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A b s t r a c t. Understanding spatial drivers of soil organic car-
bon in arid oasis ecosystems is essential for guiding precision 
soil management and enhancing land sustainability. This study 
integrates 644 surface samples and 9 soil profiles with multi-
source environmental data in the hyperarid eastern Tarim Basin, 
employing geostatistics and machine learning (random forest, 
support vector machines, ordinary least squares, back propaga-
tion) to quantify driving mechanisms. Key findings: 1) extreme 
soil organic carbon spatial polarization (0.50-21.70 g kg-1, mean 
= 4.47 g kg-1) with northern and southern alluvial zones contain-
ing 2.1 times higher soil organic carbon than central deserts (p < 
0.01); 2) random Forest achieved optimal prediction (coefficient 
of determination = 0.81, root mean square error = 1.32 g kg-1) by 
resolving nonlinear soil organic carbon-environment interactions; 
3) pedogenic properties (texture, cation exchange capacity, salini- 
ty; 47.5%) dominated soil organic carbon variation, followed by 
anthropogenic drivers (land use intensity, 14.2%) and soil taxo-
nomy (10.9%), while climate and topography showed minimal 
control (< 8%). Human-modified processes override climatic 
constraints in shaping soil organic carbon patterns, providing 
actionable insights for clay-organic stabilization and irrigation 
optimization. This methodology establishes a transferable frame-
work for deciphering soil organic carbon dynamics in global 
drylands, directly informing climate-resilient land management.

K e y w o r d s: carbon sequestration, dryland soils, geospatial 
analysis, predictive modeling, sustainable agriculture

1. INTRODUCTION

As a pivotal carbon reservoir in terrestrial ecosystems, 
the pedosphere (soil sphere) stores approximately three-
quarters of global organic carbon, playing a critical role 
in Earth’s carbon cycle (Neupane et al., 2022). Notably, 
soil organic carbon (SOC) storage exceeds the combined 
carbon stocks in atmospheric and phytomass pools. The 
dynamic equilibrium of SOC not only exhibits strong cou-
pling with global climate patterns and atmospheric CO2 
concentrations but also serves as a key regulator of soil 
health and biodiversity conservation (Wang Z. et al., 2024; 
Annalisa et al., 2024). The spatial heterogeneity of SOC 
content arises from the complex interplay between carbon 
input-output budgets and environmental drivers, result-
ing in non-stationary distribution patterns with significant 
scale dependence (Wang L. et al., 2024). Understanding 
these spatial dynamics and their governing mechanisms 
carries profound implications for soil quality enhancement, 
agricultural optimization, and climate change mitigation 
(Boubehziz et al., 2024).

SOC dynamics are governed by two fundamental dimen-
sions: stochastic environmental forcing and intrinsic soil 
properties. External stochastic disturbances include such 
factors as human activities (farming, burning) and envi-
ronmental changes (rainfall, temperature). These factors 

©  2025  Institute of Agrophysics, Polish Academy of Sciences

https://creativecommons.org/licenses/by/4.0/


JINGYU LIU et al.444

influence SOC content by altering the redistribution of 
water and heat resources during soil formation processes, 
as well as through erosion effects (Qin et al., 2024; Xiong 
et al., 2024; Szostek et al., 2022; Noppol et al., 2021). The 
latter involves edaphic characteristics including soil tex-
ture, parent material composition, and physicochemical 
properties that regulate microbial activity and soil struc-
tural stability (Xia et al., 2024; Qin et al., 2020). Empirical 
evidence suggests that parent material exerts dominant 
control on SOC spatial heterogeneity in agricultural soils of 
southern China’s hilly regions (Zhang et al., 2021), while 
macroscale patterns are predominantly shaped by climate-
topography interactions through soil moisture modulation 
(Li S. et al., 2024; Li X.L. et al., 2024). Furthermore, SOC 
demonstrates textural dependency, with positive correla-
tions with clay/silt fractions and negative associations with 
sand content (Sanleandro et al., 2023). Despite advances 
in quantifying SOC drivers and spatial variability, critical 
knowledge gaps persist regarding the hierarchical controls 
and causal pathways underlying SOC distribution, par-
ticularly across spatial scales (Huyzentruyt et al., 2024; 
Spotorno et al., 2024). This limitation constrains effective 
land management strategies, as environmental stochasticity 
(thermal-hydrological regimes) gains prominence at broad-
er scales (Yang et al., 2021).

The Tarim Basin, a global archetype of arid ecosystems, 
presents unique pedological challenges characterized by 
pronounced soil degradation, suboptimal land use efficien-
cy, and SOC spatial disequilibrium (Cao et al., 2024). Its 
distinctive geoclimatic setting marked by extreme aridity, 
complex topography, and oasis-desert ecotones provides 
an ideal natural laboratory for investigating SOC dynamics 
in water-limited conditions. Focusing on the eastern mar-
ginal oasis of this basin, our study integrates soil parameter 

analysis with geostatistical modeling and machine learn-
ing approaches to: 1) delineate SOC spatial distribution 
patterns, and 2) quantify the relative contributions of envi- 
ronmental and edaphic drivers. This multi-method frame-
work advances the understanding of SOC sequestration 
mechanisms in arid ecosystems while informing sustaina-
ble land management strategies for analogous regions (Yin 
et al., 2012). Our findings elucidate the spatial organiza-
tion of SOC stocks and establish a causal hierarchy among 
controlling factors, providing actionable insights for soil 
ecological restoration and climate-smart agriculture in dry-
land environments.

