzy Inference System 
(FIS) was created using the fuzzy c-means (FCM) clus-
tering algorithm to serve as the foundation for the final 
Adaptive Neuro-Fuzzy Inference System (ANFIS). The 
optimal number of clusters was determined through mul-
tiple trials, in which different cluster configurations were 
tested by assessing the root mean square error (RMSE) 
of the predictive outcomes. The cluster arrangement that 
minimized RMSE and exhibited the smallest discrepancy 
between the RMSE values of the training and testing data-
sets was chosen as the most effective.

Subsequently, the Sugeno-type ANFIS was refined by 
applying a hybrid algorithm to adjust the parameters of the 
initial FIS. Compared to the Mamdani ANFIS structure, 
Sugeno-type ANFIS models are simpler in their design but 
offer enhanced learning capabilities (Jang et al., 1997).

The fuzzy “if-then” rule set for a Sugeno first-order FIS 
with two inputs (α and β), one output (γ), and two fuzzy 
“if-then” rules are as follows: 

(6)

(7)

These rules are illustrated in Fig. 2, which shows the 
architecture of the Sugeno fuzzy inference system-based 
ANFIS. This architecture is composed of five layers: the 
fuzzy layer, the product layer, the normalized layer, the 
defuzzification layer, and the total output layer. 

2.4. Multivariate Adaptive Regression Spline (MARS)

Multivariate Adaptive Regression Splines (MARS) is 
a flexible, non-parametric approach for adaptive regression, 
enabling the creation of predictive models that can adapt to 
varying data structures (Friedman, 1991). MARS segments 
the solution space into several regions based on the input 
variables and applies individual splines or basis functions 
to each region (Bera et al., 2006). In this study, MARS-
based models were developed to forecast WDEL using 
nine predictor variables. The MARS algorithm employs 
a combination of forward and backward stepwise tech-
niques to model the input-output relationships. Notably, 
the backward stepwise process aids in removing irrelevant 

Ta b l e  3. Tuning parameters used for each model

Model Tuning parameter

ANN Maximum number of iterations = 30 000
Learning rate = 0.01
Momentum = 0.8
Activation function = Tanh
Number of hidden layers = 1
Number of neurons of the hidden layer = 6

ANFIS Number of clusters: 5
Initial FIS:
Fuzzy partition matrix exponent = 2
Maximum number of iterations = 200
Minimum improvement = 1e-5

ANFIS:
Maximum number of epochs: 200
Error goal = 0
Initial step size = 0.01
Step size decrease rate = 0.9
Step size increase rate = 1.1

MARS Number of basis functions at the forward pass = 
100
Number of basis functions at the backward pass = 
50
Minimum number of observations between the 
knots = 3
No penalty is added to the variables to give equal 
priority to all input variables

PLR Prior parameters: α = 0.02, β = 0.5
Maximum number of iterations = 1 000
Tolerance = 1e-4

SVR Kernel function = linear
Box constraint = 1
Kernel scale = 1
Epsilon = 0.2
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input variables, thus simplifying the model and mitigating 
the risk of overfitting. The mathematical formulation of the 
MARS model is outlined as follows (Roy and Datta, 2017):

(8)

(9)

where: i and j are the indices for Basis functions and input 
variables, respectively; BFi denotes ith Basis functions; 
Xj represents jth input variables; α is a constant known as 
knot; β is a constant value; γk denotes the corresponding 
coefficients of BFi(X). 

The selection of the number of basis functions is guided 
by the number of significant variables required to construct 
a robust model (Table 3). In this study, up to 100 forward 
steps were permitted during the model development phase. 
MARS employs internal heuristics to determine the mini-
mum number of observations between knots, taking into 
account both the sample size and the complexity of the 
model. During the forward selection process, all variables 
are treated equally without any penalties. However, in the 
backward elimination phase, only the most relevant input 
variables are retained, promoting model simplicity and 
reducing the risk of overfitting.

