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Ab s t r a c t.This study aimed to correlate the physicochemi-
cal attributes of rice grains using non-destructive techniques 
combined with machine learning algorithms. Samples of white, 
black, red, and parboiled rice were analyzed using hyperspectral 
spectroscopy (350-2 500 nm) and subjected to linear regression 
(LR), random forest (RF), gradient boosting (GB), support vec-
tor machine (SVM), convolutional neural networks (CNN), and 
recurrent neural networks (RNN) prediction. Spectral and physico- 
chemical data were examined through multivariate analysis 
(PCA) and cross-validation using performance metrics such as R, 
R², MAE, and RMSE. The results indicated that SVM, RF, and 
GB outperformed the other algorithms, showing higher accuracy 
and lower variability in the prediction, SVM reached R = 0.952 
and R² = 0.904, with MAE = 0.409 and RMSE = 0.582, followed 
closely by RF with R = 0.950 and MAE = 0.416, and GB with 
R = 0.947 and MAE = 0.431. Black rice stood out for its high 
protein, lipid, and ash contents. Parboiled rice showed higher 
fiber content, and white rice was notable for its elevated starch 
content. Hyperspectral spectroscopy proved effective in differen-
tiating rice types, enabling the identification of relevant spectral 
bands for optimized sensors. Overall, integrating non-destructive 
technologies with machine learning shows strong potential for 
industrial applications.

K e y w o r d s: Oryza sativa L., NIR spectroscopy, shallow 
learning, deep learning, non-destructive methods

1. INTRODUCTION

Rice (Oryza sativa L.) plays an essential role in human 
nutrition, serving as a staple food for billions of people 
across different regions of the world, not only as an ener-
gy source but also as a functional food with nutritionally 
relevant compounds (Brotman et al., 2021). Beyond its 
nutritional function, this cereal is deeply rooted in cultural, 
social, and economic contexts, assuming multiple forms of 
consumption such as white, red, black, and parboiled rice. 
Each of these variants presents specific characteristics that 
determine preferences for grain type, viscosity, and aroma, 
which can vary according to regions and cultures, thereby 
influencing breeding and marketing strategies (Chen et al., 
2021). The diversity among rice types is directly related to 
differences in the chemical composition, such as anthocy-
anin and resistant starch content (Pereira et al., 2023).

With the growing demand for nutritious and high-quali-
ty foods, there has been an increased search for methods 
capable of rapidly and non-destructively assessing these 
properties. In this context, spectroscopy covering visible 
light and the short-wave infrared range (VIS/SWIR) has 
gained prominence as an efficient tool for the compositional 
analysis of grains (Lin et al., 2021). VIS/SWIR spectrosco-
py has demonstrated the ability to detect physicochemical 
attributes in grains with high precision, representing an 
alternative to conventional destructive analyses (Barnaby 
et al., 2020). When combined with machine learning and 
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deep learning algorithms, this approach enhances the inter-
pretability of spectral data and enables robust predictive 
models for physicochemical attributes such as protein, 
fiber, moisture, lipid, ash, and starch contents (Carneiro et 
al., 2023). Deep learning-based models have been progres-
sively employed in the prediction of rice composition with 
good levels of accuracy (Razavi et al., 2024).

Despite the significant advancement of spectroscopic 
techniques in other agricultural crops such as wheat, corn, 
and soybean, the consolidated application of these tools in 
rice still requires further investigation and methodological 
standardization (Jiang et al., 2023; Teodoro et al., 2021). 
This gap becomes evident when considering the compo-
sitional variability among different types of white, black, 
red, and parboiled rice, which demand specific analysis 
and predictive modeling strategies (Chen et al., 2021). 
Moreover, the development of robust models that inte-
grate these spectral data with physicochemical attributes 
still faces challenges, especially in contexts requiring high 
accuracy and interoperability across different datasets 
(Assadzadeh et al., 2020; Carneiro et al., 2023). In this 
scenario, the combination of VIS-SWIR spectroscopy and 
machine learning, comprising shallow and/or deep learning 
algorithms, emerges as a new alternative. However, fur-
ther investigation is needed to ensure its full potential in 
post-harvest and quality control environments. Given the 
growing demand for faster, more reliable, and non-destruc-
tive analytical methods, this study aimed to investigate the 
potential of VIS and SWIR spectroscopy, combined with 
shallow and deep learning algorithms, for differentiating 
various types of rice. The spectral signatures and their 
relationships with physicochemical attributes and physical 
defects of the grains were analyzed to develop predictive 
models supporting classification and quality control.