2. MATERIALS AND METHODS
2.1. Overview of the study area

The study area (86°59′-88°02′E, 40°55′-41°09′N) spans 
the ecotone between the southern Tianshan piedmont 
and eastern Tarim Basin in northwestern China (Fig. 1). 
Encompassing 2,215.52 km2 with maximum east-west and 
north-south extents of 121.65 km and 61.78 km respective-
ly, this transitional zone exhibits an elevational gradient 
from 800 to 1 200 m asl. The terrain displays subdued relief 
with a gentle southwesterly slope, manifesting higher ele-
vations in the northern and eastern sectors relative to the 
southern and western lowlands.

Climatically, the region is classified as a warm tempe-
rate continental arid zone, with pronounced orographic 
effects from the Tianshan Mountains and Gobi Desert cre-
ating extreme aridity. The mean annual temperature reaches 
11.4°C, while the hydrologic regime is characterized by 
a severe moisture deficit – annual potential evapora-
tion exceeds precipitation by two orders of magnitude 
(≈100:1 ratio). The ephemeral Tarim River constitutes the 
principal drainage feature, traversing the study area along 

Fig. 1. Geographical location of the study area and spatial distribution of sampling points.
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a NW-SE axis. Pedogenic processes in this desert-oasis 
ecotone yield four dominant soil types: oasis loess, brown 
calcareous soils, saline soils, and aeolian sands. Xeric veg-
etation assemblages feature halophytic shrubs including 
Tamarix chinensis, Populus euphratica, and Alhagi spar-
sifolia exhibiting adaptations to hyperarid conditions. The 
anthropogenic land use centers on intensively irrigated 
agriculture, with cash crops (cotton, jujube, walnut, pear) 
constituting primary cultivation systems.

Recent development of the Tarim Economic Belt has 
accentuated the region’s agroeconomic potential, driving 
the demand for enhanced soil physicochemical optimi-
zation in precision farming systems (Yin et al., 2012). 
However, agricultural intensification has precipitated sig-
nificant pedospheric perturbations. Documented impacts 
include acute land use conflicts, substantive soil quality 
decline (Liu et al., 2016), and SOC depletion from non-
sustainable practices like excessive tillage and fertilizer 
misuse (Huong et al., 2022). These anthropogenic stressors 
collectively threaten both pedological health and long-term 
agricultural viability in this fragile arid ecosystem.

2.2. Sample collection and handling

A stratified sampling strategy was implemented using 
a grid-based design (1/4 km2 resolution), accounting for 
spatial heterogeneity in land use patterns, soil textural class-
es, and salinity gradients. This systematic approach yielded 
644 georeferenced surface soil sampling points, with field 
adjustments implemented to accommodate logistical con-
straints. To characterize the vertical SOC distribution, nine 
representative pedons were strategically established across 
the study area, each sampled at seven depth increments 
(0-210 cm) with 30 cm intervals. Field protocols mandated 
removal of extraneous biogenic materials (roots, gravel 
> 2 mm) followed by homogenization of composite sam-
ples. Quadruplicate aliquots (~1 kg each) were sealed in 
sterile containers and transported in ventilated conditions. 

Laboratory processing involved air-drying, disaggregation, 
and sieving (< 850 μm, 20-mesh), with concurrent docu-
mentation of pedological characteristics (soil taxonomy, 
land management history) and environmental covariates.

A total of eight indicators were analyzed and tested, 
including SOC, total potassium (TK), total nitrogen (TN), 
total phosphorus (TP), total salinity (TS), pH, bulk density 
(BD), and soil texture. The testing methods, instrumenta-
tion, and detection limits for each indicator are presented in 
Table 1. Rigorous quality assurance protocols were imple-
mented, including procedural blanks, analytical duplicates 
(10% of samples), and certified reference materials (NIST 
2709a). Daily instrument calibration utilized matrix-
matched standards, with all measurements conforming to 
Method Quantification and Control Limits (MQCL) and 
demonstrating < 5% relative standard deviation in replicate 
analyses.

2.3. Research methodology
2.3.1. Statistical analysis method

The study integrated continuous (topography, climate, 
soil physicochemical properties) and categorical variables 
(soil texture types, classification categories) to assess the 
drivers of SOC dynamics. Pearson/Spearman correla-
tion analysis quantified relationships between SOC and 
continuous variables, while ANOVA evaluated spatial het-
erogeneity across categorical groups. A multivariate linear 
regression framework modeled interactions among vari-
ables influencing oasis SOC at the Tarim Basin’s eastern 
margin, incorporating stepwise selection to isolate causal 
factors. Qualitative variables were dummy-coded prior 
to regression, with model diagnostics including Durbin-
Watson autocorrelation tests (residual independence), 
R2-adjusted variance partitioning, and partial/semi-partial 
correlation coefficients to disentangle covariate effects. 
Covariance structures were validated through variance 

Ta b l e  1. Analytical testing methods and instrument equipment

Element Method Instrument Detection
limit

SOC Walkley-Black method Evolution One spectrophotometer (USA) 0.3 g kg-1

TK Inductively coupled plasma optical emission 
spectrometry

NexION 300D inductively coupled plasma 
mass spectrometer (USA) 0.1 g kg-1

TN Kjeldahl digestion-steam distillation method Kjeltec™ 9 fully automated Kjeldahl nitrogen 
analyzer (Denmark) 0.1 g kg-1

TP X-ray fluorescence spectrometry AXIOS MAX X-ray fluorescence 
spectrometer (Netherlands) 0.05 g kg-1

TS Gravimetric method BSA124S-CW electronic balance (Germany) 0.5 g kg-1

pH Ion-selective electrode potentiometry S220 ion meter (Switzerland) 0.01
BD Core sampling method 100 cm³ standard cutting ring (China) 0.01 g cm-3

Soil texture Hydrometer method Standard hydrometer (China) 0.10%
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inflation factors (VIF < 5). All computations were executed 
in SPSS 26 (α = 0.05), with spatial trend visualizations gen-
erated in Origin 2022.

