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A b s t r a c t. Chromium (Cr) contamination from tannery 
wastewater (TWW) poses significant environmental and health 
risks particularly in regions where untreated wastewater is com-
monly used for irrigation. This study explores the potential of 
ornamental plants, Calendula officinalis L. and Verbena hybrida, 
as promising species for Cr remediation. A completely randomized 
pot experiment with different TWW concentrations (0, 25, 50, 75, 
100%) with and without 5 mM citric acid (CA) was conducted. 
Seedlings were treated twice weekly with TWW for one month. 
Increasing the TWW concentration reduced growth parameters, 
such as shoot and root length, leaf number, and biomass, with 
the greatest decline at 100% TWW. Photosynthetic pigments 
decreased, while malondialdehyde, hydrogen peroxide, and pro-
line levels increased. Antioxidant enzyme activities peaked at 50% 
TWW with CA. The highest Cr accumulation occurred at 100% 
TWW with CA, with C. officinalis L. accumulating 3633 mg 
kg-1 in roots and 2780 mg kg-1 in shoots, and V. hybrida accumulat-
ing 2965 mg kg-1 in roots and 3673 mg kg-1 in shoots. C. officinalis 
L. was identified as Cr-tolerant (translocation factor < 1), whereas 
V. hybrida served as a Cr-phytoextractor (bioconcentration and 
translocation factors > 1). These findings underscore the poten-
tial of these plants for sustainable Cr remediation in contaminated 
environments.

K e y w o r d s: wastewater, chromium, citric acid, phytoextrac-
tion, phytostabilization

1. INTRODUCTION 

Kasur is one of the largest centers of tanning in Pakistan, 
as it is known for its extensive tanning industry (Ali et al., 
2022; Attique et al., 2020). Tannery industries play a lead-
ing role in polluting the soil and water bodies with heavy 
metals, particularly chromium (Cr) posing a global envi-
ronmental dilemma (Laxmi and Kaushik, 2020; Zaheer et 
al., 2019). Cr is ranked as the 7th most hazardous element 
according to the Agency for Toxic Substances and Disease 
Registry (Brasili et al., 2020). It is a non-essential heavy 
metal and quite persistent due to its non-biodegradable 
nature (Wani et al., 2022). Farmers use tannery wastewater 
(TWW) containing Cr for irrigation because of water scar-
city, which depletes soil fertility, making it inappropriate 
for crop growth and ultimately disrupts the food chain and 
endangers the health of humans (Sehrish et al., 2019; Singh 
et al., 2023). Cr toxicity may reduce membrane stability 
due to the excessive build-up of reactive oxygen species 
(ROS), which can also harm morpho-physiological charac-
teristics of plants (Azeez et al., 2021). It has been reported 
to be potentially toxic to plants because it prevents them 
from absorbing water and nutrients, reduces chlorophyll 
production, and disrupts enzyme functions leading to plant 
death (Amin et al., 2019).
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Phytoremediation is a non-invasive, inexpensive, and 
aesthetically pleasing method for the treatment of met-
al-polluted environments (Sharma et al., 2023; Wang et 
al., 2020; Khalid et al., 2019a). Many factors, such as the 
characteristics of the soil and rhizosphere, bioavailability 
of metals, performance of plants, and selection of plant, 
affect the phytoremediation efficiency (Yan A.. et al., 2020). 
The bioavailability of metals can be enhanced by using 
organic acids of low molecular weight such as citric acid 
(CA) as chelating agents. Organic acids are thought to be 
good chelating agents, as they can form complexes with 
metals and are less toxic and less likely to leach (Ibrahim, 
2023). Several studies have reported that citric acid appli-
cation improved plant growth, enhanced water usage 
efficiency, chloroplast content, and photosynthesis as well 
as antioxidant enzyme activity, while reducing ROS and 
malondialdehyde levels (Chen et al., 2020; Parveen et al., 
2020). Enhanced uptake of metals by the application of cit-
ric acid has been demonstrated in many plants like Brassica 
rapa, Brassica juncea, and Kocuria rhizophiliai growing 
in metal-contaminated soils (Diarra et al., 2021; Hussain 
et al., 2019). The ability of citric acid to chelate and form 
complexes with metals in the medium allows their rapid 
and efficient uptake by roots of plants. The small molec-
ular size and superior biodegradability of CA, compared 
to other chelators, further enhances its effectiveness in this 
process (Zhang et al., 2017).

