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Abstract. Climate change, particularly increasingly frequent
autumn droughts, poses a significant threat to winter triticale by
limiting seedling emergence and early development. Various strate-
gies are being investigated to enhance winter triticale at the early
stages of development. Therefore, this study aimed to investigate
the impact of L-phenylalanine ammonia-lyase (PAL) inhibition
on seed germination and very early seedling development, with
a particular focus on carbon allocation towards carbohydrate
biosynthesis and its subsequent utilization in growth processes.
4-Hydroxybenzoic acid hydrazide (HBH) was used as a PAL
inhibitor. Osmotic potential, phenolic and carbohydrate content,
photosynthetic pigments, antioxidant potential, blue fluorescence
intensity, chlorophyll fluorescence, stomatal conductance, and
coleoptile length were analyzed. The PAL inhibitor reduced the
accumulation of phenolic compounds in the coleoptiles, accompa-
nied by an increase in soluble sugar content and osmotic potential.
The decrease in phenolic levels was supported by decrease in blue
fluorescence emission. HBH lowered the antioxidant potential of
coleoptiles and roots, while elevating the antioxidant potential of
germinating seeds. The inhibitor suppressed coleoptile elongation
and negatively affected the chlorophyll content, stomatal conduct-
ance, and the photosynthetic apparatus activity of the emerging
first true leaf. Our results showed that PAL inhibition alters carbon
allocation and negatively affects early seedling development.

Keywords: triticale, PAL inhibition, phenolics, carbohy-
drates, low-molecular antioxidants, chlorophyll fluorescence
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1. INTRODUCTION

Triticale (X Triticosecale Wittmack) is an artificially
developed cereal species, an intergeneric hybrid combin-
ing traits of wheat and rye (R6zewicz, 2022). From wheat,
it has inherited a high yield potential, while from rye
it has gained strong tolerance to less fertile soils as well
as to both biotic and abiotic stresses (Feledyn-Szewczyk
et al., 2020). Triticale is widely cultivated as a valuable
feed grain, particularly for livestock (swine, poultry, dairy,
beef cattle, sheep), due to its favorable nutritional profile.
Consequently, it plays an important role in ensuring feed
security for animal production and contributes to the stabi-
lity of the agricultural food chain (Randhawa et al., 2015).

Climate change, including increasingly frequent
autumn droughts, poses a growing threat to winter cereal
crops by limiting proper seedling emergence and early
development (Olesen et al., 2012). It should be empha-
sized that seed germination, coleoptile growth, and root
system establishment determine uniform plant stand den-
sity, as well as the capacity for water and nutrient uptake,
which are critical for subsequent growth, development, and
yield formation (Giri and Schillinger, 2003; Vukovi¢ ef al.,
2022). Therefore, various strategies (e.g., seed imbibition,
application of biostimulants, and appropriate soil manage-
ment) are being investigated to enhance and secure cereal
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crops at the early stages of development, thereby improv-
ing their resilience to environmental stresses and increasing
yield potential (Atkinson et al., 2009; Jocséak et al., 2022;
Hobson et al., 2023; Radzikowska-Kujawska et al., 2023).

L-phenylalanine ammonia-lyase (PAL, EC 4.3.1.24) is
a key enzyme initiating the phenylpropanoid pathway by
catalyzing the deamination of L-phenylalanine to trans-
cinnamic acid (Koukol and Conn, 1961; Urban and Hura,
2023). PAL activity determines the synthesis of secondary
metabolites such as phenolic acids, flavonoids and lignin,
which play crucial roles in stress adaptation (Kumar et al.,
2023), cellular signaling (Shalaby and Horwitz, 2015),
and in shaping the mechanical properties of plant tissues
(Rodriguez-Arcos et al., 2002). Therefore, phenolic com-
pounds are an important and interesting object of study
in the context of growth and developmental regulation
in plants (Kanjana et al., 2024). On the other hand, their
biosynthesis depends on the availability of carbohydrates
(Hura et al., 2023), which play essential roles in plant stress
responses, signaling pathways, and developmental process-
es (Saksena et al., 2020). Thus, modulation of PAL activity
may affect the allocation of carbon between primary car-
bohydrate metabolism and secondary phenolic metabolism,
which can have significant implications for plant growth
and development (Peiser ef al., 1998; Klejdus et al., 2013;
Feduraev et al., 2021).