2.3.2. Spatial geostatistical methods

Spatial heterogeneity of SOC in the Tarim Basin’s 
eastern margin oasis was quantified using geostatistical 
modeling in GS+ software. Four theoretical semivariogram 
models (Gaussian, linear, exponential, spherical) were iter-
atively fitted to empirical semivariance data, with model 
performance evaluated through dual criteria: maximization 
of the coefficient of determination (R2) and minimization 
of the residual sum of squares (RSS). The optimal model, 
selected based on these metrics, was subsequently applied 
in ArcGIS 10.2 to execute ordinary kriging interpolation, 
generating spatially continuous SOC predictions across the 
study area. Prediction uncertainty was assessed via cross-
validation, calculating mean error (ME) between observed 
SOC values and model estimates at sampling locations. 
This framework explicitly accounts for spatial autocorrela-
tion while mapping SOC distribution patterns at landscape 
scales.

2.3.3. Machine learning methods

1) Ordinary least squares (OLS)
As a fundamental linear modeling technique, OLS 

regression was chosen for its interpretability, computation-
al efficiency, and well-established theoretical framework 
(Mackessy et al., 2024). While nonlinear models offer 
flexibility, OLS serves as a critical baseline for evaluating 
linear relationships, particularly when preliminary analy-
ses or domain knowledge suggest approximate linearity 
in the data. Its simplicity facilitates rapid diagnostics and 
benchmarking against more complex alternatives. The 
mathematical formulation of the OLS regression model is 
as follows:

(1)

where: y is the dependent variable, x1, x2, …, xn denote 
the independent variables, b1, b2, …, bn. bn represents the 
parameters of the model and ε represents the error term.

2) Random forest (RF)
RF is an advancement of the traditional classification 

and regression tree (CART) methodology, noted for its high 
predictive efficiency and robustness against overfitting (Liu 
et al., 2024a). By utilizing the bootstrap resampling tech-
nique, RF generates multiple subsets of equal size from the 
original training dataset, with each subset used to train an 
individual decision tree. For each decision tree, the optimal 
variable within the subsample is identified for node seg-
mentation. The final prediction output of the RF model is 
obtained by averaging the predictions from all individual 
trees, as represented by the following formula:

, (2)

where: F(x) is the final prediction result of RF and ht(x) is 
the regression prediction result of the t-th decision tree. In 
this study, the number of decision trees was set to 500, and 
the minimum leaf subtree was set to 5.

3) Support vector machines (SVM)
The SVM methodology is particularly effective in 

addressing practical challenges associated with classifica-
tion and regression tasks, including issues related to small 
sample sizes, nonlinearity, high-dimensional data, and local 
minima (Zhang et al., 2022). It significantly mitigates the 
challenges posed by the “curse of dimensionality”. The ker-
nel function facilitates nonlinear mapping, transforming the 
original space into a high-dimensional space, thereby ena-
bling linear classification and regression of samples within 
this elevated dimensionality. In the context of regression, 
the resulting model is known as a SVM regression model. 
The SVM approach constructs an optimal classification 
hyperplane within the feature space and employs a limited 
number of support vectors to represent the entire sample 
space. This strategy enhances the simplicity and robust-
ness of the algorithm when determining the final decision 
function. The functional representation of this method is as 
follows:

. (3)

Introducing the kernel function and substituting Φ(x) 
for x, the final model with the kernel function is obtained 
as follows:

, (4)

where: K(xi
Tx)=Φ(xi)TΦ(xj), ai represents the corresponding 

Lagrange multiplier, n represents the number of samples 
in the training set, and b represents the offset. The specific 
parameter is set as penalty factor 50, the radial basis func-
tion parameter is 0.2, the loss parameter type is Gaussian 
SVM, and the parameter is 0.1.

4) Back propagation (BP)
The primary concept of the BP algorithm involves 

dividing the learning process into two distinct stages: 
forward propagation and backward propagation (Liu et 
al., 2024). During the forward propagation phase, input 
samples are processed sequentially from the input layer 
through the hidden layers, ultimately reaching the output 
layer after traversing all hidden layers. In this layer-
by-layer processing, the state of each layer of neurons 
influences only the state of the subsequent layer. In the 
output layer, the current output is compared to the expected 
output; if a discrepancy exists, the process transitions to 
backward propagation. In the backpropagation phase, the 
error between the actual output and the network output is 
propagated backward along the original connection path. 



EXPLAINABLE ML REVEALS SOC HIERARCHICAL CONTROLS IN TARIM HYPERARID OASES 447

This error is minimized by adjusting the connection weights 
of the neurons in each layer. Subsequently, the forward 
propagation process is repeated, and the calculations 
continue until the error falls below a predetermined 
threshold.