Different plant species absorb different concentrations 
of heavy metals owing to differences in occurrence, growth, 
reproduction, and ability to sustain life in metal-contami-
nated soils. Due to variations in elemental uptake systems, 
different plant species show varying tolerance to the same 
contaminant in the same environmental conditions (Aqeel 
et al., 2021; Khalid et al., 2019b; Zechmeister et al., 2003). 
Various plants have been employed to treat tannery waste-
water. Ahmad et al. (2020b) highlighted the use of zinc 
lysine for treating tannery wastewater with maize plants, 
and García-Valero et al. (2020) treated tannery wastewa-
ter by constructing a wetland planted with Phragmites 
australis. Calendula officinalis L. and Verbena hybrida 
are hardy, fast-growing ornamental plants with potential 
tolerance to environmental stresses, making them suitable 
for phytoremediation of tannery wastewater, particularly 
in regions like Pakistan, where this is a significant con-
cern. Despite their aesthetic value, low maintenance, and 
adaptability, their remediation potential with citric acid 
as a chelator remain underexplored. Therefore, this study 
was conducted to investigate the potential of citric acid 
to enhance chromium uptake and reduce the toxic effects 
of tannery wastewater on plant growth and physiological 
functions. It was hypothesized that the application of citric 
acid would enhance the chromium uptake, thereby improv-
ing the phytoremediation potential of selected ornamental 
plants. Specifically, our objectives were to: 1) evaluate 
the impact of tannery wastewater and citric acid on the 

growth and physiological traits of Calendula officinalis L. 
and Verbena hybrida; 2) analyze oxidative stress markers, 
antioxidant enzyme activities, and proline levels, and 3) as- 
sess the efficiency of chromium uptake and accumulation 
in both plant species. The research aimed to support the 
development of cost-effective, nature-based strategies for 
managing wastewater and remediating chromium-contam-
inated environments.

2. MATERIALS AND METHODS
2.1. Wastewater collection and analysis

Wastewater was collected in plastic containers from 
a tannery industry outlet located in Niaz Nagar, Kasur, 
Pakistan (31°06’26.1” N, 74°27’27.2” E), and transported 
to the laboratory of the University of Education, Lahore. 
Three wastewater samples were used for physicochemical 
analysis. The characteristics of the wastewater, analyzed 
following the APHA (2005) guidelines, are presented in 
Table 1.

2.2. Soil collection and analysis

For the experiment, the soil was collected from the 
PHA nursery near the University of Education, Bank 
Road Campus, Lahore (31°33′46.81″ N, 74°18′18.64″ E). 
The soil was dried in air and sieved using a 2 mm mesh 
to eliminate debris and unwanted materials. Prior to the 
experiment, three samples were randomly collected from 
the soil to analyze basic soil properties (Table 2). Soil pH 
was determined by a pH meter, and electrical conductivity 
was measured using an EC meter. Soil texture was assessed 
using the hydrometer method (Bouyoucos, 1962). Organic 
matter content was evaluated following the method pro-
posed by Walkley and Black (1934), while chromium 
concentration was measured using a digestion protocol out-
lined by Khalid et al. (2021).

Ta b l e  1. Physicochemical parameters of wastewater utilized for 
irrigation

Parameter Value

pH 3.27

EC 4 000 µS cm-1

COD 2 799 mg L-1

BOD 885 mg L-1

TDS 3 200 ppm

TSS 300 mg L-1

Sulphate 925 mg L-1

Chloride 510 mg L-1

Chromium 350 mg L-1
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2.3. Experimental layout

A completely randomized pot experiment with three 
replicates (pots) for each treatment resulting in a total of 
sixty experimental units was executed outdoors in the 
experimental area of the University of Education, Bank 
Road Campus, Lahore, in natural environmental condi-
tions. The average daytime temperatures ranged from 24 
to 28°C, while nighttime temperatures ranged from 13 to 
17°C during the experimental period. The average rela-
tive humidity was around 39%. Each pot (25 cm in length 
and 20 cm in diameter) was filled with sieved soil, and ten 
healthy seeds of Verbena hybrida and Calendula officinalis 
L. were sown at a depth of 2 cm. The pots were irrigated 
with equal amounts of tap water to support germination. 
Two weeks after germination, thinning was performed to 
maintain three uniform seedlings per pot for the duration 
of the experiment.

2.4.  Treatment application

After thinning, the plants were irrigated twice a week 
for one month with varying concentrations of tannery 
wastewater (TWW) alone and in combination with citric 
acid (CA) at a concentration of 5 mM. Each pot received 
500 mL of solution per application, ensuring uniformity 
across all treatments. Irrigation was carried out in the early 
morning to minimize evaporation and temperature-related 
stress. Plants in the control group were irrigated with an 
equivalent amount of tap water. The treatment combina-
tions applied in the experiment are presented in Table 3.

Tannery wastewater was diluted with distilled water 
to prepare the respective treatment solutions. The experi-
mental pots were rotated regularly to minimize any spatial 
effects on plant growth and development. Both plants 
growing under various treatments are shown in Fig. 1.

Ta b l e  2. Physicochemical parameters of experimental soil

Parameter Value

Sand 59%

Silt 19.8%

Clay 21.2%

Organic matter 0.46%

pH 7.68

EC 336 µS cm-1

Chromium 0.27 mg kg-1

Fig. 1. Calendula officinalis L. a), and Verbena hybrid b) growing under various treatment combinations of tannery wastewater (TWW) 
and citric acid (CA).

a)

b)

Ta b l e  3. Treatments applied to Calendula officinalis L. and 
Verbena hybrida

Treatment Concentration

T1 0% TWW (Control)

T2 25% TWW

T3 50% TWW

T4 75% TWW

T5 100% TWW

T6 CA alone

T7 25% TWW + CA

T8 50% TWW + CA

T9 75% TWW + CA

T10 100% TWW + CA
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2.5. Chromium concentration