One of the research approaches presented in this study
involves the application of an inhibitor of L-phenylalanine
ammonia-lyase (Zucker, 1968), e.g. 4-hydroxybenzoic acid
hydrazide (HBH) (Bhuiyan et al., 2009). The chemical
structure of HBH is similar to L-phenylalanine, the natural
substrate of L-phenylalanine ammonia-lyase, and it acts as
a competitive inhibitor by binding to the enzyme’s active
site, thereby blocking its catalytic function (Urban and
Hura, 2023).

Therefore, the aim of this study was to investigate the
effect of HBH on PAL activity during the early seedling
development of winter triticale, with particular focus on
the variability of selected physiological parameters poten-
tially influenced by the modulation of PAL activity. It was
hypothesized that PAL inhibition would modify carbon
allocation toward carbohydrate synthesis and its subsequent
utilization in growth processes. To test this hypothesis, key
physiological parameters were assessed, including osmotic
potential, phenolic compound content, blue fluorescence
intensity, carbohydrate levels, antioxidant potential, and
coleoptile length. Additionally, the contents of photo-
synthetic pigments (chlorophyll @, chlorophyll b, and
carotenoids), stomatal conductance, and photosynthetic
apparatus activity were analyzed.
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2. MATERIALS AND METHODS

Seeds of winter triticale (cv. ‘Moderato”) were surface-
sterilized in 70% ethanol (2 min) and 3% NaOCI (5 min),
followed by four rinses in sterile distilled water. The seeds
were then placed in sterile Petri dishes containing filter
papers moistened either with distilled water (control) or
with a 10 M solution of the PAL inhibitor, 4-hydroxy-
benzoic acid hydrazide (HBH) (Bhuiyan et al., 2009).
Each treatment consisted of six Petri dishes, each contain-
ing 25 seeds (150 seeds per treatment). Filter papers were
replenished with either water or the inhibitor solution as
needed to maintain a moist filter papers. Seed germination
and seedling growth were conducted in climatized in vitro
growth chamber at a constant temperature of 22°C (day/
night), with a photosynthetic photon flux density (PPFD)
of 100 umol m2 s7! and 10 h/14 h (day/night) photoperiod.

Measurements were performed at two developmental
stages: BBCH 10 — first leaf emerging through the coleop-
tile (osmotic potential, biochemical analyses, seedling
length) and BBCH 11 — first leaf unfolded (chlorophyll a,
chlorophyll b, carotenoids, stomatal conductance, chloro-
phyll fluorescence). Coleoptiles and seedlings of winter
triticale were randomly selected for each measurement
from the six Petri dishes within each treatment.

The total phenolic content (TPC) was determined using
the Folin-Ciocalteau method of Singleton and Rossi (1965)
after extraction with 96% ethanol. The absorbance was
measured at 760 nm with a spectrophotometer (Ultrospec
2100 Pro, Amersham Biosciences, Cambridge, UK).
Chlorogenic acid was used as a standard. The measure-
ments were taken with ten replicates.

About 10 mg of plant material was homogenized
and extracted with 2.5 ml of 96% aqueous ethanol. The
homogenates were centrifuged at 1500 x g for 15 min at
4°C. Chlorophyll present in supernatant was removed by
several extractions with hexane until no green color was
visible (Hura et al., 2006). The intensity of blue fluores-
cence emission (IFy,.) from ethanol solutions was recorded
with Perkin-Elmer LS 50B spectrofluorometer (Norwalk,
CT, USA) between 350 and 650 nm. Samples were excited
at 340 nm. The slit width was set to 10 nm for excitation and
to 15 nm for emission (Hura et al., 2018). Measurements
were carried out at room temperature in seven replicates.

Total soluble carbohydrate (TSC) content was deter-
mined with anthrone (dissolved in concentrated sulfuric
acid) (Ashwell, 1957) added to aqueous extracts of leaf
samples and incubated for 15 min at 90°C. Absorbance
was measured spectrophotometrically (Ultrospec 2100
Pro, Amersham Biosciences, Cambridge, UK) at 620 nm.
Glucose was used as a standard. The measurements were
taken with seven replicates.

Measurement of osmotic potential (W) was taken with
a psychrometer HR 33T (WESCOR, Inc., Logan, UT,
USA) equipped with C-52 sample chambers (WESCOR).
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Analyses were done for the sap squeezed out of the coleop-
tile and the emerging first leaf tissue with a syringe. Filter
paper discs (J = 5 mm) soaked in sap were placed in the
chambers and left for 30 min. The measurements were tak-
en in the dew point mode with five replicates.