2.5. Probabilistic Linear Regression (PLR)

Probabilistic Linear Regression (PLR), also known 
as empirical Bayesian Linear Regression, is employed to 
model the relationship between input variables and a tar-
get output variable. To solve the regression problem, PLR 
typically utilizes either the Expectation-Maximization 
(EM) algorithm (Dempster et al., 1977) or the Mackay fix-
point iteration method (MacKay, 1992). In this study, the 
EM algorithm was selected for developing the PLR model 
(Table 3). The EM algorithm functions by maximizing the 
log-likelihood or log-posterior density functions, which 
are integrated with latent variables. Throughout the opti-
mization process, the EM algorithm implicitly constructs 
a lower bound, FEM of the objective function, l(α), ensur-
ing that:

(10)

where: q(.) refers to an arbitrary probability distribution in 
the space z. As stated by Dempster et al. (1977), the follow-
ing are the widely recognized results in the EM literature, 
derived from Jensen’s Inequality theorem (Jensen, 1906).

Lemma 1. FEM (q,α) ≤ l(α), in which the equality 
is attained if and only if q(z) is the posterior distribution 
p(z│D, ∝).

An alternative optimization problem is now constructed 
to be addressed instead of directly optimizing the original 
objective function l(α). This redefined optimization task is 
expressed as:

AltOptEM: Find α and a distribution q that maximize 
FEM (q,α).

The EM algorithm will then act as the coordinate ascent 
solver for the AltOptEM. More specifically, the updating of 
the rule at the ith iteration of the coordinate ascent can be 
represented as follows:

(11)

(12)

It is noted that by Lemma 1, at the end of E-step,

(13)

This provides rise to the following Lemma (Dempster 
et al., 1977):

Lemma 2. The iteration of the EM algorithm continu-
ously increases the log-evidence function  and therefore is 
guaranteed to converge.

2.6. Support Vector Regression (SVR)

Support Vector Regression (SVR) is a non-parametric 
modeling technique known for its effectiveness in develop-
ing robust predictive models. This method fundamentally 
relies on kernel functions to construct prediction models, 
offering flexibility and adaptability in handling various 
types of data. A key feature of SVR is its use of an asym-
metrical loss function for supervised learning tasks. One 

Fig. 2. ANFIS architecture built on a Sugeno fuzzy inference system with two inputs (Jang, 1993).
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of the primary advantages of SVR is its ability to maintain 
computational efficiency, regardless of the dimensional-
ity of the input space, which makes it particularly suitable 
for high-dimensional datasets (Awad and Khanna, 2015). 
Detailed descriptions of the SVR approach are provided by 
Vapnik (1995) and Gunn (1997), and this section presents 
a concise overview of its methodology. In a typical regres-
sion problem, the training dataset can be represented as:

(14)

where: ai (i=1,2,3, …, N) represents a vector consisting of 
real independent variables; bi (i=1,2,3, …, N) is the asso-
ciated scalar real independent variable. The regression 
equation in the feature space for the training dataset can be 
expressed as:

(15)
where: w states the weight vector; c indicates a constant; 
ϕ(a) represents the feature function; and w ϕ(a) is the dot 
product. SVR works by minimizing the following function:
Minimize: (16)
and,

. (17)

The first term on the left side of Eq. (16) signifies the 
empirical error, while the parameter C governs the bal-
ance between this empirical error and the complexity of the 
model, which is reflected in the second term of the equa-
tion. Equation (17) defines a loss function known as the 
ε - insensitive loss function (Vapnik et al., 1996). By intro-
ducing Lagrangian multipliers β and β*, the optimization 
problem expressed in Eq. (16) is reformulated into its dual 
form. The non-zero coefficients, together with their associ-
ated input vectors, ai, are referred to as support vectors. The 
final expression of the equation is presented as follows:

(18)

Using the kernel function K(xi, xj), the SVR function can 
be written as:

(19)

The Karush-Kuhn-Tucker condition is applied to com-
pute the term c in Eqs (18) and (19). The key parameters 
that influence regression problems using the SVR method 
include the cost function C, the radius of the insensitive 
tube ε, and the kernel parameters K(xi, xj), as shown in 
Table 3.

2.7. Entropy weight calculation

Machine learning-based prediction models often de- 
monstrate variability in their predictive performance 
depending on the specific evaluation metrics employed. For 
example, a model’s performance might show improvement 
when assessed using Wilmott’s index of agreement (IA), 
while another model might exhibit superior performance 

based on the root mean square error (RMSE). This incon-
sistency suggests that multiple performance indices should 
be utilized when evaluating models, particularly within 
a decision-theoretic framework, to determine the optimal 
model. In this study, four benefit indices (where higher 
values are better) and four cost indices (where lower val-
ues are better) were applied to assess the performances of 
the developed prediction models, with Shannon’s entropy 
method used for ranking.