The chromium content in shoots and roots of both plants 
was measured following the digestion protocol described 
by Khalid et al. (2021). Plant samples were digested using 
hydrogen peroxide (H2O2) and nitric acid (HNO3). Dried 
plant material (0.1 g) was placed in concentrated nitric 
acid overnight for initial digestion. The mixture was then 
heated using a hot plate, gradually raising the temperature 
to 250°C. Hydrogen peroxide was added dropwise until the 
solution became colorless, indicating complete digestion. 
After cooling, the digested solution was filtered through 
Whatman no. 1 filter paper, and the volume was adjusted to 
50 mL with distilled water. The chromium concentration in 
the samples was quantified by an atomic absorption spec-
trophotometer (Hitachi Polarized Zeeman AAS, Z-8200, 
Japan). To ensure accuracy, blank samples were prepared 
using distilled water and ultra-pure acids, and the relative 
standard deviation (RSD) remained below 5%. Standard 
solutions were prepared by diluting 1000 ppm certified 
metal solutions. Additionally, a standard reference material 
was analyzed after every ten samples to maintain quality 
control.

2.6. Translocation factor (TF) and bioconcentration factor 
(BCF)

The translocation factor was calculated using the equa-
tion given by Marchiol et al. (2004). 

(1)

The bioconcentration factor was determined by follow-
ing the equation suggested by Gosh and Singh (2005).

(2)

2.7. Growth parameters

After one month of treatment application, the plants 
were carefully harvested from the soil to prevent root 
damage. The plant samples were carefully separated into 
shoots and roots. The roots were washed with tap water to 
eliminate any adhering soil particles, while excess water 
was removed with paper. The length of shoot and root was 
recorded using a scale (cm), and the leaves were counted 
manually. Analytical balance (ArA - 210LC) was used for 
measuring the fresh weight of shoots. Later, half of the 
samples were oven-dried at 70°C for three days until con-
stant weight was achieved, after which the same balance 
was used to determine their dry weights. The dried samples 
were ground into fine powder using pestle and mortar for 
further analysis while the remaining samples were stored in 
a refrigerator for biochemical analysis. 

2.8. Photosynthetic pigments

The photosynthetic pigments were evaluated by apply-
ing the technique described by Arnon (1949). Fresh leaf 
samples (0.1 g) were crushed with a pestle and mortar using 
10 mL of acetone. Using a spectrophotometer (AE-S60-
4V), the absorbance of the supernatant was noted at 663, 
645, and 470 nm to measure chlorophyll a, chlorophyll b, 
(mg g-1)  and carotenoid content respectively. The chloro-
phyll a, b, and carotenoid content was measured using the 
following formulas:

Chla =
[(12.7× A663)− (2.6× A645)]× acetone

leaf tissue
, (3)

Chlb =
[(22.9× A645)− (4.68× A663)]× acetone

leaf tissue
, (4)

Cx+c =
1000A470 − 1.90 Chla − 63.14 Chlb

214
, (5)

where: chlorophyll a, chlorophyll b (mg g-1), leaf tissue 
(mg), x+c represents xanthophylls and carotenes (Rane et 
al., 2015).

2.9. Proline content

The proline content was determined using the acid 
ninhydrin method (Bates et al., 1973). Leaf samples were 
minced with 6 ml of 3% (w/v) sulfosalicylic acid and cen-
trifuged at 10,000 g for 5 min. Two mL of acid ninhydrin, 
glacial acetic acid, and centrifuged extract were combined 
in a test tube. The reaction mixture was heated in a boiling 
water bath for 1 h and then cooled in an ice bath to stop 
the reaction. Subsequently, 4 mL of toluene was added and 
the organic phase was extracted. This led to the production 
of a reddish chromophore, which was measured at 520 nm 
using a UV-vis spectrophotometer (AE-S60-4V), with tolu-
ene as the blank.

2.10. Hydrogen peroxide (H2O2)

The method proposed by Velikova et al. (2000) was 
employed to quantify H2O2. Fresh leaf samples (0.5 g) were 
homogenized with 5 mL of 0.1% trichloroacetic acid and 
centrifuged at 12,000 g for 15 min. The supernatant (0.5 mL) 
was mixed with 0.5 mL of 10 mM potassium phosphate 
buffer (pH 7.0) and 1 mL of 1M potassium iodide. The 
absorbance was documented at 390 nm using a spectropho-
tometer (AE-S60-4V). The H2O2 content was determined 
by referencing a standard calibration curve constructed 
from various H2O2 concentrations.

2.11. Malondialdehyde (MDA)

Malondialdehyde was measured following Heath and 
Packer (1968). Leaf samples (0.2 g) were homogenized 
using 5 mL of 1% trichloroacetic acid (TCA) and centri-
fuged at 10,000 g for five minutes. The supernatant was 
mixed with 4 mL of 20% TCA containing thiobarbituric 
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acid, incubated at 95°C for 30 min, cooled on ice, and 
centrifuged again for 10 min. Absorbance was measured 
at 532 nm using a spectrophotometer (AE-S60-4V), with 
non-specific absorbance at 600 nm subtracted. The MDA 
concentration was calculated using an extinction coefficient 
of 155 mM−1 cm−1.