The purpose of this study was to provide more effi-
cient and non-destructive tools that can be applied from 
post-harvest stages through industrial processing, thereby 
adding value to the production chain. The objective was 
to correlate physicochemical attributes of milled rice using 
non-destructive techniques coupled with machine learn-
ing algorithms. Specifically, the aims were: i) to spectrally 
characterize white, black, red, and parboiled milled rice 

using VIS/SWIR spectroscopy; ii) to correlate the physi-
cochemical attributes of the grains with their respective 
spectral signatures; and iii) to develop and evaluate predic-
tive models based on shallow and deep learning algorithms 
in a non-destructive approach.

2. MATERIAL AND METHODS

2.1. Sample collection and preparation

The milled rice samples were obtained immediately 
after milling (without storage) at a processing facility locat-
ed in the municipality of Cachoeira do Sul, State of Rio 
Grande do Sul, Brazil, at latitude 30° 0’ 45’’ S, longitude 
52° 55’ 11’’ W, and an altitude of 73 m. Figure 1 presents 
the samples of white, parboiled, red, and black rice.

The samples were separated according to Normative 
Instruction No. 6 of February 16, 2009, based on the tech-
nical regulations for rice (Ministry of Agriculture, 2009). 
Rice samples were composed according to the maximum 
allowable defect limits for Type 1, based on Table 1 (Brazil. 
Normative Instruction 2/2012. Ministry of Agriculture, 
2012). Each sample consisted of 2 kg of rice, subsequently 
divided into 100 subsamples of 20 g each. The maximum 
allowable tolerance for non-parboiled rice grains is 0.30% 
for all types; any product exceeding this limit is classified 
as out of grade.

Ta b l e  1. Maximum tolerance limits expressed (%)

Rice Type
Foreign 

matter and 
impurities

Moldy
and

burning

Pitted or
stained

Plastered
green Striped Yellow

Total 
broken and 

quirera

White 1 1 0.2 0.5 1.5 1.75 0.3 14

Parboiled 1 1 0.1 0.15 1.5 1.75 0.3 14

Red 1 1 0.2 0.5 1.5 1.75 0.3 14

Black 1 1 0.2 0.5 1.5 1.75 0.3 14

Fig. 1. Samples of milled rice: white rice (a), parboiled rice (b), 
red rice (c), and black rice (d).
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2.2. Near-infrared spectroscopy (NIR)

The determination of the proximate composition-com-
prising crude protein (CP), moisture content (MC), ether 
extract (EE), crude fiber (CF), ash (A), and starch (S) 
was performed using near-infrared spectroscopy (NIR) 
with high optical precision (Metrohm DS2500 spectrom-
eter, Herisau, Switzerland). All analyses were carried out 
in triplicate. Homogenized samples were placed in the 
sampling capsule for scanning. The analysis involved 
illuminating each sample with radiation at specific wave-
lengths within the near-infrared region and measuring the 
difference between the energy emitted by the spectroscope 
and that reflected by the sample to the detector. This diffe- 
rence was recorded across several bands, generating a spec- 
trum for each sample. Spectral data were collected in 
reflectance mode, covering a range from 400 to 2 500 nm 
(Barnes et al., 1989). Outputs were compared with a cali-
bration set (Horwitz, 1970). The values obtained from the 
DS2500 represented the actual physicochemical results for 
each sample and were used as the reference data in this 
study. These laboratory-based measurements were later 
paired with the hyperspectral signatures acquired using the 
FieldSpec 4 system (350-2 500 nm) to build the regression 
models. Each physicochemical attribute was treated inde-
pendently as a separate regression target and was not used 
to classify the rice types or to define quality thresholds.