Antioxidant potential was evaluated using 2,2-diphenyl-
1-picrylhydrazyl (DPPH) (Hura et al., 2022). Absorbance
was measured at 517 nm (Ultrospec 2100 Pro, Amersham
Biosciences, Cambridge, UK), 30 min after the reaction was
initiated. Antioxidant potential was assessed in coleoptiles
(DPPH(), roots (DPPHg), and emerging seeds (DPPHgg).
The percent of inhibition that determined capability of the
extract antioxidants to counteract oxidation was calculated
as:
100(Ay — A)

AD ’
A, — absorbance of DPPH radical solution, 4 — absorbance
of the investigated extracts. The measurements were taken
with ten replicates.

The length of winter triticale seedlings was measured
at the BBCH 10 stage, i.e., during the emergence of the
first leaf. The measurements were taken with twenty five
replicates.

Chlorophyll a (Chl a), chlorophyll 5 (Chl b), and caro-
tenoids (Crts) were quantified spectrophotometrically
(Ultrospec 2100 Pro, Amersham Biosciences, Cambridge,
UK) after extraction with 96% ethanol. Absorbances at
663, 646 and 470 nm were read and the concentration of
chlorophylls and carotenoids was then calculated according
to Lichtenthaler and Wellburn (1983). The measurements
were taken with seven replicates.

Chlorophyll fluorescence measurements were done
with the use of fluorometer Handy PEA (Hansatech Ltd.,
Kings Lynn, UK). They were performed after 25 min of
leaf adaptation to darkness. F./F,, (quantum yield of PSII)
was calculated according to van Kooten and Snel (1990).
Additionally other parameters were calculated per excited
leaf cross-section (CS,): ABS/CS,, (energy absorption
by antennas), PI (overall performance index of PSII pho-
tochemistry), DIy/CS,, (energy amount dissipated from
PSII), RC/CS,, (number of active reaction centers), Ety/
CS,, (amount of energy used for the electron transport)
and TR/CS,, (amount of excitation energy trapped in PSII
reaction centers), Yo (exciton transfer efficiency to the
electron transport chain), and @g, (quantum yields of pho-
toinduced electron transport in PSII reaction center from
Q. to plastoquinone). Parameters calculation was based on
the theory of energy flow in PSII and the JIP test (Strasser
and Tsimilli-Michael, 2001; Tsimilli-Michael and Strasser,
2008; Strasser ef al., 2010). The measurements were taken
with twenty replicates.

The measurements of stomatal conductance (gs) were
done with a leaf porometer (SC-1, Decagon Devices,
Pullman, WA, United States). The seedlings were addi-
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tionally illuminated. PPFD (photosynthetic photon flux
density) of about 180 pumol m® s’ (QSPAR Quantum
Sensor, Hansatech Instruments LTD, Kings Lynn, England)
was provided by high pressure sodium lamps (400 W,
Philips SON-T AGRO, Brussels, Belgium). The measure-
ments were taken with seven replicates.

Statistica 13.0 (Stat-Soft, Inc., Tulsa, OK, USA) was
used for data analysis. Statistical differences between the
experimental groups were evaluated using Student’s #-test.
The data were represented as means + standard error (SE).
Asterisk indicates statistical significance at p < 0.05.

3. RESULTS

3.1. Biochemical and growth responses of winter triticale
coleoptiles at the BBCH 10 stage under PAL inhibition

The application of 4-hydroxybenzoic acid hydrazide
(HBH) significantly affected the physiological traits of win-
ter triticale coleoptiles (Table 1). Total phenolic content was
significantly reduced in HBH-treated coleoptiles compared
with the control (7.54 vs. 11.87 pg mg™' (d.w.)). Decrease in
phenolic level was consistent with the pronounced decline
in blue fluorescence intensity (IFy,.), which dropped by
approximately 50% under HBH treatment (1.38 (r.u.)) rela-
tive to the control (2.77 (r.u.)). Moreover, the wavelength
corresponding to the maximum IF,,. emission exhibited
a significant shift from 426.86 nm in control samples to
419.90 nm in HBH-treated coleoptiles, further supporting
alterations in phenolic composition. In contrast, HBH sig-
nificantly enhanced the total soluble carbohydrate content,
which increased by nearly 47% compared with the control
(31.51 vs. 21.40 ug mg™ (d.w.)) (Table 1). This was accom-
panied by an increase in osmotic potential in HBH-treated
coleoptiles (from -0.61 to -1.09 MPa).

