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Abstract.This study aimed to correlate the physicochemi-
cal attributes of rice grains using non-destructive techniques
combined with machine learning algorithms. Samples of white,
black, red, and parboiled rice were analyzed using hyperspectral
spectroscopy (350-2500 nm) and subjected to linear regression
(LR), random forest (RF), gradient boosting (GB), support vec-
tor machine (SVM), convolutional neural networks (CNN), and
recurrent neural networks (RNN) prediction. Spectral and physico-
chemical data were examined through multivariate analysis
(PCA) and cross-validation using performance metrics such as R,
R2, MAE, and RMSE. The results indicated that SVM, RF, and
GB outperformed the other algorithms, showing higher accuracy
and lower variability in the prediction, SVM reached R = 0.952
and R? = 0.904, with MAE = 0.409 and RMSE = 0.582, followed
closely by RF with R = 0.950 and MAE = 0.416, and GB with
R = 0.947 and MAE = 0.431. Black rice stood out for its high
protein, lipid, and ash contents. Parboiled rice showed higher
fiber content, and white rice was notable for its elevated starch
content. Hyperspectral spectroscopy proved effective in differen-
tiating rice types, enabling the identification of relevant spectral
bands for optimized sensors. Overall, integrating non-destructive
technologies with machine learning shows strong potential for
industrial applications.
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1. INTRODUCTION

Rice (Oryza sativa L.) plays an essential role in human
nutrition, serving as a staple food for billions of people
across different regions of the world, not only as an ener-
gy source but also as a functional food with nutritionally
relevant compounds (Brotman et al., 2021). Beyond its
nutritional function, this cereal is deeply rooted in cultural,
social, and economic contexts, assuming multiple forms of
consumption such as white, red, black, and parboiled rice.
Each of these variants presents specific characteristics that
determine preferences for grain type, viscosity, and aroma,
which can vary according to regions and cultures, thereby
influencing breeding and marketing strategies (Chen et al.,
2021). The diversity among rice types is directly related to
differences in the chemical composition, such as anthocy-
anin and resistant starch content (Pereira et al., 2023).

With the growing demand for nutritious and high-quali-
ty foods, there has been an increased search for methods
capable of rapidly and non-destructively assessing these
properties. In this context, spectroscopy covering visible
light and the short-wave infrared range (VIS/SWIR) has
gained prominence as an efficient tool for the compositional
analysis of grains (Lin et al., 2021). VIS/SWIR spectrosco-
py has demonstrated the ability to detect physicochemical
attributes in grains with high precision, representing an
alternative to conventional destructive analyses (Barnaby
et al., 2020). When combined with machine learning and
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deep learning algorithms, this approach enhances the inter-
pretability of spectral data and enables robust predictive
models for physicochemical attributes such as protein,
fiber, moisture, lipid, ash, and starch contents (Carneiro et
al., 2023). Deep learning-based models have been progres-
sively employed in the prediction of rice composition with
good levels of accuracy (Razavi et al., 2024).

Despite the significant advancement of spectroscopic
techniques in other agricultural crops such as wheat, corn,
and soybean, the consolidated application of these tools in
rice still requires further investigation and methodological
standardization (Jiang et al., 2023; Teodoro et al., 2021).
This gap becomes evident when considering the compo-
sitional variability among different types of white, black,
red, and parboiled rice, which demand specific analysis
and predictive modeling strategies (Chen et al., 2021).
Moreover, the development of robust models that inte-
grate these spectral data with physicochemical attributes
still faces challenges, especially in contexts requiring high
accuracy and interoperability across different datasets
(Assadzadeh et al., 2020; Carneiro et al., 2023). In this
scenario, the combination of VIS-SWIR spectroscopy and
machine learning, comprising shallow and/or deep learning
algorithms, emerges as a new alternative. However, fur-
ther investigation is needed to ensure its full potential in
post-harvest and quality control environments. Given the
growing demand for faster, more reliable, and non-destruc-
tive analytical methods, this study aimed to investigate the
potential of VIS and SWIR spectroscopy, combined with
shallow and deep learning algorithms, for differentiating
various types of rice. The spectral signatures and their
relationships with physicochemical attributes and physical
defects of the grains were analyzed to develop predictive
models supporting classification and quality control.