The transfer function used in the hidden layer is the 
hyperbolic tangent sigmoid function (tansig), while the 
output layer employs the logistic sigmoid function (logsig). 
The expansion constant for the neural network is set to 1.0. 
The dynamic adaptive BP algorithm is implemented as 
the training function, with the stopping criteria defined by 
target error accuracy and the number of training epochs. The 
training error accuracy is established at 1×10-6 to meet the 
specified condition, and the maximum number of training 
iterations is determined by the mathematical formulations 
for the tansig and logsig functions, as provided below:

, (5)

. (6)

2.4. Accuracy evaluation

In this study, three indicators are utilized to evaluate the 
accuracy of machine learning predictions: the coefficient of 
determination (R2), mean absolute error (MAE), and root 
mean square error (RMSE) (Ma R. et al., 2024). R2 is a 
widely used metric in statistics that describes the degree 
of influence of the independent variable on the dependent 
variable. A value of R2 closer to 1 indicates that the model 
fits the sample data more effectively, while a value closer to 
0 suggests a poor fit. RMSE and MAE are common metrics 
for assessing accuracy in machine learning. RMSE is par-
ticularly sensitive to large errors, whereas MAE provides 
a more balanced view of the differences across all error 
points. Both metrics measure the discrepancy between 
predicted and actual results, with smaller values indicating 
better predictive performance of the model (Abdellafou et 
al., 2025; Batista et al., 2025; Fu et al., 2024).

3. RESULTS
3.1. Distribution characteristics of organic carbon content 
in the soil surface layer

The surface soil SOC content in the study area ranged 
from 0.50 to 21.70 g kg-1, with a mean of 4.47 g kg-1, 
slightly exceeding the 4.36 g kg-1 reported for the north-
ern margin of the Tarim Basin but remaining lower than 
the 7.32 g kg-1 observed in Urumqi. The distribution of 
SOC exhibited pronounced asymmetry (skewness > 1) and 
leptokurtic peakedness (kurtosis >1), indicating localized 
enrichment at specific sampling sites. A high coefficient of 
variation (CV = 65.50%) further underscores strong spatial 
heterogeneity in SOC distribution (Table 2).

The mean concentrations of TN, TP, and TK were 0.41, 
0.28, and 29.3 g·kg-1, respectively. Both TN and TP levels 
fell below China’s urban soil benchmarks (1.07 g kg-1 for 
TN and 0.84 g kg-1 for TP), while TK significantly exceed-
ed the national benchmark of 22.80 g kg-1, defining the 
region’s soils as nitrogen-deficient, phosphorus-poor, and 
potassium-rich (Liu et al., 2023).

Soil salinity displayed extreme spatial variability, with 
a CV of 164.61%, reflecting sharp contrasts in salt accumu-
lation across the study area. In contrast, soil pH exhibited 
minimal variation, with a mean of 8.65 (strongly alkaline), 
a low CV of 3.27%, and near-symmetrical distribution 
(skewness = 0.26, kurtosis = 0.02). This stability in pH con-
trasts markedly with the high variability observed in SOC 
and salinity, suggesting distinct geochemical controls on 
these parameters.

3.2. Characteristics of soil organic carbon vertical 
distribution

Within the study area, nine soil profiles (PM1-PM9) 
were established across major land use types: PM1 and 
PM8 in wasteland, PM2, PM3, and PM9 in arable land, 
PM4 and PM5 in garden land, PM6 in woodland, and PM7 
in grassland. As illustrated in Fig. 2, significant variations 
in the SOC content were observed among the different 
land use types. The surface SOC concentrations in arable 
land (PM2, PM3, PM9) were 10.00, 8.80, and 10.95 g kg-1, 
respectively, while those in PM1 (wasteland), PM4 and 

Ta b l e  2. Geochemical characterization of arid oasis soils: statistical summary from the Eastern Tarim Basin Margin (n = 644)

Index Minimum Maximum Average Standard 
deviation

Coefficient of 
variation (%) Skewness Kurtosis

TK 12.3 29.3 21.78 2.23 10.26 -0.05 1.82
TN 0.1 1.3 0.41 0.2 48.81 0.97 1.1
SOC 0.5 21.7 4.47 2.84 65.5 1.09 1.62
TP 0.28 1.21 0.58 0.12 20.69 1.37 3.57
TS 0.26 393 23.82 39.21 164.61 3.94 25.41
pH 7.92 9.52 8.65 0.28 3.27 0.26 0.02

TK – total potassium, TN – total nitrogen, SOC – soil organic carbon, TP – total phosphorus, TS – total salinity, pH – potential of 
hydrogen. Units for TN, TK, SOC, TP, and TS are g kg-1, while pH is dimensionless.
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PM5 (garden land), PM6 (woodland), PM7 (grassland), 
and PM8 (wasteland) were 2.3, 4.5, 3.5, 3.2, 3.0, and 2.1 g 
kg-1, respectively. The results indicate that the SOC content 
exhibited relatively consistent trends within the same land 
use type but varied significantly across the different types. 
Notably, the cropland and orchard soils displayed markedly 
higher SOC levels than the other land use categories, sug-
gesting that anthropogenic agricultural activities (tillage, 
fertilization, irrigation) significantly influence the migra-
tion and accumulation of SOC in the region.