2.3. Spectral variables

Spectral analysis was carried out using a spectroradio- 
meter (FieldSpec 4 Jr, Analytical Spectral Devices, Boulder, 
USA) fitted with a muglight. The equipment measures spec-
tra in the 350-2  500 nm range. The reading interval is 1.4 nm 
from 350-1  050 and 2 nm from 1 000-2 500 nm. The spec-
tral resolution is 3 nm in the 350-700 nm range and 30 nm 
in the 1  400-2  100 nm range. One advantage of this method 
is the preservation of the samples, with minimal influence 
from environmental factors such as ambient light, thus 
reducing errors associated with diffuse illumination.

Each spectral reading was performed three times per 
sample, and the data used for analysis were based on the 
mean of these three readings. A white reference plate, com-
posed of barium sulfate and reflecting 100% of incident 

light, was used as a standard. The system stored spectral 
data from this plate, which were later used to determine 
the reflectance factor for each sample by multiplying it by 
the readings obtained for each case. For data analysis, the 
sensor was connected to a computer equipped with RS³ 
software for recording measurements, allowing subsequent 
importation by ViewSpectroPro for data extraction in .txt 
files and facilitating further statistical analysis.

2.4. Multivariate, prediction, and statistical analyses

For predictive modeling, machine learning analyses 
were primarily conducted in the Python software using the 
scikit-learn, pandas, numpy, matplotlib, seaborn, and ten-
sorflow libraries. Initially, Pearson correlation was applied 
among the physicochemical variables (moisture, pro-
tein, lipids, fiber, starch, and ash) to explore relationships 
between nutritional attributes. Subsequently, Principal 
Component Analysis (PCA) was performed separately 
on the spectral data (350-2 500 nm) and physicochemical 
variables to visualize clustering patterns among the diffe- 
rent rice types.

Machine leaning analysis consisted of the following 
models: i) shallow algorithms – random forest (RF), gradi-
ent boosting (GB), support vector machine (SVM), and the 
traditional multiple linear regression (LR) model (Table 2); 
and ii) deep learning models – Convolutional Neural 
Networks (CNN) and Recurrent Neural Networks (RNN), 
with architectures consisting of Conv1D and LSTM layers, 
respectively (Table 3).

Predictions were carried out individually for each phy- 
sicochemical attribute (output variables), while spectral 
data were used as input variables. Spectral data were pre-
processed by normalization using StandardScaler. Model 
evaluation was conducted through 10-fold cross-valida-
tion, with 10 repetitions applied to traditional models (RF, 
GB, SVM, LR) to ensure greater statistical robustness. For 
CNN and RNN models, one-dimensional tensors were used 
with architectures comprising Conv1D (CNN) and LSTM 
(RNN) layers. Regularization was performed by applying 
Dropout (rate of 0.5) and EarlyStopping set with a patience 

Ta b l e  2. List of machine learning models used in rice quality classification

Acronym Machine learning model Reference

RF Random forest (Belgiu and Drăguţ, 2016)

SVM Support vector machine (Cortes and Vapnik, 1995)

GB Gradient boosting (Friedman, 2001)

LR Multiple linear regression (Draper and Smith, 1998)

CNN Convolutional neural networks (Lecun et al., 2002)

RNN Recurrent neural networks (Hochreiter and Schmidhuber, 1997)



M.V. ARF et al.162

of 10 epochs, monitoring the validation loss (val_loss) met-
ric and restoring the best weights at the end of training. 
Batch size adopted for CNN and RNN was equal to 32.

The correlation coefficient (R), coefficient of determi-
nation (R²), mean absolute error (MAE), and root mean 
square error (RMSE) were used as model performance 
metrics. Residual analyses (observed vs. predicted values) 
and graphical visualization via boxplots and histograms 
were also performed. Furthermore, variable importance 
analysis was performed using the RF model for each attri-
bute aiming at identifying the most relevant spectral bands. 
Model performance metrics were represented graphically 
by boxplots.