2.12. Antioxidant enzyme activities

The procedure developed by Chance and Maehly (1955) 
was used to measure peroxidase activity. The reaction mix-
ture (3 mL) contained 0.1 mL of enzyme extract, guaiacol 
(20 mM), H2O2 (40 mM), and sodium acetate buffer (50 mM) 
at pH 5.0. The absorbance was observed at 470 nm every 
20 s using a spectrophotometer (AE-S60-4V).

Catalase activity was assessed following the method 
developed by Chance and Maehly (1955) by measuring the 
decomposition of hydrogen peroxide. The reaction mixture 
contained enzyme extract (25 µL), phosphate buffer (50 mM) 
at pH 7, and H2O2 (15 mM). The decline in hydrogen per-
oxide was evaluated at 240 nm using a spectrophotometer 
(AE-S60-4V). The activity was expressed in units, with one 
unit defined as the amount of catalase that decomposes one 
µmole of hydrogen peroxide per minute. 

The activity of superoxide dismutase was evaluated 
following the method described by Giannopolitis  and Ries 
(1977) by measuring its ability to inhibit the phytochemical 
reduction of nitro blue tetrazolium (NBT). The reaction mix-
ture (3 mL) contained potassium phosphate buffer (50 mM) 
at pH 7.8, riboflavin (2 mM), EDTA (0.1 mM), and NBT 
(75 mM). The mixture was kept 30 cm below a 30 W 
fluorescent lamp for 15 min. Using a spectrophotometer 
(AE-S60-4V), the absorbance was measured at 560 nm.

2.13. Statistical analysis

The data were statistically analyzed using analysis of 
variance, and various treatment means were compared 
for significant differences using Tukey’s HSD (Honestly 
significant difference) test at p ≤ 0.05. Pearson’s correla-
tion coefficient analysis (p ≤ 0.05) was also conducted to 
evaluate the relationship between the chromium concentra-
tion and plant growth as well as biochemical parameters. 
Statistic 8.1 software was used to perform all the analyses 
(Analytical Software, Tallahassee, Florida, USA, 2005).

3. RESULTS

3.1.  Growth parameters

The shoot and root length, shoot fresh weight, shoot and 
root dry weight as well as the number of leaves in both 
C. officinalis L. and V. hybrida varied highly significantly 
(p < 0.001) under various treatments (Table 4). The shoot 
and root lengths of both plant species decreased signifi-
cantly with the increasing tannery wastewater (TWW) 
concentration, in comparison to the control. The maximum 
reduction was documented in T5 in both plant species. 

However, the citric acid (CA) application improved these 
parameters, compared to the wastewater treatments alone 
(Fig. 2a-b). Similarly, minimum shoot fresh weight in both 
plant species was noted in T5, where 100% wastewater 
was applied, while the highest weight was recorded in T6, 
where CA was applied (Fig. 2c). A comparable trend was 
observed for shoot and root dry weights as well as the num-
ber of leaves, which also showed a gradual decrease from 
T2 to T5, compared to the control, and enhancement under 
the CA application in both plants (Fig. 2d-f).

3.2.  Photosynthetic pigments

The chlorophyll a, chlorophyll b, total chlorophyll, and 
carotenoid content in both C. officinalis L. and V. hybrida 
exhibited highly significant differences (p < 0.001) under 
various treatments (Table 4). A progressive decline in the 
chlorophyll a, b, and total chlorophyll content was not-
ed with the increasing tannery wastewater concentration, 
compared to the control in both plant species. The min-
imum chlorophyll content was observed in T5 while the 
highest value was noted in T6, in comparison to the control 
(Fig. 3a-c). The application of citric acid alongside waste-
water from T7 to T10 further improved the chlorophyll 
content, compared to the wastewater treatments alone. 
Similarly, carotenoids exhibited a comparable trend in both 
plant species (Fig. 3d), with the greatest reduction observed 
in T5, where 100% wastewater was applied. However, the 
application of CA in T6 augmented the carotenoid content, 
in comparison to the control.

3.3. Proline content

The effect of various treatments on the proline content 
remained highly significant (p < 0.001) in both C. officina-
lis L. and V. hybrida (Table 4). The proline content in both 
plant species increased from T2 to T5, showing an increase 
with the increasing concentration of tannery wastewater, in 
comparison to the control (Fig. 4a). The application of CA 
in combination with wastewater further enhanced the pro-
line levels in both plants. The maximum proline content in 
both plant species was noted in T10, where 100% wastewa-
ter in combination with CA was applied, in comparison to 
the other treatments. 

3.4. H2O2 and MDA content 

The H2O2 content in both C. officinalis L. and V. hybri-
da exhibited a highly significant (p > 0.001) increase with 
the increasing concentration of tannery wastewater, in 
comparison to the control (Table 4). The highest H2O2 in 
both plants was noted in T5, where 100% wastewater was 
applied, in comparison to the other treatments. However, 
the H2O2 levels were found to be reduced when wastewa-
ter was applied in combination with CA, compared to the 
respective wastewater treatments without CA (Fig. 4b). 
Similarly, the MDA content also exhibited maximum levels 
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under the 100% wastewater treatment in both plants, while 
the CA application significantly lowered the MDA levels 
(Fig. 4c).  