Additionally, except for wasteland (PM4, PM5), the 
SOC content consistently decreased with increasing soil 
depth, demonstrating a distinct “surface accumulation” 

pattern. This phenomenon implies that vegetation root sys-
tems facilitate the upward transport of SOC from deeper 
soil layers during water and nutrient uptake. In contrast, 
the wasteland profiles exhibited irregular vertical SOC dis-
tribution, with anomalous enrichment observed at depths 
of 120 and 180 cm. This irregularity suggests that vertical 
variations in soil texture, particularly the strong adsorption 
capacity of clay layers, play a dominant role in SOC dis-
tribution. Furthermore, the SOC distribution in wasteland 
may reflect the region’s original SOC state prior to human 
disturbance (Noppol et al., 2023).

Fig. 2. Vertical stratification of soil organic carbon: depth-specific variability and profile characteristics. Figures a) to i) correspond to 
PM1 to PM9, respectively.
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In summary, the spatial heterogeneity of SOC in the 
study area is jointly controlled by anthropogenic factors 
(land management in cropland/orchard systems), natural 
vegetation patterns (woodland vs. grassland), and soil physi- 
cochemical properties (clay layers) (Wang Y.P. et al., 2024).

3.3. Characteristics of organic carbon spatial distribution

The spatial structural characteristics of SOC were 
analyzed by fitting theoretical variogram models to the 
SOC content variance function. Among the tested mod-
els (Exponential, Spherical, Linear, and Gaussian), the 
Gaussian model demonstrated the best performance, with 
the lowest residual value and the highest coefficient of 
determination (R2 = 0.994) (Table 3), confirming its suit-
ability for describing SOC spatial patterns in the oasis soils 
at the eastern edge of the Tarim Basin.

The nugget value (0.173) derived from the Gaussian 
model reflects microscale variability influenced by ran-
dom factors, such as sampling spacing inconsistencies and 
measurement errors. A nugget effect of 72.99% indicates 
moderate spatial correlation at very small scales (near-zero 
sampling distances), suggesting that localized stochastic 
processes, rather than systematic spatial gradients, dominate 
SOC heterogeneity within the study area. This highlights 
the importance of high-resolution sampling to capture fine-
scale SOC dynamics in similar arid ecosystems.

The spatial distribution of SOC in the study area was 
mapped using ordinary kriging interpolation based on the 
Gaussian model-derived semi-variogram, revealing a dis-
tinct “high-north-south, low-central” pattern characterized 
by fragmented high-value zones and ring-like scattering of 
intermediate values (Fig. 3). The central region is domi-
nated by low SOC content (< 5 g kg-1), covering 60.56% 
of the total area, likely influenced by intensive land use, 
erosion, or limited organic inputs. Intermediate SOC levels 
(5-8 g kg-1) occupy 26.55% of the area, forming discon-
tinuous transitional zones around the central core, while 
scattered high-SOC enclaves (> 8 g kg-1) in the northwest 
and southeast (12.88% of the area) suggest localized hot-
spots potentially linked to wetland retention, vegetation 
density, or historical management practices. The absence of 
extensive contiguous high-SOC areas highlights the frag-

mented influence of both natural and anthropogenic drivers 
in this arid oasis ecosystem, consistent with the previously 
observed moderate small-scale spatial correlation (72.99% 
nugget effect). This spatial configuration underscores the 
dominance of stochastic processes, such as uneven irri-
gation or microtopographic variations, in shaping SOC 
heterogeneity at the eastern margin of the Tarim Basin.

3.4. Identification of the main control factors
3.4.1. Data sources

The study area, located on the northeastern margin 
of the Tarim Basin, is characterized by fragmented farm-
land distribution due to urbanization pressures (Liu et al., 
2024b) and serves as a critical zone for analyzing arid oasis 
agroecosystems. Influencing factors were selected based 
on representativeness, accessibility, and alignment with 
regional agricultural dynamics, categorized intonexternal 
environmental stochastic factors (climate variability, land 
use patterns) and inherent soil structure attributes (tex-
ture, chemical composition). The data collection integrated 
field surveys and existing databases, encompassing seven 
subcategories: chemical properties (TN, TP), physical 
characteristics (BD, porosity), soil texture types, soil classi-
fication, land use history, climatic variables (precipitation, 
temperature), and topographic features (elevation, slope). 
Over 20 specific indicators were systematically compiled 
to capture multi-dimensional drivers of SOC variation, 
with detailed metadata, including sources (laboratory 

Ta b l e  3. Summary of semivariance function parameters

Model
Nugget value Sill value Nugget effect

(%)
Coefficient of 
determination Residual

Co Co+C Co/(Co+C) R2 RSS

Exponential 0.164 0.281 58.36 0.912 ＜0.01

Spherical 0.14 0.374 38.77 0.987 ＜0.01

Linear 0.226 0.574 39.37 0.924 ＜0.24

Gaussian 0.173 0.237 72.99 0.994 ＜0.01

Fig. 3. Geospatial variability of soil organic carbon (SOC, g kg-1) 
across the delineated region.
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analyses, remote sensing, historical records) and spatial 
resolutions, summarized in Table 4. This comprehensive 
dataset bridges microscale soil processes and macroscale 
environmental gradients, supporting the interpretation of 
the observed fragmented SOC patterns and their linkage to 
anthropogenic activities (irrigation practices) and natural 
heterogeneity in this ecologically transitional region.