The different models were compared based on the eval-
uated metrics. For this purpose, an analysis of variance 
(ANOVA) was applied. When the model effect was sig-
nificant (F-test, p ≤ 0.05), the means of the performance 

metrics assessed for each model were grouped by the Scott-
Knott test at 5% significance level using Sisvar software 
v.5.6 (Ferreira, 2019).

The choice of regression algorithms was intentional and 
grounded in what is already well established in the hyper-
spectral modeling literature. Shallow learning models such 
as SVM, RF, and GB are widely used because they deal 
well with high-dimensional and collinear data, which fits 
the characteristics of full-spectrum rice measurements. 
Deep learning models (CNN and RNN) were also includ-
ed because they can capture local and sequential patterns 
that sometimes appear in spectral signatures. Together, 
these approaches offer complementary ways of modeling 
the physicochemical attributes. The hyperparameters were 
defined based on recommendations from previous studies 
and on initial tests performed to reduce overfitting and keep 
the training behavior stable.

Ta b l e  3. Hyperparameters used for deep learning models

Model Hiperparameter Valor

Support vector machine (SVM) Kernel rbf

C 10

Epsilon 0.2

Gamma Automatic (rbf)

Random forest (RF) n_estimators 100

max_depth 15

Bootstrap True

Random State 42

Gradient boosting (GB) n_estimators 100

learning_rate 0.1

max_depth 4

Subsample 1.0 (standard)

Random State 42

Linear regression (LR) Solver auto (standard)

Normalization Not applicable

Intercept True

Model Layer type Number
of layers Neurons Dropout Optimizer Epochs Batch size

CNN Conv1D + MaxPooling + 
Dense 4 64 and 128 0.5 Adam 50 32

RNN LSTM + Dense 4 64 and 128 0.5 Adam 50 32
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3. RESULTS AND DISCUSSION
3.1. Physicochemical characteristics and spectral signatures 
by rice type

Table 4 shows the analysis of variance (ANOVA) 
applied to the main physicochemical characteristics of four 
rice types: white, parboiled, red, and black. The analyzed 
physicochemical attributes were moisture, starch, protein, 
fiber, ash, and lipids. All differences among the rice types 
were statistically significant, with Pr>Fc = 0.0000 for all 
variables evaluated.

These findings are consistent with previous studies 
that highlight black rice as the type with the highest nutri-
tional value among the varieties analyzed (Banerjee et al., 
2023; Khatun and Mollah, 2024). Black rice exhibits high-
er levels of protein, lipids, and phenolic compounds and is 
frequently classified as a functional food (Zhao et al., 2021; 
Arashloo and Witter, 2022; Das et al., 2023). This distinc-
tive composition justifies the elevated contents observed in 
this study, reflecting the presence of bioactive components 
and minerals concentrated in the hull and pericarp of the 
grain (Banerjee et al., 2023).

Regarding parboiled rice, the high fiber content iden-
tified in this study is consistent with findings from the 
literature (Akhter et al., 2023). Moreover, the parboiling 
process promotes the migration of nutrients from the husk 
to the endosperm (Kalita et al., 2021), increasing the con-
centration of insoluble fibers. However, this process can 
also result in the loss of some proteins (Nirmagustina and 
Handayani, 2023) and lipids (Mudgal and Singh, 2024), 
which may explain the lower levels of these components 
found in the parboiled samples evaluated here.

White rice, in turn, exhibited the highest starch content 
(Yoviono et al., 2022). This type is primarily composed of 
Starch stored in the endosperm, which constitutes the bulk 
of the grain. The concentration, structure, and distribution 
of starch in the endosperm are influenced by genetic, meta-
bolic, and environmental factors (Yang et al., 2020), which 
in turn affect rice quality, digestibility, and grain develop-
ment (Cao et al., 2022). This characteristic renders white 

rice less nutritious compared to other types (Hashimoto et 
al., 2022; Zhang et al., 2023), yet more palatable and faster 
to cook, accounting for its popularity in human consump-
tion (Gondal et al., 2021; Zhao et al., 2021).