3.5. Antioxidant enzymes

The activity of superoxide dismutase (SOD), catalase 
(CAT), and peroxidase (POD) varied significantly (p < 
0.001) across various treatments in both C. officinalis L. 
and V. hybrida (Table 4). The POD activity was found to be 
increased under all the treatments with wastewater, com-
pared to the control, in both plant species. Among various 
treatments, the 50% wastewater concentration maximally 
increased the POD activity in both plant species. The appli-
cation of CA further enhanced the enzyme activity, and thus 
the highest POD activity was noted in T8 in both C. offic-
inalis L. and V. hybrida (Fig. 4d). Similarly, CAT activity 
also increased from T1 to T3 and then decreased gradually 
up to T6; yet, it was higher than T1 in both C. officinalis L. 
and V. hybrida. The application of CA in combination with 
wastewater further enhanced the activity of CAT, compared 
to the wastewater treatments alone as well as the control. 
The highest CAT activity in both plant species was record-

ed in T8, where 50% TWW combined with CA was applied 
(Fig. 4e). The activity of SOD also showed a similar trend 
in both plant species (Fig. 4f). 

3.6. Chromium concentration

The chromium (Cr) concentration in the roots and shoots 
of C. officinalis L. and V. hybrida increased significantly 
(p < 0.001) with the rising tannery wastewater concentra-
tions, compared to the control (Tables 4, 5). The shoots and 
roots of C. officinalis L. exhibited the highest Cr concen-
tration in T10, compared to the other treatments. The Cr 
accumulation in the shoots and roots increased significantly 
and gradually from T7 to T10 when wastewater was applied 
in combination with citric acid, compared to the respective 
wastewater treatments without CA. Similarly, in V. hybrida, 
the application of CA along with wastewater resulted in an 
increase in the Cr concentration in the shoots and roots, 
compared to the same wastewater treatments without CA. 
The highest Cr concentration in the shoots and roots of V. 
hybrida was noted in T10, where 100% wastewater was 
applied along with CA, compared to the other treatments.

Ta b l e  4. Analysis of variance showing F-values for various parameters of Calendula officinalis L. and Verbena hybrida treated with 
tannery wastewater alone and in combination with citric acid

Parameter Calendula officinalis L. Verbena hybrida

Shoot length 79.50*** 139.6***

Root length 68.42*** 78.84***

Shoot fresh weight 153.5*** 93.52***

Shoot dry weight 134.1*** 80.03***

Number of leaves 75.80*** 83.20***

Chlorophyll a 56.18*** 56.04***

Chlorophyll b 2013*** 376.9***

Total chlorophyll 428.5*** 1 766***

Carotenoid 2699*** 241.6***

MDA 65.07*** 55.28***

H2O2 79.77*** 57.46***

Proline 154.5*** 70.83***

SOD 22.42*** 45.75***

POD 69.17*** 52.04***

CAT 80.63*** 62.73***

Cr in shoot 4820*** 1 4682***

Cr in root 847.7*** 4 645***

***Significant at p < 0.001.
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The translocation factor (TF) and the bioconcentration 
factor (BCF) for C. officinalis L. and V. hybrida are pre-
sented in Table 6. In C. officinalis L., BCF decreased as the 
tannery wastewater concentration increased. The addition 
of CA improved BCF across all treatments, with the high-
est value observed in the 25% wastewater treatment and 
the lowest in the 100% wastewater variant, compared to 
the other treatments. In all treatments of tannery wastewa-
ter with and without CA, the TF values remained below 1, 
indicating limited Cr translocation from roots to shoots. In 
V. hybrida, similar trends were observed for BCF and TF. 
The highest BCF was recorded under the 25% wastewater 
treatment with CA, with a gradual decrease as the wastewa-
ter concentration increased. Unlike C. officinalis L., the TF 
values for V. hybrida exceeded 1 in all treatments, indicat-
ing greater Cr translocation from roots to shoots. 

3.7.  Pearson’s correlation coefficient

The relationship between the Cr concentration and var-
ious growth and biochemical parameters in C. officinalis L. 
and V. hybrida treated with tannery wastewater was evaluat-
ed by performing Pearson’s correlation coefficient analysis 
(Table 7). In C. officinalis L., the Cr concentration exhibited 
a significant (at p < 0.01 and p < 0.05) negative correlation 
with growth parameters, including root and shoot length, 
shoot fresh weight, root and shoot dry weight, as well as 
the number of leaves. Photosynthetic pigments, includ-
ing chlorophyll a, total chlorophyll, and carotenoids, also 
showed a significant (p < 0.05) negative correlation with 
the Cr concentration, while chlorophyll b exhibited a nega-
tive but non-significant (p > 0.05) correlation. Conversely, 
oxidative stress markers (proline, hydrogen peroxide, and 
malondialdehyde) and antioxidant enzymes (superoxide 

Fig. 2. Effect of tannery wastewater and citric acid (CA) treatments on: a) shoot length, b) root length, c) shoot fresh weight, d) shoot 
dry weight, f) root dry weight and g) number of leaves of Calendula officinalis L. and Verbena hybrida. Each bar indicates the average 
of three replicates (n=3) ± SE. Different alphabets denote significant differences at p ≤ 0.05.

a) b)

c) d)

e) f)
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Fig. 3. Effect of tannery wastewater and citric acid (CA) treatments on: a) chlorophyll a, b) chlorophyll b, c) total chlorophyll and 
d) carotenoid content of Calendula officinalis L. and Verbena hybrida. Each bar indicates the average of three replicates (n = 3) + SE. 
Different alphabets denote significant differences at p<0.05.