The integration of prediction models with performance 
evaluation metrics leads to the formation of a decision 
matrix. For example, given m prediction models and l per-
formance evaluation indices, the decision matrix can be 
mathematically represented as follows (Wu et al., 2011):

. (20)

This matrix was normalized to reduce the dimension-
ality effects of the indices, with the performance values 
transformed to lie between 0 and 1, denoted as Sij ϵ[0,1], 
i=1,2,…m; j= 1,2,…, l. The standardized matrix, Sij is given 
by Wu et al. (2011):

(21)

The entropy-based ranking method was then employed 
to assign weights to each prediction model. The process, as 
outlined by Li et al. (2011), involved several steps:

Step 1: Calculation of the entropy value of each index 
using Shannon’s information entropy principles. The entro-
py value of the jth index was calculated as: 

(22)
where:

(23)

(24)
Step 2: Calculation of each index’s entropy weight. The 

jth index’s entropy weight was calculated by:

(25)

This weight reflects the importance of the index in the 
decision-making process, with higher weights indicating 
that the index contains more information and is more criti-
cal to the decision.

Step 3: The ranking weight for each model is deter-
mined by multiplying the entropy weight of each index by 
its corresponding standardized value. This process can be 
mathematically represented as:

(26)
Step 4: Determination of model ranking:
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(27)
Step 5: Calculation of entropy weight for individual 

prediction models:
(28)

2.8. Statistical performance criteria

Five statistical metrics were utilized to assess the per-
formance of the five proposed models: ANN, ANFIS, 
MARS, PLR, and SVR. The evaluation criteria included 
the correlation coefficient (R), Index of Agreement (IA), 
Kling-Gupta Efficiency (KGE), Root Mean Square Error 
(RMSE), Mean Absolute Error (MAE), and Mean Absolute 
Relative Error (MARE). These metrics are mathematically 
defined by the following equations:

(29)

(30)

(31)

(32)

(33)

(34)

where: WDELi,a and WDELi,p are WDEL values at the ith 
step obtained through experiments (actual values) and pre-
diction models, respectively. n is the number of the time 
steps. WDELa is the mean value of the actual WDEL, n is 
the number of data points, pd is the standard deviation of 
predicted WDEL values, ad is the standard deviation of 
actual WDEL values, pm is average of predicted WDEL 
values, and am is average of predicted WDEL values.

3. RESULTS 

3.1. Descriptive statistics of input and output variables

The study developed five models: Artificial Neural 
Network (ANN), Adaptive Neuro-Fuzzy Inference System 
(ANFIS), Multivariate Adaptive Regression Splines 
(MARS), Partial Least Regression (PLR), and Support 
Vector Regression (SVR) to estimate Wind Drift and 
Evaporation Loss (WDEL). The models used several criti-
cal environmental variables, including riser height (Hr), 
operating pressure (P), nozzle diameters (dm and da), wind 
speed (WS), air temperature (T), and relative humidity 
(RH) to account for WDEL’s complex behavior. The train-
ing dataset showed an average Hr of 2.11 m, P of 313.2 kPa, 
and WS between 0.4 and 8 m s-1. WDEL, the output vari-

able, ranged widely from 2.4 to 39.6%, underscoring the 
need for models that can handle the nonlinear relationships 
driven by environmental conditions, particularly WS and 
RH. 

In Table 2, the comparison of training and testing data-
sets reveals consistent patterns in operational variables like 
Hr and P, but significant variability in environmental condi-
tions during the testing phase. For instance, Hr remained 
stable, with values between 1 m and 2.3 m, though the 
standard deviation increased from 0.27 m in training to 
0.37 m in testing. WS displayed greater variation during 
testing, with an average increase from 2.71 to 3.28 m s-1 
and a standard deviation rising to 1.93 m s-1, alongside 
a more negatively skewed distribution (Csx = -1.03). T 
followed a similar trend, increasing from a maximum of 
36°C in training to 42°C in testing, with greater variability 
(standard deviation = 7.96°C) and a positively skewed dis-
tribution (Csx = 0.85). The auxiliary nozzle diameter (da) 
showed extreme kurtosis (Kx = 31.53) and skewness (Csx 
= 5.64) in the training set, which slightly decreased in the 
testing phase (Kx = 21.31, Csx = 4.45), reflecting a more 
balanced yet still non-normal distribution. RH and WDEL 
also exhibited more variability in testing, with the latter 
showing a broader dispersion (Csx = 0.08). These findings 
suggest that more extreme environmental conditions and 
increased variability in testing could affect the performance 
and accuracy of the prediction models.