Red rice exhibited an intermediate composition for 
seve-ral characteristics, but stood out negatively for its fiber 
content, which was the lowest among the types evaluated. 
These results diverge from those found by Abeysiriwardena 
and Gunasekara (2020) and Gogoi et al. (2025), who high-
light its high dietary fiber content. Although red rice is 
recognized for its anthocyanin-rich coloration, its macronu-
trient values can vary widely depending on genetic variety 
and agricultural management practices (Gogoi et al., 2025).

These differences highlight the distinct functional and 
nutritional potential among rice types and justify the grow-
ing interest in using spectroscopy and predictive modeling 
as tools for rapid and non-destructive differentiation of 
nutritional quality attributes (Liu et al., 2020; Johnson et 
al., 2021; Xu et al., 2025). The coefficients of variation 
(CV%) ranged between 7.26 and 13.39%, all within accept-
able limits, indicating good data homogeneity.

Figure 2 presents boxplots visually depicting the dis-
tribution of the numerical values for the physicochemical 
characteristics across the four rice types. Marked differen 
ces between the groups are evident, graphically confirming 
the ANOVA results. Asymmetric distributions are observed 
for some characteristics, such as fiber in parboiled rice, 
indicating possible variability in the material. Outlier valu-
es generally appear discretely and do not compromise the 
analysis or visualization, allowing it to be observed that 
black rice distinctly stands out in variables such as protein, 
lipids, and ash.

Figure 2, in addition to Table 4, highlights the clear 
chemical differentiation among the rice types, again empha-
sizing black rice for its higher values in protein and lipids, 
and parboiled rice for its high fiber content. These results 
reinforce the importance of classifying rice according to its 
nutritional properties.

Ta b l e  4. Analysis of variance of the physicochemical characteristics of different types of rice

Processes
Moisture Starch Protein Lipids Fiber Ashes

(%)

White rice 11.12 b 73.39 a 8.04 b 1.54 c 2.10 b 1.12 c

Parboiled rice 11.19 b 70.11 b 4.19 d 1.44 d 2.80 a 1.23 b

Red rice 13.16 a 66.40 c 6.88 c 1.94 b 0.69 d 1,02 d

Black rice 13.35 a 57.06 d 9.08 a 2.04 a 1.18 c 1,43 a

Pr>Fc 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000*

CV (%) 8.37 7.26 10.38 13.39 10.63 8.67

General average 12.21 66.74 7.05 1.74 1.69 1.2

The asterisk (*) was explained as indicating statistical significance at p ≤ 0.05 by the F test (ANOVA). 
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The PCA for the physicochemical characteristics (Fig. 3) 
considers variables such as moisture, protein, lipids, fiber, 
starch, and ash, which are laboratory-derived attributes of 
the grains. The analysis of the plot reveals partial clustering 
among the rice types, where black rice tends to be distinctly 
separated from the others, possibly due to its higher lipid 
and protein contents, as previously shown in Fig. 2. Red 
and white rice exhibit greater overlap, indicating that, based 
solely on physicochemical variables, there is greater simi-
larity between these two types. This supports the findings 
shown by Pereira et al. (2023), who reported that tradi-

tional physicochemical characteristics, though relevant, 
are not always sufficient to clearly distinguish rice variet-
ies with intermediate morphology and composition. While 
good dispersion among the samples is noted-suggesting 
a reasonable degree of differentiation – it is not sufficient-
ly strong, especially when compared to the spectral data, 
to guarantee clear separation of all rice types. Although 
useful, physicochemical PCA demonstrates limitations in 
distinguishing rice types, particularly those more similar in 
laboratory attributes (Gao et al., 2024; Hazrul et al., 2025).