The purpose of this study was to provide more effi-
cient and non-destructive tools that can be applied from
post-harvest stages through industrial processing, thereby
adding value to the production chain. The objective was
to correlate physicochemical attributes of milled rice using
non-destructive techniques coupled with machine learn-
ing algorithms. Specifically, the aims were: 1) to spectrally
characterize white, black, red, and parboiled milled rice

Table 1. Maximum tolerance limits expressed (%)
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using VIS/SWIR spectroscopy; ii) to correlate the physi-
cochemical attributes of the grains with their respective
spectral signatures; and iii) to develop and evaluate predic-
tive models based on shallow and deep learning algorithms
in a non-destructive approach.

2. MATERIAL AND METHODS
2.1. Sample collection and preparation

The milled rice samples were obtained immediately
after milling (without storage) at a processing facility locat-
ed in the municipality of Cachoeira do Sul, State of Rio
Grande do Sul, Brazil, at latitude 30° 0’ 45 S, longitude
52° 557 11” W, and an altitude of 73 m. Figure 1 presents
the samples of white, parboiled, red, and black rice.

a)

. o e =7

A3 i -

Fig. 1. Samples of milled rice: white rice (a), parboiled rice (b),
red rice (c), and black rice (d).

The samples were separated according to Normative
Instruction No. 6 of February 16, 2009, based on the tech-
nical regulations for rice (Ministry of Agriculture, 2009).
Rice samples were composed according to the maximum
allowable defect limits for Type 1, based on Table 1 (Brazil.
Normative Instruction 2/2012. Ministry of Agriculture,
2012). Each sample consisted of 2 kg of rice, subsequently
divided into 100 subsamples of 20 g each. The maximum
allowable tolerance for non-parboiled rice grains is 0.30%
for all types; any product exceeding this limit is classified
as out of grade.

Foreign Moldy . Total
Rice Type matter and and P;;tie:ezr Plarsézled Striped Yellow broken and
impurities burning & quirera
White 1 1 0.2 0.5 1.5 1.75 0.3 14
Parboiled 1 1 0.1 0.15 1.5 1.75 0.3 14
Red 1 1 0.2 0.5 1.5 1.75 0.3 14
Black 1 1 0.2 0.5 1.5 1.75 0.3 14
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2.2. Near-infrared spectroscopy (NIR)

The determination of the proximate composition-com-
prising crude protein (CP), moisture content (MC), ether
extract (EE), crude fiber (CF), ash (A), and starch (S)
was performed using near-infrared spectroscopy (NIR)
with high optical precision (Metrohm DS2500 spectrom-
eter, Herisau, Switzerland). All analyses were carried out
in triplicate. Homogenized samples were placed in the
sampling capsule for scanning. The analysis involved
illuminating each sample with radiation at specific wave-
lengths within the near-infrared region and measuring the
difference between the energy emitted by the spectroscope
and that reflected by the sample to the detector. This diffe-
rence was recorded across several bands, generating a spec-
trum for each sample. Spectral data were collected in
reflectance mode, covering a range from 400 to 2500 nm
(Barnes et al., 1989). Outputs were compared with a cali-
bration set (Horwitz, 1970). The values obtained from the
DS2500 represented the actual physicochemical results for
each sample and were used as the reference data in this
study. These laboratory-based measurements were later
paired with the hyperspectral signatures acquired using the
FieldSpec 4 system (350-2 500 nm) to build the regression
models. Each physicochemical attribute was treated inde-
pendently as a separate regression target and was not used
to classify the rice types or to define quality thresholds.

2.3. Spectral variables

Spectral analysis was carried out using a spectroradio-
meter (FieldSpec 4 Jr, Analytical Spectral Devices, Boulder,
USA) fitted with a muglight. The equipment measures spec-
train the 350-2 500 nm range. The reading interval is 1.4 nm
from 350-1050 and 2 nm from 1000-2500 nm. The spec-
tral resolution is 3 nm in the 350-700 nm range and 30 nm
in the 1400-2 100 nm range. One advantage of this method
is the preservation of the samples, with minimal influence
from environmental factors such as ambient light, thus
reducing errors associated with diffuse illumination.

Each spectral reading was performed three times per
sample, and the data used for analysis were based on the
mean of these three readings. A white reference plate, com-
posed of barium sulfate and reflecting 100% of incident
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light, was used as a standard. The system stored spectral
data from this plate, which were later used to determine
the reflectance factor for each sample by multiplying it by
the readings obtained for each case. For data analysis, the
sensor was connected to a computer equipped with RS3
software for recording measurements, allowing subsequent
importation by ViewSpectroPro for data extraction in .txt
files and facilitating further statistical analysis.