3.2. Model performance during the training phase

During the training phase, model performance was 
evaluated using several statistical metrics: the correlation 
coefficient (R), Root Mean Square Error (RMSE), Mean 
Absolute Error (MAE), Index of Agreement (IA), Kling-
Gupta Efficiency (KGE), and Mean Absolute Relative Error 
(MARE). These metrics capture various aspects of prediction 
quality, including accuracy, agreement, and consistency. 
Their full definitions and mathematical formulations are 
provided in Section 2.8. ANN demonstrated superior per-
formance, achieving the highest R value (0.956), indicating 
a strong relationship between the predicted and observed 
WDEL values (Table 4). Moreover, ANN achieved an IA of 
0.978 and a KGE of 0.925, highlighting its ability to capture 
both the strength and direction of the data variation. ANN’s 
lower RMSE (2.662) and MAE (2.197) further illustrate 
its precision during the training phase, as it consistently 
produced lower prediction errors compared to the other 
models. Its scatter plot regression equation, y = 0.8985x 
+ 1.561, shows a near-perfect alignment with the observed 
WDEL values, confirming its superior predictive accuracy 
(Fig. 3). ANFIS followed closely behind ANN, with R = 
0.871, IA = 0.927, and higher errors (RMSE = 4.462, MAE 
= 3.417, MARE = 32.24), with a regression equation of 
y = 0.758x + 3.8526 (Fig. 3), indicating some deviation 
from observed values. While ANFIS captured significant 
patterns in the data, its RMSE (4.462) and MAE (3.417) 
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Ta b l e  4. Statistical performance of the prediction models during the training and testing processes

Model
Training process Testing process

R IA KGE RMSE MAE MARE R IA KGE RMSE MAE MARE

ANN 0.956 0.978 0.925 2.662 2.197 22.29 0.861 0.925 0.850 4.356 3.490 24.15

ANFIS 0.871 0.927 0.817 4.462 3.417 32.24 0.776 0.860 0.678 5.361 4.535 29.68

MARS 0.858 0.919 0.799 4.658 3.387 34.75 0.813 0.897 0.793 5.000 4.008 25.76

PLR 0.822 0.891 0.729 5.169 4.108 40.17 0.769 0.859 0.678 5.381 4.368 27.00

SVR 0.857 0.914 0.775 4.716 3.505 31.39 0.749 0.831 0.637 5.876 4.603 26.00

R – correlation coefficient, IA – index of agreement, KGE – Kling-Gupta efficiency, RMSE – root mean square error, MAE – mean 
absolute error, MARE – mean absolute relative error.

Fig. 3. Scatter plot of observed and predicted WDEL values for models built throughout the training process.
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were higher than those of ANN, indicating less precision. 
MARS, a flexible regression model that accommodates 
interactions between variables, performed reasonably well 
during training, achieving an R value of 0.858 and an IA 
of 0.919 (Table 4), with a regression line of y = 0.7363x 
+ 4.1974 (Fig. 3). However, with a higher RMSE (4.658) 
and MAE (3.387), MARS exhibited limitations in its pre-
dictive precision, particularly for extreme values of WDEL. 
PLR and SVR exhibited the weakest performance during 
training. PLR, with its assumption of a linear relationship 
between the input and output variables, achieved the lowest 
R value of 0.822 and the highest RMSE (5.169) and MAE 
(4.108) (Table 4), and a poorly fitting regression equation 
of y = 0.5988x + 6.8083 (Fig. 3), suggesting that it was 
poorly suited to model the complex, nonlinear dynamics 
inherent in the dataset. Finally, SVR, with R = 0.857, IA 
= 0.914, and RMSE of 4.716, performs similarly to MARS 
but exhibits higher deviations (MAE = 3.505, MARE = 
31.39) (Table 4), with a regression line of y = 0.7115x + 
3.9646 (Fig. 3).