Table 1. Changes in total phenolic content (TPC), intensity
emission of blue fluorescence (IFy,.), wavelength at maximum
IFye, total soluble carbohydrates (TSC) and osmotic poten-
tial (Wo) of winter triticale seedlings at BBCH 10 stage under
control conditions (water) and treatment with the PAL inhibi-
tor 4-hydroxybenzoic acid hydrazide (HBH). Mean values+ SE
(n=5 for ¥y, n=7 for IF,,., wavelength, TSC, n = 10 for TPC).
Asterisks indicate significant differences at p<0.05 vs. control
(Student’s t-test) within measured parameters

Parameter Control Inhibitor
TPC (ug mg'(d.w.)) 11.87+0.46  7.54+0.40%
[Fye (r.00) 2.77+0.08 138 % 0.10%
fng(lsﬁgth atmaximum 4y 0 964170 419.90 +0.10%
TSC (ug mg'(d.w.)) 2140+ 1.01  31.51+ 157
¥, (MPa) 061003 -1.09+0.09%




136
8
e 6f
K
ES) %k
(o))
c — —
@ a ——
2
2
o
[0
©° 2t
(@]
Control HBH

Fig. 1. Coleoptile length of winter triticale seedlings at BBCH 10
stage under control conditions (water) and treatment with the PAL
inhibitor 4-hydroxybenzoic acid hydrazide (HBH). Mean values+
SE (n=25). Asterisk marks significant differences at p<0.05 vs.
control, Student’s #-test.

Coleoptile length was significantly reduced under HBH
treatment compared with the control (Fig. 1). Under control
conditions an average coleoptile length exhibited 5.5 cm,
whereas HBH-treated was about 4.3 c¢m indicating that
inhibition of PAL negatively affected early coleoptile elon-
gation of winter triticale seedlings.

The antioxidant potential of coleoptiles (DPPH), roots
(DPPHg), and germinated seeds (DPPHgg) is shown in
Table 2. In coleoptiles, the DPPH. value significantly
decreased from 50.45% in the control to 37.63% in the
presence of the inhibitor. Similarly, roots exhibited a pro-
nounced decline in DPPH; values, from 32.91% in the
control to 18.92% under HBH treatment. Interestingly, in
germinated seeds, the DPPHgg value significantly increased
from 4.54% in the control to 14.37% in the presence of the
inhibitor.

3.2. Biochemical and physiological responses of winter
triticale coleoptiles at the BBCH 11 stage under PAL
inhibition

The application of HBH markedly affected the pig-
ment composition of winter triticale seedlings (Table 3).
Chlorophyll a (Chl a) content was significantly reduced
under PAL inhibition (6.08 pg mg™'(d.w.)) compared to the
control (8.87 pg mg” (d.w.)). Although the decline in chlo-
rophyll b (Chl ) content was not statistically significant
(control: 1.96 ug mg™ (d.w.), inhibitor: 2.33 ug mg™ (d.w.)),
the total chlorophyll content (Chla+b) exhibited a significant
reduction in HBH-treated seedlings (8.03 pg mg'(d.w.)) in
relation to the control (11.21 pg mg'(d.w.)). Furthermore,
carotenoids level (Crts) significantly decreased in response
to PAL inhibition (1.88 pug mg™ (d.w.)) in comparison to
untreated plants (2.52 pg mg™ (d.w.)).

The effect of the PAL inhibitor on the photosynthetic
apparatus activity was evaluated using chlorophyll a fluo-
rescence parameters (Table 4). The maximum quantum
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Table 2. Changes in antioxidant potential in coleoptiles
(DPPH(), roots (DPPHy), and emerging seeds (DPPHgs) of win-
ter triticale seedlings at BBCH 10 stage under control conditions
(water) and treatment with the PAL inhibitor 4-hydroxybenzoic
acid hydrazide (HBH). Mean values+ SE (n=10). Asterisks indi-
cate significant differences at p<0.05 vs. control (Student’s z-test)
within measured parameters

Parameter (%) Control Inhibitor

DPPHc 50.45 + 1.44 37.63 £2.33*
DPPHy 3291 +1.53 18.92 + 1.62*
DPPHgs 4.54+0.52 14.37 +£ 1.29*