Fig. 4. Effect of tannery wastewater and citric acid (CA) treatments on: a) proline, b) hydrogen peroxide, c) malondialdehyde, d) 
peroxidase activity, e) catalase activity and f) superoxide dimutase activity of Calendula officinalis L. and Verbena hybrida. Each bar 
indicates the average of three replicates (n = 3) + SE. Different alphabets denote significant differences at p<0.05.

a) b)

c) d)

e) f)

a) b)

c) d)
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Ta b l e  5. Effect of tannery wastewater (TWW) and citric acid (CA) on chromium concentration in shoots and roots of Calendula 
officinalis L. and Verbena hybrida

Treatment

Chromium concentration (mg kg-1)

Calendula officinalis L. Verbena hybrida

Shoot Root Shoot Root

Control 0 ± 0i 0 ± 0h 0 ± 0i 0 ± 0h

25% TWW 1620 ± 36h 1932 ± 34g 2002 ± 25h 1582 ± 25g

50% TWW 1802 ± 23g 2115 ± 20fg 2188 ± 12g 1738 ± 33f

75% TWW 1982 ± 33f 2268 ± 22ef 2350 ± 22f 1900 ± 22e

100% TWW 2195 ± 25e 2445 ± 40de 2585 ± 10e 2118 ± 22d

Control + CA 0 ± 0i 0 ± 0h 0 ± 0i 0 ± 0h

25% TWW + CA 2288 ± 25d 2487 ± 58d 3080 ± 22d 2125 ± 15d

50% TWW + CA 2432 ± 32c 2800 ± 132c 3250 ± 22c 2357 ± 50c

75% TWW + CA 2585 ± 26b 3133 ± 125b 3475 ± 30b 2617 ± 25b

100% TWW + CA 2780 ± 13a 3633 ± 104a 3673 ± 12a 2965 ± 18a

The data represent the average of three replicates ± S.D., and significant differences in the values within the same column at p<0.05 
are indicated by distinct letters.

Ta b l e  6. Translocation factor (TF) and bioconcentration factor (BCF) of Calendula officinalis L. and Verbena hybrida treated with 
different concentrations of tannery wastewater (TWW) alone as well as along with citric acid (CA) 

Treatment
Calendula officinalis L. Verbena hybrida

TF BCF TF BCF

Control 0 0 0.01 0

25% TWW 0.84 40 1.35 43

50% TWW 0.95 22 1.29 23

75% TWW 0.96 16 1.24 16

100% TWW 0.98 13 1.22 13

Control + CA 0.01 0.01 0.01 0.01

25% TWW + CA 0.97 56 1.31 56

50% TWW + CA 0.90 30 1.46 32

75% TWW + CA 0.86 22 1.36 23

100% TWW + CA 0.77 18 1.24 19

Each value represents the average of three replicates.
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dismutase, peroxidase, and catalase) were positively cor-
related with the Cr concentration. Similarly, in V. hybrida, 
a significant negative correlation was observed between 
the Cr concentration and most of the growth parameters 
and photosynthetic pigments. In contrast, oxidative stress 
markers and antioxidant enzyme activities demonstrated 
a positive correlation with the Cr levels in this plant species.

4. DISCUSSION

In the current study, tannery wastewater significantly 
reduced the root and shoot length, number of leaves, shoot 
fresh weight, and dry weights of both root and shoot in 
C. officinalis L. and V. hybrida. However, the application 
of citric acid exerted a positive impact on growth (Fig. 2). 
The growth suppression is likely due to Cr toxicity in the 

wastewater (Maqbool et al., 2018). Similar results have 
been obtained for Spirodela polyrrhiza L. treated with tan-
nery effluent (Singh and Malaviya, 2019) and in Spinacia 
oleracea under Cr contamination (Dotaniya et al., 2018; 
Sehrish et al., 2019). Chromium reduced the growth and 
production of biomass in castor bean (Qureshi et al., 
2020), rice (Hussain et al., 2018), and cauliflower (Ahmad 
et al., 2020b). The reduction in morphological traits may 
be attributed to impaired root ultrastructure, which limits 
nutrient uptake, or Cr competing with essential miner-
als, reducing their availability to plants (Ali et al., 2013). 
Studies have demonstrated that Cr decreases plant biomass, 
whereas the citric acid application improves the decreas-
ing effect of Cr on biomass (Farid et al., 2019; Mahdavian, 
2021; Qureshi et al., 2020). The improvement can be 
attributed to the ability of citric acid to chelate Cr, reducing 

Ta b l e  7. Pearson’s correlation coefficient between chromium concentration and various growth as well as biochemical parameters 
of plants treated with tannery wastewater