Fig. 2. Boxplots of physicochemical characteristics for red, white, black, and parboiled rice types.
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In contrast, the PCA for Spectral Characteristics, which 
considers spectral bands from 350 to 2 500 nm, shows 
a markedly greater discrimination between groups. In this 
PCA, unlike the physicochemical one, there is a clear-
er separation among the rice types. Each group – black, 
red, white, and parboiled rice – tends to cluster in distinct 
regions of the plot. This indicates that spectral signatures 
capture specific structural and compositional features of 
each type, which are often imperceptible in laboratory 
analyses. Thus, spectral PCA provides better discrimina-
tion among rice types, demonstrating that spectral data are 
more sensitive to grain composition than traditional phys-
icochemical data. This sensitivity of spectral data to grain 
composition was also reported by Kang et al. (2024) when 
discriminating among other rice varieties.

This analysis may be crucial in the post-harvest con-
text, where decisions impact quality preservation, market 
value, and operational efficiency (Mahmood et al., 2024; 
Müller et al., 2022). Therefore, PCA not only contributes 
to subsequent predictive models but also reinforces the role 
of non-destructive technologies as screening and real-time 
quality control tools in post-harvest processes.

3.2. Spectral signatures of rice types

Figure 4 shows the mean spectral reflectance curves 
for black, red, white, and parboiled rice, covering the 
spectral range from 350 to 2 500 nm. The curves exhibit 
well-defined patterns among the different rice types, partic-
ularly in the VIS (350-700 nm) and SWIR (700-2 500 nm) 
regions, confirming the capability of spectroscopy to differ-
entiate the groups.

Regarding black rice, as shown in Fig. 4, lower reflec-
tance values are observed throughout the entire spectrum, 
especially in the visible region. The visible color of black 
rice results from light reflected off the bran layer, which 
is rich in anthocyanins; thus, the higher the anthocyanin 
concentration, the darker and more intense the appearance. 
Darker black rice grains contain higher concentrations of 
these beneficial compounds compared to lighter or white 
grains (Theiventhiran et al., 2020; Brunet-Loredo et al., 
2023; Borah et al., 2025). White rice, in turn, exhibits 
higher overall reflectance, particularly in the VIS and tran-
sition regions with the SWIR, which is expected due to its 
lighter coloration (García-Salcedo et al., 2023; Aekram 

Fig. 3. Principal component analysis (pca) of spectral data collected from white, red, black, and parboiled rice types.

Fig. 4. Mean spectral signatures of black, red, white, and parboiled rice types.
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et al., 2025). Red and parboiled rice occupy intermediate 
positions, presenting relatively similar signatures, though 
subtle differences are noticeable in specific regions, such 
as between 1 100-1 400 nm and 1 900-2 100 nm. This visu-
alization reinforces that spectral signatures are unique to 
each rice type, reflecting their distinct spectral and structur-
al characteristics.

These patterns support the use of machine learning 
models and spectral analysis for the prediction of nutrition-
al attributes. Such findings are particularly relevant in the 
post-harvest context, as they enable the rapid and non-de-
structive screening of rice lots, optimizing classification 
processes and the commercial targeting of grains. The figure 

also provides visual evidence complementary to Fig. 1, 
emphasizing that rice types exhibit distinct signatures, thus 
enabling their identification.

3.3. Evaluation of shallow and deep learning models

As presented in Fig. 5, the shallow learning models 
SVM, RF, and GB consistently formed the best-perform-
ing group in almost all physicochemical attributes. These 
models reached the highest R and R² values and the lowest 
MAE and RMSE, remaining statistically similar in the 
ANOVA and Scott-Knott tests shown in Tables 5-10. For 
example, in the prediction of protein content in Fig. 5e, 
SVM reached R = 0.952 and R² = 0.904, followed closely 
by RF and GB with equally high accuracy.