3.3. Model performance during the testing phase

During the testing phase (Table 4), which provided an 
opportunity to evaluate the models’ ability to generalize to 
new data, ANN consistently outperforms the other models, 
achieving the highest R value (0.861), reflecting the strong-
est linear relationship between predicted and observed 
values. In contrast, SVR exhibits the lowest R value 
(0.749), indicating a weaker correlation. The IA further 
supports ANN’s superiority, with a value of 0.925, the high-
est among the models, demonstrating the best agreement 
between predictions and observed data. By comparison, 
SVR again falls short with an IA of 0.831. Similarly, the 
KGE for ANN is 0.850, highlighting its balanced perfor-
mance across correlation, bias, and variability, whereas 
SVR shows the lowest KGE (0.637), indicating less effi-
cient performance. In terms of error metrics, ANN again 
excels with the lowest RMSE (4.356), MAE (3.490), and 

MARE (24.15), which underscore its precision in minimiz-
ing the magnitude of prediction errors. Conversely, SVR 
displays the highest RMSE (5.876) and MAE (4.603), indi-
cating larger discrepancies between predicted and actual 
values, while ANFIS and PLR perform moderately with 
higher error rates than ANN but better than SVR. Figure 4 
visually confirms these results by plotting the observed ver-
sus predicted WDEL values. ANN’s trend line (y = 0.8208x 
+ 3.9918) is the closest to the ideal line of perfect predic-
tion (y = x), indicating strong alignment between predicted 
and observed values. In contrast, SVR (y = 0.5691x + 
6.1372) and PLR (y = 0.5988x + 6.8083) demonstrate flat-
ter slopes, suggesting significant underprediction. ANFIS 
(y = 0.6015x + 6.4976) and MARS (y = 0.7484x + 4.0077) 
perform better than SVR and PLR but still exhibit devia-
tions from the ideal, especially in predicting higher WDEL 
values. Figure 5 further illustrates model performance by 
comparing the absolute error distributions through a box-
plot. ANN consistently shows the narrowest error range 
and the lowest median error, reflecting its precision and 
stability. SVR, on the other hand, presents the widest inter-
quartile range and the highest median error, indicating high 
variability in its predictions. ANFIS and PLR exhibit wider 
error distributions compared to ANN, but MARS performs 
moderately, with a relatively tighter error range.

Fig. 4. Comparison of observed and predicted WDEL values for the developed models throughout the testing process.

Fig. 5. Boxplot for absolute error in predicted WDEL with the 
prediction models during the testing process.
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3.4. Entropy-based ranking of models

Shannon’s entropy-based decision theory was used 
to rank the prediction models based on entropy weights, 
which measure the consistency and reliability of each mod-
el’s performance (Table 5). ANN holds the highest entropy 
weight (0.999), confirming its top performance. MARS 
ranks second with a weight of 0.896, reflecting its solid, 
though slightly less consistent, performance compared to 
ANN. ANFIS follows closely in third place with a weight 
of 0.865, showing moderate variability in predictions but 
still outpacing models like PLR and SVR. PLR is ranked 
fourth with an entropy weight of 0.833, signifying weaker 
and less stable predictions. SVR ranks last with the low-
est weight (0.794), reflecting its inconsistent performance 
and higher error variability. Overall, the entropy weight 
rankings align closely with prior statistical evaluations, 
positioning ANN as the most reliable model, followed by 
MARS and ANFIS, while PLR and SVR demonstrate the 
least reliability and consistency.