3.4.2. Accuracy comparison

Four regression models: OLS, RF, SVM, and BP were 
evaluated for predicting the SOC content in the arid oasis 
ecosystem of the Tarim Basin’s eastern margin. As shown 
in Fig. 4, the RF model exhibited superior performance, 
achieving the highest coefficient of determination (R2 = 
0.7943) and the lowest prediction errors, with RMSE = 
0.0180 and MAE = 0.0137. In contrast, the linear OLS 
model demonstrated limited efficacy, yielding the low-
est accuracy (R2 = 0.5714) and the highest errors (RMSE 
= 0.0229, MAE = 0.0183), while the SVM (R2 = 0.7312) 
and BP models displayed intermediate performance. These 
results highlight the dominance of nonlinear machine 
learning approaches, particularly RF, in capturing complex 
interactions between SOC and environmental variables (cli-
mate gradients, soil texture heterogeneity) in fragmented 
land use conditions. The RF model’s robustness aligns with 
its capacity to handle high-dimensional, nonparametric 
relationships and mitigate overfitting, as evidenced by its 
enhanced interpretability of environmental drivers (Zhang 
et al., 2023). The marked disparity between linear (OLS) 
and nonlinear (RF, SVM, BP) models underscores the 
critical role of algorithmic flexibility in addressing spatial 
heterogeneity and stochastic processes, such as uneven irri-
gation or microtopographic variability, which govern SOC 

distribution in this ecologically transitional region. This 
accuracy comparison reinforces the suitability of RF for 
spatially explicit SOC mapping in arid oasis agroecosys-
tems characterized by fragmented environmental gradients.

3.4.3. Analysis of key factors

To elucidate the drivers of SOC spatial heterogeneity 
in the arid oasis ecosystem of the Tarim Basin’s eastern 
margin, the RF model was employed to quantify the rela-
tive importance of climatic, topographic, pedogenic, and 
anthropogenic variables. As depicted in Fig. 5, soil chemi-
cal properties (TN, TP) emerged as the dominant predictor, 
explaining 29.3% of SOC variability, underscoring their 
pivotal role in carbon sequestration dynamics through 
nutrient cycling and organic-mineral interactions. Physical 
properties (BD, porosity: 18.2%) and land use type (14.2%) 
ranked second and third, respectively, reflecting the inter-
play between soil structure, agricultural management 
practices (tillage, irrigation), and SOC stabilization. Soil 
type (10.9%) further highlighted the influence of pedogenic 
processes unique to the region’s saline-alkali and alluvial 
soils. In contrast, textural class (sand/clay fractions), cli-
matic variables (aridity index), and topographic features 
(slope: 1.5%) exhibited marginal contributions, suggesting 
that the limited moisture availability and subdued relief in 
this low-energy landscape attenuate their direct impacts. 
Cumulatively, the soil physicochemical attributes account-
ed for 47.5% of SOC spatial variability, dominating over 
the extrinsic environmental factors. This hierarchy aligns 
with the study area’s fragmented agroecosystem, where 
localized anthropogenic interventions (fertilization, crop 
rotation) and inherent soil heterogeneity override broader 
climatic or geomorphic gradients. The minimal topographic 

Ta b l e  4. Compilation of multisource data categories and provenance metadata 

Index structure Indicator 
classification Indicator nam Data sources Variable type Data handling

Soil structure 
endowment 
factors

Chemical feature TN, TP, TK, TS, pH Real measurement continuous variable statistical analysis

Physical feature BD Real measurement continuous variable statistical analysis

Texture type clay, silt, clay Real measurement categorical variable statistical analysis

Soil type – HWSD V2.0 categorical variable extract to point

External 
environmental 
random factors

Land use
plow land, garden land, 
forest land, uncultivated 
land

Survei Geologi 
China GeoCloud 
3.0

categorical variable extract to point

Climate average temperature, 
average rainfall

Pusat Data Sains 
Gurun Tundra 
Glasial Nasional

continuous variable extract to point

Terrain surface roughness, 
topographic relief

Pusat Data Sains 
Gurun Tundra 
Glasial Nasional

continuous variable raster calculation

BD – dulk density, HWSD – harmonized world soil database. Other explanations as in Table 2.
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influence contrasts with humid regions, emphasizing the 
unique biogeochemical drivers governing SOC dynamics 
in arid transitional zones.

4. DISCUSSION
4.1. Mechanism of soil physical and chemical properties 
on SOC

The dynamics of SOC are intricately linked to soil physico- 
chemical properties, mediated through biogeochemical and 
structural interactions (Fig. 6). Nitrogen exhibits a strong 
positive correlation with SOC (r = 0.87), reflecting its 
critical role in organic matter stabilization through micro-
bial biomass turnover and formation of organo-mineral 
complexes. In contrast, phosphorus shows negligible asso-
ciation with SOC (r = 0.018), likely due to its reduced 

bioavailability in the study area’s alkaline soil (mean pH 
= 8.45), where high pH promotes phosphorus fixation via 
adsorption to calcium carbonate, decoupling it from SOC 
dynamics. Potassium, though essential for crop growth, 
is not explicitly correlated here but interacts indirectly 
through agricultural practices, such as fertilizer application 
(Fartyal et al., 2025).

Fig. 4. Cross-model validation of machine learning predictions: observed vs. estimated value dispersion: a) RF – random forest, 
b) SVM – support vector machines, c) BP – back propagation, d) OLS – ordinary least squares.

Pr
ed

ic
te

d 
va

lu
e 

(g
 k

g-1
)

Pr
ed

ic
te

d 
va

lu
e 

(g
 k

g-1
)

Pr
ed

ic
te

d 
va

lu
e 

(g
 k

g-1
)

Pr
ed

ic
te

d 
va

lu
e 

(g
 k

g-1
)

Actual value (g kg-1)

Actual value (g kg-1)

Actual value (g kg-1)

Actual value (g kg-1)

Fig. 5. Machine learning-driven quantification of environmental 
determinants on SOC pool variability.