Fig. 5. Boxplots of R, R², MAE, and RMSE for all models for each rice attribute: a) lipids, b) starch, c) moisture, d) ash, e) protein, 
f) fiber.
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Ta b l e  5. Analysis of variance of machine learning models for the different types of rice in protein prediction

Model R R2 MAE RMSE
LR 0.826970 a 0.584926 a 0.964798 a 1.212073 a
RNN 0.875092 b 0.760400 b 0.679102 c 0.911554 b
CNN 0.917549 c 0.719705 b 0.756813 b 0.956924 b
GB 0.946986 d 0.894261 c 0.431075 d 0.611450 c
RF 0.949667 d 0.899362 c 0.416296 d 0.597104 c
SVM 0.952401 d 0.903906 c 0.409373 d 0.581563 c
Prob>F 0.0000* 0.0000* 0.0000* 0.0000*
CV (%) = 2.82 8.58 13.83 14.06

Overall mean 0.9114440 0.7937598 0.6095761 0.8117780

*Explanation as in Table 4.

Ta b l e  6. Analysis of variance of machine learning models for the different types of rice in starch prediction

Model R R2 MAE RMSE
RNN 0.833538 a 0.677346 a 2.585056 d 3.468162 d
LR 0.913455 b 0.808589 a 2.151020 c 2.671538 c
CNN 0.977529 c 0.947339 c 1.088146 b 1.394123 b
GB 0.986908 c 0.973679 d 0.766993 a 0.984199 a 
RF 0.987449 c 0.974739 d 0.748048 a 0.966918 a
SVM 0.987520 c 0.974626 d 0.761022 a 0.972568 a
Prob>F 0.0000* 0.0000* 0.0000* 0.0000*
CV (%) = 1.35 2.75 8.97 7.96

Overall mean 0.9477333 0.8927196 1.3500474 1.7429178

*Explanation as in Table 4.

Ta b l e  7. Analysis of variance of machine learning models for the different types of rice in moisture prediction

Model R R2 MAE RMSE
LR 0.761479 a  0.376972 b 0.740377 b 0.933110 b
CNN 0.850031 b -0.232026 a 0.912414 b 1.122891 b
RNN 0.927148 c  0.852417 c 0.280969 a 0.452444 a
GB 0.935030 c  0.872243 c 0.229157 a 0.418233 a
RF 0.941759 c  0.884839 c 0.223402 a 0.397731 a
SVM 0.945649 c  0.889280 c 0.199913 a 0.388168 a
Prob>F 0.0000* 0.0000* 0.0000* 0.0000*
CV (%) = 2.59 97.80 60.45 45.55

Overall mean 0.8935161 0.6072874 0.4310389 0.6187627

*Explanation as in Table 4.
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Ta b l e  8. Analysis of variance of machine learning models for the different types of rice in fiber prediction

Model R R2 MAE RMSE
LR 0.912111 a 0.806076 a 0.284225 b 0.362201 b
RNN 0.944472 b 0.890028 b 0.206893 c 0.271541 c
CNN 0.954765 c 0.704363 c 0.379771 a 0.442052 a
GB 0.974320 d 0.948111 d 0.121865 d 0.187390 d
RF 0.976409 d 0.952487 d 0.120353 d 0.179621 d
SVM 0.979788 d 0.958903 d 0.125506 d 0.165917 d
Prob>F 0.0000* 0.0000* 0.0000* 0.0000*
CV (%) = 0.87 5.24 13.35 12.34

Overall mean 0.9569776  0.8766614  0.2064355  0.2681203

*Explanation as in Table 4.

Ta b l e  9. Analysis of variance of machine learning models for the different types of rice in ash prediction

Model R R2 MAE RMSE
RNN 0.479685 a 0.224316 a 0.108010 b 0.141589 b
LR 0.680372 b 0.111755 b 0.118993 b 0.151002 b
SVM 0.831289 c 0.685680 d 0.072255 a 0.090049 a
CNN 0.845071 c 0.511615 c 0.115809 b 0.137690 b
GB 0.891771 d 0.791237 e 0.054818 a 0.073521 a
RF 0.894952 d 0.797437 e 0.054389 a 0.072392 a
Prob>F 0.0000* 0.0000* 0.0000* 0.0000*
CV (%) = 4.44 12.69 39.03 30.43

Overall mean 0.7705233 0.5203401 0.0873789 0.1110405

*Explanation as in Table 4.