2.4. Multivariate, prediction, and statistical analyses

For predictive modeling, machine learning analyses
were primarily conducted in the Python software using the
scikit-learn, pandas, numpy, matplotlib, seaborn, and ten-
sorflow libraries. Initially, Pearson correlation was applied
among the physicochemical variables (moisture, pro-
tein, lipids, fiber, starch, and ash) to explore relationships
between nutritional attributes. Subsequently, Principal
Component Analysis (PCA) was performed separately
on the spectral data (350-2500 nm) and physicochemical
variables to visualize clustering patterns among the diffe-
rent rice types.

Machine leaning analysis consisted of the following
models: i) shallow algorithms — random forest (RF), gradi-
ent boosting (GB), support vector machine (SVM), and the
traditional multiple linear regression (LR) model (Table 2);
and ii) deep learning models — Convolutional Neural
Networks (CNN) and Recurrent Neural Networks (RNN),
with architectures consisting of Conv1D and LSTM layers,
respectively (Table 3).

Predictions were carried out individually for each phy-
sicochemical attribute (output variables), while spectral
data were used as input variables. Spectral data were pre-
processed by normalization using StandardScaler. Model
evaluation was conducted through 10-fold cross-valida-
tion, with 10 repetitions applied to traditional models (RF,
GB, SVM, LR) to ensure greater statistical robustness. For
CNN and RNN models, one-dimensional tensors were used
with architectures comprising ConvlD (CNN) and LSTM
(RNN) layers. Regularization was performed by applying
Dropout (rate of 0.5) and EarlyStopping set with a patience

Table 2. List of machine learning models used in rice quality classification

Acronym Machine learning model Reference

RF Random forest (Belgiu and Dragut, 2016)

SVM Support vector machine (Cortes and Vapnik, 1995)

GB Gradient boosting (Friedman, 2001)

LR Multiple linear regression (Draper and Smith, 1998)

CNN Convolutional neural networks (Lecun et al., 2002)

RNN Recurrent neural networks (Hochreiter and Schmidhuber, 1997)
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Table 3. Hyperparameters used for deep learning models

M.V. ARF et al.

Model Hiperparameter Valor
Support vector machine (SVM) Kernel rbf
C 10
Epsilon 0.2
Gamma Automatic (rbf)
Random forest (RF) n_estimators 100
max_depth 15
Bootstrap True
Random State 42
Gradient boosting (GB) n_estimators 100
learning_rate 0.1
max_depth 4
Subsample 1.0 (standard)

Random State

42

Linear regression (LR) Solver auto (standard)
Normalization Not applicable
Intercept True
Model Layer type Number Neurons Dropout Optimizer Epochs Batch size
yertyp of layers P P p
ing +
cnN - SonviD+MaxPooling 4 64 and 128 0.5 Adam 50 32
Dense
RNN  LSTM + Dense 4 64 and 128 0.5 Adam 50 32

of 10 epochs, monitoring the validation loss (val_loss) met-
ric and restoring the best weights at the end of training.
Batch size adopted for CNN and RNN was equal to 32.

The correlation coefficient (R), coefficient of determi-
nation (R?), mean absolute error (MAE), and root mean
square error (RMSE) were used as model performance
metrics. Residual analyses (observed vs. predicted values)
and graphical visualization via boxplots and histograms
were also performed. Furthermore, variable importance
analysis was performed using the RF model for each attri-
bute aiming at identifying the most relevant spectral bands.
Model performance metrics were represented graphically
by boxplots.

The different models were compared based on the eval-
uated metrics. For this purpose, an analysis of variance
(ANOVA) was applied. When the model effect was sig-
nificant (F-test, p < 0.05), the means of the performance

metrics assessed for each model were grouped by the Scott-
Knott test at 5% significance level using Sisvar software
v.5.6 (Ferreira, 2019).