Fig. 6. Multivariate correlation heatmap of soil organic carbon 
(SOC) and Key Edaphic Drivers. The color gradient ranges from 
blue (r = -1.0) to red (r = +1.0), representing the continuum from 
perfect negative to positive correlation. TK – total potassium, TN 
– total nitrogen, TP – total phosphorus, TS – total salinity, pH 
– potential of hydrogen, BD – dulk density, SOC – soil organic 
carbon. 
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Agricultural activities, including fertilization, crop 
rotation, and tillage, significantly influence nutrient 
availability and SOC stability (Dipakama et al., 2024). 
Moderate fertilizer use enhances soil microenvironment 
regulation, promoting organic carbon fixation, while exces-
sive application accelerates SOC decomposition through 
acidification and microbial dysregulation. The strongly 
alkaline soil (pH=8.45) in the study region inhibits micro-
bial diversity and enzyme activity (cellulase), thereby 
impeding cellulose decomposition in plant residues. This 
leads to short-term accumulation of particulate organic car-
bon (POC) but hinders its transformation into stable carbon 
pools. Additionally, the highly alkaline environment sup-
presses vegetation growth, reducing carbon input. Although 
decomposition rates are slowed, the decline in carbon input 
is more pronounced, ultimately resulting in a net decrease 
in SOC content and reduced stability (Yang et al., 2024). 
Alkaline conditions also inhibit surface vegetation growth, 
lowering organic carbon inputs from plant residues and 
humus migration, thereby reinforcing the negative correla-
tion between pH and SOC (r = -0.34).

Total salt content demonstrates a moderate positive 
correlation with SOC (r = 0.53), as salinity in arid envi-
ronments slows microbial decomposition, preserving SOC 
(Iseas et al., 2025; Gupta et al., 2024). Soil bulk density, 
however, emerges as a dominant physical regulator, show-
ing a strong inverse relationship with SOC (r = -0.86). 
Low bulk density soils (< 1.4 g cm-3) foster complex pore 
networks that physically protect SOC within aggregates 
and enhance microbial activity, facilitating organic matter 
decomposition and carbon enrichment. Conversely, high 
bulk density (> 1.6 g cm-3) compacts soil structure, reduc-
ing pore connectivity and microbial habitat diversity. This 
compaction restricts root penetration and organic matter 
incorporation while promoting anaerobic conditions that 
slow residue decomposition but limit SOC retention (Tian 
et al., 2024).

These interactions underscore the dual role of agri-
cultural management: practices like reduced tillage and 
balanced fertilization can mitigate bulk density increases 
and pH extremes, thereby enhancing SOC sequestration 
(Shen et al., 2024). Conversely, mismanagement exacer-
bates physicochemical constraints, accelerating SOC loss. 
The interplay of these factors highlights the sensitivity of 
SOC to both nutrient cycling and soil structural integrity in 
agroecosystems (Fenton et al., 2024).

4.2. Effect of land use on SOC

The study revealed significant variations in the soil 
organic carbon (SOC) content across the different land use 
types within the research area. Arable land exhibited the 
highest average SOC content (5.27 g kg-1), while wasteland 
showed the lowest level (4.04 g kg-1), with the following 
overall SOC ranking across five land use types: arable land 
> garden land > forest land > grassland > wasteland. The 

analysis of Fig. 7 demonstrated that garden land displayed 
the highest SOC peak value and the narrowest distribution 
range, indicating highly concentrated and uniform SOC 
distribution, likely attributable to intensive management 
practices, such as regular fertilization and irrigation. In con-
trast, arable land exhibited a comparably high SOC peak but 
a broader distribution range, reflecting substantial spatial 
heterogeneity in the SOC content among cultivated plots. 
This variability could be explained by differences in tillage 
intensity, crop rotation systems, and localized management 
practices. Nevertheless, the overall SOC levels in arable 
land remained significantly elevated compared to the other 
land use types, primarily due to prolonged anthropogenic 
interventions (Parajuli et al., 2024). Agricultural activities, 
including irrigation, fertilization, and plowing, have sub-
stantially enhanced soil physicochemical properties (bulk 
density, porosity, and water retention capacity), thereby 
promoting SOC accumulation. Conversely, wastelands 
experienced exacerbated SOC depletion under environ- 
mental stressors, such as arid climatic conditions, limited 
precipitation, intense surface evapotranspiration, frequent 
wind-sand activities, and sparse vegetation cover, which 
collectively reduced organic matter input and accelerated 
carbon loss (Ben et al., 2024).

The research further emphasized that land use practices 
directly and indirectly regulate SOC dynamics by modify-
ing surface cover characteristics (vegetation types, litter 
accumulation), root distribution patterns, and soil proper-
ties (texture, moisture content, and nutrient composition), 
as demonstrated in previous studies (Ma Z.M. et al., 2024; 
Paramesha et al., 2024). For instance, arable and garden 

Fig. 7. Variations in SOC under contrasting land management 
practices.
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lands benefited from human-selected fertile soil substrates 
and sustained water-fertilizer management, creating supe-
rior hydrothermal and nutrient conditions compared to 
natural or semi-natural ecosystems. These anthropogenic 
modifications established microenvironments conducive 
to SOC stabilization (Petersson et al., 2025). The findings 
highlight the dual role of human activities in arid region soil 
carbon management: rational agricultural practices may 
enhance carbon sequestration potential, whereas excessive 
disturbance or environmental stressors can amplify carbon 
loss risks. This underscores the necessity for balanced land 
management strategies that optimize SOC retention while 
mitigating ecosystem degradation in fragile environments 
(Joshi et al., 2025).