Table 3. Changes in content of chlorophyll a (Chl a), chloro-
phyll b (Chl b), chlorophyll a + b (Chl a + b) and carotenoids
(Crts) of winter triticale seedlings at BBCH 11 stage under
control conditions (water) and treatment with the PAL inhibi-
tor 4-hydroxybenzoic acid hydrazide (HBH). Mean values+ SE
(n=7). Asterisks indicate significant differences at p<0.05 vs.
control (Student’s ¢-test) within measured parameters

fs;a:;;ez dw)) Control Inhibitor

Chla 8.87+0.29 6.08 £ 0.37*
Chl b 2.33+0.06 1.96 +0.38
Chl a+b 11.21+0.35 8.03 £ 0.69*
Crts 2.52+0.07 1.88 £0.12*

Table 4. Changes in chlorophyll fluorescence parameters (F,/
F. - quantum yield of PSII, ABS/CS,, - energy absorption by
antennas, PI - overall performance index of PSII photochemis-
try, Ety/CS,, - amount of energy used for the electron transport,
TRo/CS,, - amount of excitation energy trapped in PSII reac-
tion centers, RC/CS,, - number of active reaction centers, DIy/
CS,, - energy amount dissipated from PSII, y, - exciton transfer
efficiency to the electron transport chain, g, - quantum yields
of photoinduced electron transport in PSII reaction center from
Q. to plastoquinone) of winter triticale seedlings at BBCH 11
stage under control conditions (water) and treatment with the PAL
inhibitor 4-hydroxybenzoic acid hydrazide (HBH). Mean values+
SE (n=20). Asterisks indicate significant differences at p<0.05 vs.
control (Student’s #-test) within measured parameters

Parameter Control Inhibitor
F./Fn, 0.815 +0.002 0.768 + 0.007*
ABS/CS,, 3197 £47 2755 £ 96*
TRo/CS,, 2605 + 41 2130 +£91*
Ety/CS,, 1389 + 24 1039 + 49*
RC/CS,, 1040 £ 19 829 + 32*
DIo/CS,, 591.7+73 625.3 +7.0*
PI 1.64 +0.04 1.00 + 0.06*
Yo 0.533 +0.004 0.489 +£0.011*
Pro 0.434 +0.003 0.375 + 0.009*
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Fig. 2. Changes in stomatal conductance (gs) of winter triticale
seedlings at BBCH 11 stage under control conditions (water) and
treatment with the PAL inhibitor 4-hydroxybenzoic acid hydrazide
(HBH). Mean values+ SE (n=7). Asterisk indicates significant
differences at p<0.05 vs. control, Student’s ¢-test.

Fig. 3. The differences in growth dynamics of winter triticale seed-
lings under treatment with the PAL inhibitor, 4-hydroxybenzoic
acid hydrazide (HBH). A — germination stage, B — coleoptiles with
emerging leaf, C — seedlings, D — differences in root development.

yield of PSII (F,/F,,) decreased significantly from 0.815 in
the control to 0.768 in HBH-treated seedlings, indicating
a reduction in the photochemical efficiency of PSII.
Parameters related to leaf cross-section (CS,) also
showed significant declines under inhibitor treatment. Both
energy absorption (ABS/CS,,) and trapped excitation ener-
gy (TRo/CS,,) decreased from 3 197 to 2 755 and from 2 605
to 2 130, respectively, suggesting reduced light-harvesting
and trapping efficiency. Correspondingly, amount of energy
used for the electron transport (Et)/CS,,) decreased from
1389 to 1039, and the number of active reaction centers
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(RC/CS,;) dropped from 1040 to 829, reflecting impaired
PSII photochemistry. The overall performance index (PI)
was also strongly affected, declining from 1.64 to 1.00,
which confirms a general reduction in photosynthetic
performance. Additionally, energy dissipation (DIy/CS,,)
slightly increased from 591.7 to 625.3, indicating enhanced
non-photochemical quenching. Additionally, the exciton
transfer efficiency (o) and the quantum yield of electron
transport (@g,) decreased from 0.533 to 0.489 and from
0.434 to 0.375 + 0.009, respectively, confirming that inhibi-
tor treatment impairs electron flow through PSII (Table 4).

Changes in the photosynthetic apparatus activity were
accompanied by alterations in stomatal conductance (gs)
(Fig. 2). In control seedlings, gs was measured at 196 mmol
(H,0) m” s”', whereas HBH-treated seedlings exhibited
a significantly lower value of 149 mmol (H,0) m”s™.