Parameter
Chromium concentration

Calendula officinalis L. Verbena hybrida

Growth parameters

Shoot length -0.8278** -0.8307**

Root length -0.7745** -0.7520*

Shoot fresh weight -0.7653** -0.7201*

Shoot dry weight -0.8095** -0.7515*

Root dry weight -0.7461* -0.7336*

Number of leaves -0.7733** -0.6100ns

Photosynthetic pigments

Chlorophyll a -0.7074* -0.6759*

Chlorophyll b -0.4294ns -0.5590ns

Total chlorophyll -0.6489* -0.65401*

Carotenoids -0.6599* -0.6294ns

Antioxidant enzymes

Superoxide dismutase 0.5618ns 0.5711 ns

Catalase 0.65812ns 0.7906**

Peroxidase 0.7216* 0.7206*

Oxidative stress parameters

Proline 0.9568*** 0.9421***

Malondialdehyde 0.6178ns 0.5909ns

Hydrogen peroxide 0.5544ns 0.4857ns

***, **, * – Significant at 0.001, 0.01 and 0.05 respectively; ns – non-significant.

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/castor-beans
https://www.sciencedirect.com/science/article/pii/S0254629921000399
https://www.sciencedirect.com/science/article/pii/S0254629921000399
https://www.sciencedirect.com/science/article/pii/S0254629921000399
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/cauliflower
https://www.sciencedirect.com/science/article/pii/S0254629921000399
https://www.sciencedirect.com/science/article/pii/S0254629921000399
https://www.sciencedirect.com/science/article/pii/S0254629921000399
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its toxicity, and to enhance nutrient bioavailability, thereby 
supporting essential physiological processes (Rodriguez et 
al., 2012).

Chromium contamination significantly reduced photo-
synthetic pigments in both plants (Fig. 3), consistent with 
previous studies reporting declines in carotenoids and chlo-
rophyll a and b in Parthenium hysterophorus, Calotropis 
procera, and sunflower exposed to heavy metal stress 
(Ejaz et al., 2022; Khalid et al., 2018; Saleem et al., 2015). 
The observed decrease in chlorophyll may result from the 
displacement of magnesium, an essential element for chlo-
rophyll biosynthesis, structural alterations in chloroplasts, 
or impeding enzymes responsible for pigment synthesis 
(Habiba et al., 2015; Rehman et al., 2019; Saleem et al., 
2020a). Additionally, Cr-induced damage to chloroplast 
membranes further compromised the photosynthetic system 
(Danish et al., 2019; Rana et al., 2020). However, the citric 
acid application enhanced pigment concentrations by che-
lating Cr, reducing its toxicity, and enhancing antioxidant 
enzyme activity, thereby protecting chloroplast structures 
and sustaining photosynthesis (Shahid et al., 2017).

As illustrated in Fig. 4, the proline content increased with 
the rising TWW concentrations, consistent with reports of 
elevated proline levels under metal stress in various plants, 
such as trifoliate orange under aluminum or chickpea 
and olive under cadmium toxicity (Alyemeni et al., 2016; 
Yan L. et al., 2020). Proline acts as an osmolyte, stabilizing 
membranes, detoxifying reactive oxygen species, and facil-
itating osmotic adjustments, thereby aiding stress tolerance 
(Sharma et al., 2019). Increased proline levels under Cr 
stress, as observed in Ocimum tenuiflorum L., may function 
as an antioxidant to mitigate metal-induced oxidative dam-
age (Rai et al., 2004). Plants treated with citric acid showed 
higher proline content, in comparison to the tannery waste-
water-treated plants, potentially due to the role of citric acid 
in reducing heavy metal-induced osmotic stress by stabi-
lizing subcellular structures and maintaining water balance 
(Kavi et al., 2015; Kaur et al., 2017).

The production of MDA and H2O2 increased with the 
tannery wastewater concentration in both plant species, 
indicating oxidative stress (Fig. 4). Comparable effects have 
been reported in Brassica oleracea, Cymbopogon flexuo-
sus, and Oryza sativa exposed to heavy metals (Ahmad et 
al., 2020a; Patra et al., 2019; Yu et al., 2018). The oxidative 
stress caused by tannery wastewater possibly occurs due to 
an imbalance in the formation and scavenging of reactive 
oxygen species, which stimulates peroxidation of lipids 
and ultimately damages the cell membrane (Adhikari et al., 
2020;  Li et al., 2018; Saleem et al., 2020b). An increase 
in the level of MDA, which is an oxidized byproduct of 
membrane lipids, suggests a high risk of membrane dam-
age instigated by Cr toxicity in TWW (Riaz et al., 2019). 
The citric acid application alleviated oxidative damage 
by increasing antioxidant enzyme activity, reducing ROS 

accumulation, and promoting plant photosynthetic efficien-
cy and growth (Anjum et al., 2012; Farid et al., 2017; Islam 
et al., 2016).