3.5. Contribution ratio of the ANN model’s input variables

The ANN model’s superior predictive ability was used to 
assess the contribution of various input variables (Hr, P, da, 
dm, qa, qm, WS, RH, and T) in modeling WDEL. By analyz-
ing the connection weights from the ANN architecture, the 
contribution ratios for each input were calculated, revealing 
the most impactful variables for predicting WDEL. Figure 6 
provides a detailed analysis of the contribution ratios of the 
input variables within the ANN model, expressed as per-

centages. In this figure, it is evident that da has the highest 
contribution ratio, approximately 17.5%, suggesting that 
this variable plays a dominant role in the model’s predic-
tions. Following closely is Hr, contributing nearly 16.3%, 
indicating a strong influence on the ANN’s outputs. These 
hydraulic design parameters, i.e. riser height, pressure, 
and nozzle diameter, are not independent of one another. 
Instead, they function together to determine the sprinkler’s 
discharge behavior and droplet dynamics. While the mod-
els in this study treated these as separate input variables, 
their collective hydraulic influence is inherently embedded 
in the dataset, allowing the models to learn and reflect these 
complex interactions during training. Other significant con-
tributors include qm and WS, each contributing 12.57 and 
12.19%, respectively. On the other hand, variables such as 
qa and dm have lower contribution ratios, closer to 5%, 
indicating that they have a smaller impact on the model’s 
performance. RH and P, with contributions of around 8-9%, 
appear to have moderate importance in influencing the 
predictions.

4. DISCUSSION

4.1. Model performance and implications

The findings from this study provide valuable insights 
into the application of advanced machine learning and 
regression models for predicting wind drift and evapora-
tion losses (WDEL) in sprinkler irrigation systems. By 
comparing five computational approaches – Artificial 
Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference 
Systems (ANFIS), Multivariate Adaptive Regression 
Splines (MARS), Probabilistic Linear Regression (PLR), 
and Support Vector Regression (SVR), ANN demonstrated 
a clear advantage over the others, particularly in its abil-
ity to generalize from training to testing data, making it a 
strong candidate for predicting WDEL in varying environ-
mental conditions. The success of ANN can be attributed 
to its inherent capability to self-learn from large datasets 
and recognize intricate patterns that simpler regression 
models like PLR or SVR might fail to capture. The con-
sistent underperformance of SVR, in particular, points to 
the limitations of kernel-based methods in dealing with 
highly nonlinear, multivariate systems such as WDEL, 
where a wide range of factors influence outcomes (Awad 
and Khanna, 2015). Similarly, PLR, which relies on linear 
assumptions, struggled to account for the complex inter-
actions between the system’s design and environmental 
variables. In comparison, MARS and ANFIS performed 
moderately well, though both exhibited limitations in 
certain scenarios. MARS, while flexible in handling high-
dimensional data (Friedman, 1991), faced challenges in 
managing the high variability in meteorological conditions, 
potentially leading to overfitting when dealing with certain 
input parameters. ANFIS, which combines neural networks 
and fuzzy logic (Jang et al., 1997), showed potential but 

Ta b l e  5. Entropy weights and ranking of prediction models

Model Weights Ranking

ANN 0.999 1

ANFIS 0.865 3

MARS 0.896 2

PLR 0.833 4

SVR 0.794 5

Fig. 6. Contribution ratio of the ANN model’s input variables.

Contribution ratio (%)
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was hindered by the sensitivity of its fuzzy inference sys-
tem, particularly when fewer membership functions were 
used, affecting its overall predictive accuracy. Despite these 
limitations, ANFIS still demonstrated practical utility by 
modeling WDEL more effectively than purely regression-
based approaches like PLR.

4.2. Role of input variables

The contribution analysis of input variables offers 
deeper insight into the factors most significantly impacting 
WDEL predictions. Design variables, such as nozzle diam-
eter and riser height, along with meteorological factors like 
wind speed and air temperature, emerged as key determi-
nants of WDEL. The prominence of nozzle diameter aligns 
with prior studies, which have emphasized that larger 
droplets produced by larger nozzles are less susceptible 
to wind drift and evaporation losses (Keller and Bliesner, 
1990; Playán et al., 2006). Similarly, wind speed remains 
a crucial factor due to its ability to disrupt droplet trajecto-
ries, exacerbating evaporation losses before water reaches 
the crop canopy (Dechmi et al., 2003). Interestingly, the 
meteorological parameters-specifically, air temperature and 
relative humidity-also played a significant role in determin-
ing WDEL. This highlights the importance of considering 
local climate conditions when designing and managing 
irrigation systems, especially in arid and semi-arid regions 
where temperature and humidity variations can greatly 
influence evaporation rates (Molle et al., 2012). The inter-
action between temperature and humidity is particularly 
relevant in understanding how the vapor pressure deficit 
affects droplet evaporation. Under higher temperatures 
and lower humidity, evaporation rates increase, leading 
to greater water losses, while higher humidity slows this 
process, reducing WDEL. These findings suggest that a 
comprehensive approach to WDEL modeling must inte-
grate both design and environmental variables to achieve 
accurate predictions (Sarwar et al., 2021).