Figure 3 illustrates the differences in growth dynam-
ics of winter triticale seedlings under treatment with the
PAL inhibitor, 4-hydroxybenzoic acid hydrazide (HBH).
Distinct differences can be seen between the control and
seedlings treated with HBH, which caused inhibition of
both shoot and root growth.

4. DISCUSSION

The significant reduction in total phenolic content
(TPC) and blue fluorescence intensity (IFy,.) (Table 1) in
HBH-treated coleoptiles clearly indicates effective sup-
pression of the phenylpropanoid pathway through PAL
inhibition. Bhuiyan et al. (2009) showed that HBH inhibi-
tor downregulates synthesis of phenolic acids and lignin
precursors, ultimately affecting cell wall composition and
stress-related metabolic responses in wheat plants. Similar
results were also obtained with the use of other inhibitors,
such as 2-aminoindan-2-phosphonic acid (AIP) (Mauch-
Mani and Slusarenko, 1996; Peiser et al., 1998; Solecka and
Kacperska, 2003; Klejdus et al., 2013), a-aminooxyacetic
acid (AOA) (Hammerschmidt, 1984; Carver et al., 1991;
Peiser et al., 1998), a-aminooxy-f-phenylpropionic acid
(AOPP) (Moerschbacher et al, 1990; Carver et al,
1992; Peiser et al., 1998; Taheri and Tarighi, 2011), and
O-benzylhydroxylamine (OBHA) (Hoagland, 1985;
Feduraev et al., 2021). The observed shift in the wave-
length at maximum fluorescence emission further suggests
qualitative alterations in the phenolic profile, likely reflect-
ing reduced accumulation of phenylpropanoids, which are
UV-absorbing compounds in plant tissues (Cerovic et al.,
2002).

In parallel, the pronounced increase in total soluble car-
bohydrates (TSC) (Table 1) accompanied by an increase
in osmotic potential (¥) (Table 1) suggests a reallocation
of carbon toward carbohydrate metabolism and osmotic
regulation (Hura et al, 2016). Enhanced carbohydrate
accumulation under reduced phenolic biosynthesis has been
documented as a metabolic trade-off, in which carbon is less
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utilized in secondary pathways to support osmotic adjust-
ment and energy supply during plant development (Caretto
et al., 2015). However, despite carbohydrate accumulation,
the overall reduction in phenolic compound levels may
lead to a decrease the seedlings’ defence capacity, poten-
tially explaining the inhibitory effects of HBH on coleoptile
and seedlings elongation (Fig. 1A-B), chlorophyll content
(Table 3), the photosynthetic apparatus activity (Table 4)
and stomata conductance (Fig. 2). Modulation of PAL
activity likely triggers a cascade of metabolic changes, as
inhibition of a key enzyme in the phenylpropanoid pathway
can affect multiple interconnected pathways, including pri-
mary and secondary metabolism (Rohde e? al., 2004; Urban
and Hura, 2023). The preferential accumulation of soluble
carbohydrates in coleoptiles may reflect both altered growth
dynamics, as the developing shoot reallocates resources
under modified metabolic conditions, and stress response
mechanisms induced by inhibitor (Planchais et al., 2000).

In our opinion, the observed increase in soluble car-
bohydrate content, suggests that sugars are preferentially
accumulated in coleoptiles rather than utilized for growth.
Moreover, at early developmental stages, coleoptiles and
seedlings can still utilize seed reserves, including carbo-
hydrates (Aguirre et al., 2018) and phenolic compounds
(Xu et al., 2020). Therefore, at BBCH 10 and BBCH 11
stages the inhibition of PAL is not the only factor that
may directly affect phenolic content and indirectly influ-
ence the level of soluble carbohydrates. Cereal grains are
arich in phenolic compounds such as benzoic and cinnamic
acids, anthocyanidins, quinones, flavonols, chalcones, fla-
vonones, and amino-phenols (Liu, 2007; Okarter and Liu,
2010). Janczak-Pienigzek et al. (2023) demonstrated the
presence of phenolic compounds in triticale seeds, includ-
ing p-hydroxybenzoic acid in flour, syringic acid in whole
grain and bran, and ferulic acid and sinapic acid in bran.