The results indicated that mild to moderate Cr concen-
trations promoted the activities of all antioxidant enzymes, 
which were reduced at higher concentrations of tannery 
wastewater (TWW) (Fig. 4). Previous studies have also 
reported parallel findings for enzyme activity, e.g. Gill et 
al. (2015) in Brassica napus L. exposed to Cr stress and 
Mallhi et al. (2019) in castor beans under Pb stress. This 
dual response of antioxidants might propose that firstly 
they are stimulated to scavenge reactive oxygen species 
(ROS) but higher levels of stress caused enzyme inhibi-
tion owing to extreme oxidative impairment (Mallhi et al., 
2019; Shahid et al., 2012). The scavenging of ROS is pro-
moted by the conjugation of antioxidant enzymes with one 
another. Superoxide dismutase (SOD) alters superoxide 
radicals into H2O2 and O2, while catalase (CAT) and per-
oxidase (POD) restrict H2O2 by degrading it into H2O and 
O2 (Shahid et al., 2014, 2016). In comparison to the TWW 
treatments alone, the addition of citric acid (CA) signifi-
cantly enhanced enzyme activity. This improvement might 
be due to the role of CA in decreasing oxidative stress and 
promoting recovery not only through growth improvement 
but also by increased synthesis of photosynthetic pigments 
(Al Mahmud et al., 2018; Najeeb et al., 2009).

The uptake and accumulation of Cr in both C. offici-
nalis L. and V. hybrida augmented with the concentration of 
tannery wastewater. The CA application further enhanced 
this accumulation in both plant species. The results of the 
present study are parallel with those of earlier studies. For 
example, Mobin et al. (2025) reported increased Pb, Cu, and 
Ni accumulation in Helianthus annuus L. with CA applica-
tion, while Shakoor et al. (2014) observed that applying CA 
elevated lead levels in Brassica napus L. By acting as a des-
orbent, CA increased the mobility and solubility of metals 
(Cr, Ni, and Mn) in soil (Qiang et al., 2018). C. officinalis L. 
exhibited a higher Cr concentration in roots than shoots. 
Similar results for metal uptake and accumulation have 
also been reported for wheat, sunflower, jute, and Brassica 
chinensis L. (Ali et al., 2018; Mallhi et al., 2020; Parveen 
et al., 2020; Wu et al., 2013). Compartmentalization of Cr 
in root vacuoles serves as a defense mechanism to lessen 
toxicity (Kanwal et al., 2014). The accumulation of Cr in 
roots also helps to shield the photosynthetic machinery of 
leaves (Conceição Gomes et al., 2017). C. officinalis L. 
exhibited a translocation factor (TF) less than 1, classify-
ing it as a chromium-tolerant non-accumulator species 
which can be beneficial in phytostabilization, a method that 
immobilizes heavy metals in the soil, reducing their bio-
availability and lowering environmental concerns (Fatnassi 
et al., 2015; Gil-Loaiza et al., 2016; Guo et al., 2014). 
V. hybrida accumulated higher Cr in its shoots than its 
roots, in contrast to C. officinalis L. Comparable processes 
have been reported in other plants, including spinach (Eid 
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et al., 2017) and certain metal-tolerant species such as 
C. telephiifolia and D. thapsi, which amass higher levels 
of arsenic (As), copper (Cu), and lead (Pb) in their shoots 
(García-Salgado et al., 2012). Hyperaccumulators can 
accumulate heavy metals in their above-ground parts with-
out detrimental effects on their physiological functions or 
growth (Jacobs et al., 2018). V. hybrida exhibited both TF 
and BCF values higher than 1, categorizing it as a Cr phy-
toextractor. In phytoextraction, heavy metals are removed 
from contaminated soils using harvestable plant biomass, 
which provides a practical solution for the remediation of 
Cr-contaminated sites (Krzciuk and Gałuszka, 2015). 

5. CONCLUSIONS

The results of the present study showed that Cr-induced 
toxicity from tannery wastewater significantly affected 
the morphological traits and photosynthetic pigments of 
both plants. Chromium stress induced oxidative damage 
by stimulating overproduction of reactive oxygen species 
(ROS), which elevated malondialdehyde (MDA) and H2O2 
levels, while antioxidant enzymes (superoxide dismutase 
(SOD), peroxidase (POD), catalase (CAT)) and proline 
accumulation helped mitigate the stress. The application 
of citric acid (CA) enhanced Cr uptake and improved 
growth and biochemical responses in both species. By 
sequestering Cr in roots and showing translocation factor 
(TF) < 1, Calendula officinalis L., acted as a Cr-tolerant 
non-accumulator species. In contrast, by efficiently trans-
locating Cr to shoots and exhibiting bioconcentration 
factor (BCF) and TF > 1, Verbena hybrida functioned as 
a Cr phytoextractor. In real-world applications, these plants 
can be used in constructed wetlands, buffer zones near tan-
neries, or wastewater-irrigated areas to reduce Cr spread. 
We recommend using Calendula officinalis for stabiliza-
tion of Cr-contaminated soils, while Verbena hybrida can 
be used for phytoextraction of Cr from contaminated sites. 
Effective post-harvest management of Cr-enriched bio-
mass from Verbena hybrida is essential and should involve 
safe disposal methods, such as controlled incineration or 
a secure landfill to prevent recontamination. Further re-
search is needed to test the above strategies on a larger 
scale in field conditions and assess their efficacy for other 
heavy metals to enhance their practical application in envi-
ronmental management.
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