4.3. Practical applications and implications for irrigation 
management

From a practical standpoint, the findings of this study 
have important implications for irrigation management and 
water conservation. The strong predictive capability of the 
ANN model makes it a valuable tool for real-time deci-
sion-making in irrigation systems, particularly in regions 
where water scarcity necessitates the efficient use of avail-
able resources. By accurately forecasting WDEL, irrigation 
managers can optimize system operations, adjusting such 
parameters as nozzle diameter and riser height in response 
to changing weather conditions. This flexibility could 
significantly reduce water losses due to drift and evapora-
tion, improving the overall efficiency of irrigation systems 
and maximizing water use for crop production. The abil-
ity to predict WDEL with high accuracy is also crucial 
for designing more resilient irrigation systems that can 

adapt to varying climatic conditions. In particular, regions 
experiencing high temperatures and frequent winds could 
benefit from ANN-based predictions that enable precise 
adjustments to the system’s configuration, reducing the 
negative impacts of weather variability on irrigation effi-
ciency (Playán et al., 2005). Moreover, these predictive 
models could be integrated into decision support systems, 
providing farmers and irrigation engineers with real-time 
guidance on how to minimize water losses and enhance 
crop water use efficiency.

4.4. Limitations and future research directions

While the ANN model’s performance in this study 
was outstanding, there are limitations that future research 
should address. First, the datasets used in this study were 
derived from prior experimental research, which, while 
diverse, may not fully represent the range of environmen-
tal conditions present across different geographic regions. 
Thus, expanding the model’s applicability by incorporat-
ing more diverse datasets from various climatic zones 
would improve its generalizability. Additionally, the ANN 
model’s computational demands, particularly during the 
training phase, may pose challenges in resource-limited 
environments. Future work should explore the potential 
for hybrid models that combine the strengths of ANN with 
other, less computationally intensive methods, providing 
a balance between predictive accuracy and computational 
feasibility (Supharatid, 2003). Moreover, while this study 
focused on WDEL in specific operational conditions, future 
research could expand the scope by including additional 
factors, such as soil characteristics, plant canopy cover, and 
irrigation scheduling, which may further affect water losses 
in sprinkler systems. Such an integrated approach would 
provide a more holistic understanding of WDEL and could 
lead to the development of more comprehensive models 
that account for the full range of variables impacting water 
use efficiency in agriculture.

5. CONCLUSIONS

This study compared five soft computing approaches: 
ANN, ANFIS, MARS, PLR, and SVR for predicting wind 
drift and evaporation losses (WDEL) in sprinkler irrigation 
systems. Among them, ANN achieved the highest accuracy 
during both the training and testing phases, demonstrat-
ing strong capability in capturing nonlinear interactions 
between system design parameters and meteorological 
variables. ANFIS and MARS performed moderately well, 
while PLR and SVR were less effective, particularly in 
extreme environmental conditions.

The contribution analysis identified wind speed and 
relative humidity as the most influential uncontrolled vari-
ables affecting WDEL, followed by riser height and nozzle 
dimensions. Based on the compiled dataset, practical oper-
ational thresholds were derived. WDEL remained below 
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10% when wind speed was less than or equal to 2 m s⁻¹ and 
relative humidity was greater than or equal to 60%. Losses 
exceeded 25% when wind speed was above 5 m s⁻¹ or rela-
tive humidity dropped below 40%. For crops shorter than 
1 m, maintaining riser height at or below 2 m helped limit 
drift losses to under 12%. These findings offer valuable 
guidance for optimizing the sprinkler design and operation 
in variable field conditions.

The results highlight the potential of ANN-based tools 
to enhance irrigation system management through more 
precise design and scheduling. Future research should 
focus on validating the proposed thresholds across diverse 
climatic regions, exploring hybrid and ensemble modeling 
strategies, and incorporating additional factors such as 
canopy characteristics and soil moisture to improve model 
generalizability and practical utility.
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