It should be underlined, that the observed responses
may also be partially linked to the direct toxic effects of
the inhibitor on the photosynthetic apparatus activity, pho-
tosynthetic pigments and stomata conductance of triticale
seedlings (Xiao et al., 2020). The values of chlorophyll
a fluorescence parameters, including F./F,, ABS/CS,,, TR/
CS,,, Et/CS,,, DIo/CS,,, RC/CS,, PI, vo, and g, signifi-
cantly changed relative to the control, indicating reduced
PSII photochemical efficiency (Table 4). The simultaneous
decrease in values of F,/F,,, overall performance index of
PSII photochemistry (PI), and stomata conductance (gs)
(Fig. 2), indicates that HBH impairs both diffusive CO,
supply into the mesophyll and the photosynthetic apparatus
activity. These results are in agreement with studies demon-
strating that toxic/chemical stress can negatively influence
photosynthesis (Mano et al., 2009) and PS II activity (Kalaji
et al., 2016). Additionally, organic compounds, especially
those that do not participate in the natural plant metabo-
lism, may exert phytotoxic effects (Tomar et al., 2019).
Such compounds can disturb photosynthesis by decreasing
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chlorophyll biosynthesis (Singh and Prasad, 2018), dam-
aging photosystem II (Kummerova et al., 2008), altering
electron transport (Zeb et al., 2022), or inducing oxidative
stress (Liu et al., 2009).

The DPPH-based antioxidant potential varied con-
siderably among tissues in response to HBH treatment
indicating a substantial reduction in radical-scavenging
capacity (Table 2). In coleoptiles antioxidant potential
(DPPH() decreased from 50.45% (control) to 37.63%
(HBH), and in roots (DPPHg) dropped from 32.91 to
18.92%. Such declines are often associated with decreased
level of phenolic compounds, which are key contribu-
tors to non-enzymatic antioxidants in plants (Fadda et al.,
2014; Tsimogiannis ef al., 2017). In contrast, the observed
increase in the antioxidant potential of germinating seeds
(DPPHgg) resulted from a higher accumulation of HBH
in seeds compared with roots and coleoptiles. One possi-
ble explanation may be the increased accumulation of the
inhibitor in germinating seeds. HBH itself may contribute
to the antioxidant capacity due to its chemical structure,
which includes a benzene ring and conjugated double bonds
capable of stabilizing reactive oxygen species (Urban and
Hura, 2023). Miyazawa et al. (1998) showed that the acti-
vity of cell wall bound peroxidase in tomato hypocotyls
was enhanced by treatment of roots with 4-hydroxyben-
zoic acid hydrazide. Moreover, the antioxidant activity of
4-hydroxybenzhydrazide derivatives has been demonstrat-
ed, which is consistent with their broad pharmacological
actions and potential relevance in mitigating oxidative
stress-related processes (Mateev ef al., 2025).

In summary, the present study demonstrates that HBH
treatment exerts negative effects on photosynthetic appara-
tus activity, antioxidant capacity, and stomatal conductance.
Chlorophyll a fluorescence analysis revealed pronounced
declines in PSII photochemical efficiency, energy absorp-
tion, electron transport, and the number of active reaction
centers, ultimately resulting in a significant reduction in
seedling growth.

5. CONCLUSIONS

Our study clearly indicates that phenylalanine ammo-
nia-lyase (PAL) activity is essential for the early growth
and development of winter triticale. The application of
4-hydroxybenzoic acid hydrazide (HBH) caused the
expected metabolic effect, namely a reduction in phenolic
compound content accompanied by an increase in soluble
carbohydrate levels. However, it cannot be unequivocally
concluded whether this response results from altered carbon
allocation under inhibited phenylpropanoid metabolism or
from seed reserve mobilization during early developmental
stage of winter triticale.

The results obtained in this study indicate a predomi-
nantly negative impact of 4-hydroxybenzoic acid hydrazide
(HBH) on germination and early growth of winter triti-
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cale seedlings, manifested by reduced growth dynamics
and limited photosynthetic activity. The findings suggest
a toxic effect of the inhibitor at the applied concentration
of 107 M, which may be associated with the low biomass
and restricted metabolism of heterotrophic seedlings at
very early developmental stage. Therefore, future research
should focus on the autotrophic phase of seedling growth,
when a fully active metabolism is established, in order
to better evaluate the long-term physiological/molecular
consequences of HBH treatment. Moreover, subsequent
studies should be extended to gas exchange measurements,
analyses of non-stomatal limitations of photosynthesis, as
well as assessments of yield-related traits.
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