Ta b l e  10.  Analysis of variance of machine learning models for the different types of rice in the prediction of lipids

Model R R2 MAE RMSE
LR 0.498860 a -0.651551 a 0.325620 c 0.410776 c
RNN 0.794359 b  0.628090 c 0.150674 a 0.195300 a
GB 0.799374 b  0.632075 c 0.153244 a 0.194911 a
RF 0.801374 b  0.636410 c 0.150537 a 0.193632 a
CNN 0.809633 b  0.430318 b 0.226324 b 0.272005 b
SVM 0.810526 b  0.650851 0.150325 a 0.189891 a
Prob>F 0.0000* 0.0000* 0.0000* 0.0000*
CV (%) = 4.01 27.83 20.49 16.21

Overall mean 0.7523545 0.3876988 0.1927873 0.2427526

*Explanation as in Table 4.
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The overall pattern was stable for starch, moisture, and 
fiber in Fig. 5b, 5c, and 5f, reinforcing the robustness of 
shallow learning approaches for this hyperspectral data-
set. Two exceptions were observed. In the lipid prediction 
shown in Fig. 5a, RNN presented performance like SVM, 
RF, and GB, joining the same statistical group. For ash in 
Fig. 5d, the separation of statistical groups differed slightly 
from the other attributes, although SVM, RF, and GB still 
presented the best absolute accuracy.

In general, the deep learning models CNN and RNN 
showed greater variability and lower predictive stability 
compared to shallow models, which were expected to be 
given the moderate size of the dataset. Overall, the shallow 
algorithms presented the most consistent and reliable per-
formance across all rice attributes.

This behavior reinforces recent findings in the scientific 
literature that highlight the robustness of models like SVM 
and RF for regression tasks with hyperspectral data (Feyisa 
et al., 2020; Liu et al., 2022; Tunca et al., 2023), especially 
in contexts involving moderate-sized datasets without sig-
nificant temporal variation (Li et al., 2023; Nagy and Neff 
2024). This is partly due to the ability of these algorithms to 
capture nonlinear relationships in the data without depend-
ing on complex adjustments, such as deep hidden layers 
or extended training sequences. In addition, the GB model 
proved to be a relevant tool for predicting physicochemical 
properties in maize (Zheng et al., 2024; Zhao et al., 2025) 
and soybean (Huber et al., 2022; Li et al., 2023) using com-
plex spectroscopic data – findings that were also replicated 
in this study.

Deep learning models, although promising, demonstrat-
ed greater variability across folds and were more susceptible 
to overfitting or required finer hyperparameter tuning. For 
instance, the CNN exhibited inferior performance across 
almost all analyzed variables, likely due to its limited abili-
ty to capture the sequential dependencies present in spectral 
data. The RNN performed slightly better, as it is more suit-
ed to sequence modeling, but still lagged behind traditional 
models – a result that may be attributed to the relatively 
small dataset, a common limitation in experimental studies 
with physical samples (Liu et al., 2024).

These findings reinforce that, for the context evaluated 
here – predicting physicochemical properties from hyper-
spectral data – classical machine learning models remain 
among the most efficient approaches (Carneiro et al., 
2023), both for their precision and statistical consistency, 
demonstrating that they are highly effective tools in various 
agricultural scenarios.

4. CONCLUSIONS

This study provides evidence of the effectiveness of 
integrating hyperspectral spectroscopy (350-2 500 nm) and 
machine learning algorithms for predicting the physico-
chemical attributes of different rice types, including protein, 

starch, moisture, fiber, ash, and lipids. Among the evaluated 
models, SVM exhibited superior performance, demonstrat-
ing statistical robustness and strong generalization ability 
across the variables. The detailed analysis of spectral bands 
enabled the identification of representative regions for pre-
diction, reinforcing the potential for developing optimized 
multispectral sensors. Overall, the findings consolidate the 
application of non-destructive models in the post-harvest 
context, offering advancements for the optimization of 
industrial operations as well as improvements in accuracy 
for classification and quality control processes.
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