4.3. Mechanism of soil type on SOC

According to the World Soil Database, the main soil 
types in the study area include meadow soil, fluvo-aquic 
soil, aeolian sandy soil, irrigation-silted soil, and saline-
alkali soil. The analysis has revealed that, among these five 
soil types, fluvo-aquic soil exhibits the highest SOC con-
tent (5.27 g kg⁻¹), while aeolian sandy soil shows the lowest 
level (4.29 g kg⁻¹). The SOC content follows this order: 
alluvial soil (5.27 g kg⁻¹) > irrigated desert soil (5.09 g kg⁻¹) 
> saline-alkali soil (4.52 g kg⁻¹) > meadow soil (4.35 g kg⁻¹) 
> aeolian sandy soil (4.29 g kg⁻¹), with statistically signifi-
cant differences (p<0.05) observed between the soil types. 
This stratification reflects distinct pedogenic processes and 
land-use impacts across the soil continuum.

As illustrated in Fig. 8, aeolian sandy soil displayed 
a low SOC distribution peak and a relatively narrow range, 
indicating limited spatial variability. Its inherently low SOC 
levels likely stem from the minimal anthropogenic deve-

lopment, sparse vegetation cover, and insufficient organic 
matter input from plant litter. Furthermore, the region’s arid 
climate, characterized by low precipitation and high evapo-
transpiration, coupled with suppressed microbial activity, 
restricts organic carbon replenishment (Zong et al., 2025). 
The coarse texture of aeolian sandy soil, dominated by sand 
particles, further impedes organic carbon stabilization and 
accumulation (Li C. et al., 2024).

In contrast, the alluvial soil demonstrated superior 
SOC retention, attributed to its favorable physicochemi-
cal properties (Borah et al., 2024). The lighter texture and 
higher clay content enhance soil structure, moisture reten-
tion, and biological activity, facilitating humus formation 
and organic carbon sequestration. Additionally, continuous 
cultivation practices, including sustained organic fertilizer 
application, improve nutrient availability and stimulate 
microbial decomposition, thereby promoting SOC accumu-
lation (Li et al., 2024d). These anthropogenic interventions, 
combined with inherent soil characteristics, such as optimal 
bulk density and water-holding capacity, create a microen-
vironment conducive to organic carbon stabilization.

The findings underscore the critical role of soil type 
in regulating SOC dynamics, mediated by interactions 
between intrinsic soil properties (texture, clay content) and 
extrinsic factors, such as land management practices and 
climatic conditions. This highlights the necessity of soil-
specific strategies for enhancing carbon sequestration in 
arid and semi-arid ecosystems (Oukhattar et al., 2025).

5. CONCLUSIONS

This study systematically investigated the spatial vari-
ability and driving mechanisms of soil organic carbon 
(SOC) in the oasis ecosystem at the eastern edge of the 
Tarim Basin. The key findings are summarized as follows:

1. The SOC content across the study area ranged from 
0.50 to 21.70 g kg-1, with a mean value of 4.47 g kg-1 and 
a coefficient of variation (CV) of 65.5%, indicating pro-
nounced spatial heterogeneity. Spatially, SOC exhibited a 
distinct zonation pattern, characterized by higher concen-
trations in the northern and southern regions and lower 
values in the central zone. This distribution manifested 
as concentric annular bands interspersed with scattered 
hotspots, likely reflecting localized variations in land man-
agement practices and soil-forming processes.

2. The comparative evaluation of four predictive mod-
els: ordinary least squares (OLS), random forest (RF), 
support vector machines (SVM), and back propagation 
(BP), revealed that the RF model outperformed the oth-
ers in capturing nonlinear relationships between SOC and 
environmental covariates. The RF algorithm demonstrated 
superior interpretability for variable importance (soil tex-
ture, land use type) and achieved the highest prediction 
accuracy (R2 = 0.7943, RMSE = 0.0180), highlighting its 
robustness for SOC mapping in complex arid ecosystems.

Fig. 8. Distribution patterns of SOC in different pedological 
classes.
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3. The spatial heterogeneity of SOC was governed by 
synergistic interactions between stochastic external factors 
(anthropogenic interventions, wind-sand disturbances) and 
intrinsic soil properties (texture, bulk density). The geosta-
tistical analysis confirmed significant spatial autocorrelation 
(Moran’s I > 0.4, p < 0.01) among the influencing variables. 
Among the evaluated drivers, soil physicochemical proper-
ties (clay content, moisture retention), land use type, and 
soil type collectively explained >70% of SOC variability. 

4. These findings underscore the critical role of anthro-
pogenic activities in modulating SOC dynamics within 
arid oasis ecosystems. The RF-based spatial prediction 
framework provides a reliable tool for identifying SOC 
sequestration hotspots and guiding precision land man-
agement. To mitigate carbon loss risks, priority should be 
given to optimizing irrigation regimes, promoting organic 
amendments in sandy soils, and maintaining vegetation 
cover in marginal lands. Future studies should integrate 
long-term monitoring to assess climate feedbacks on SOC 
stability in these fragile agroecosystems.
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