The choice of regression algorithms was intentional and
grounded in what is already well established in the hyper-
spectral modeling literature. Shallow learning models such
as SVM, RF, and GB are widely used because they deal
well with high-dimensional and collinear data, which fits
the characteristics of full-spectrum rice measurements.
Deep learning models (CNN and RNN) were also includ-
ed because they can capture local and sequential patterns
that sometimes appear in spectral signatures. Together,
these approaches offer complementary ways of modeling
the physicochemical attributes. The hyperparameters were
defined based on recommendations from previous studies
and on initial tests performed to reduce overfitting and keep
the training behavior stable.
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3. RESULTS AND DISCUSSION

3.1. Physicochemical characteristics and spectral signatures
by rice type

Table 4 shows the analysis of variance (ANOVA)
applied to the main physicochemical characteristics of four
rice types: white, parboiled, red, and black. The analyzed
physicochemical attributes were moisture, starch, protein,
fiber, ash, and lipids. All differences among the rice types
were statistically significant, with Pr>Fc = 0.0000 for all
variables evaluated.

These findings are consistent with previous studies
that highlight black rice as the type with the highest nutri-
tional value among the varieties analyzed (Banerjee et al.,
2023; Khatun and Mollah, 2024). Black rice exhibits high-
er levels of protein, lipids, and phenolic compounds and is
frequently classified as a functional food (Zhao et al., 2021;
Arashloo and Witter, 2022; Das et al., 2023). This distinc-
tive composition justifies the elevated contents observed in
this study, reflecting the presence of bioactive components
and minerals concentrated in the hull and pericarp of the
grain (Banerjee ef al., 2023).

Regarding parboiled rice, the high fiber content iden-
tified in this study is consistent with findings from the
literature (Akhter et al., 2023). Moreover, the parboiling
process promotes the migration of nutrients from the husk
to the endosperm (Kalita ef al., 2021), increasing the con-
centration of insoluble fibers. However, this process can
also result in the loss of some proteins (Nirmagustina and
Handayani, 2023) and lipids (Mudgal and Singh, 2024),
which may explain the lower levels of these components
found in the parboiled samples evaluated here.

White rice, in turn, exhibited the highest starch content
(Yoviono et al., 2022). This type is primarily composed of
Starch stored in the endosperm, which constitutes the bulk
of the grain. The concentration, structure, and distribution
of starch in the endosperm are influenced by genetic, meta-
bolic, and environmental factors (Yang et al., 2020), which
in turn affect rice quality, digestibility, and grain develop-
ment (Cao et al., 2022). This characteristic renders white
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rice less nutritious compared to other types (Hashimoto et
al.,2022; Zhang et al., 2023), yet more palatable and faster
to cook, accounting for its popularity in human consump-
tion (Gondal et al., 2021; Zhao et al., 2021).

Red rice exhibited an intermediate composition for
seve-ral characteristics, but stood out negatively for its fiber
content, which was the lowest among the types evaluated.
These results diverge from those found by Abeysiriwardena
and Gunasekara (2020) and Gogoi et al. (2025), who high-
light its high dietary fiber content. Although red rice is
recognized for its anthocyanin-rich coloration, its macronu-
trient values can vary widely depending on genetic variety
and agricultural management practices (Gogoi et al., 2025).

These differences highlight the distinct functional and
nutritional potential among rice types and justify the grow-
ing interest in using spectroscopy and predictive modeling
as tools for rapid and non-destructive differentiation of
nutritional quality attributes (Liu et al., 2020; Johnson et
al., 2021; Xu et al., 2025). The coefficients of variation
(CV%) ranged between 7.26 and 13.39%, all within accept-
able limits, indicating good data homogeneity.

Figure 2 presents boxplots visually depicting the dis-
tribution of the numerical values for the physicochemical
characteristics across the four rice types. Marked differen
ces between the groups are evident, graphically confirming
the ANOVA results. Asymmetric distributions are observed
for some characteristics, such as fiber in parboiled rice,
indicating possible variability in the material. Outlier valu-
es generally appear discretely and do not compromise the
analysis or visualization, allowing it to be observed that
black rice distinctly stands out in variables such as protein,
lipids, and ash.

Figure 2, in addition to Table 4, highlights the clear
chemical differentiation among the rice types, again empha-
sizing black rice for its higher values in protein and lipids,
and parboiled rice for its high fiber content. These results
reinforce the importance of classifying rice according to its
nutritional properties.

Table 4. Analysis of variance of the physicochemical characteristics of different types of rice

Moisture Starch Protein Lipids Fiber Ashes

Processes
(%)

White rice 11.12b 7339 a 8.04b 1.54 ¢ 2.10b 1.12¢
Parboiled rice 11.19b 70.11b 4.19d 1.44d 2.80a 1.23b
Red rice 13.16 a 66.40 ¢ 6.88 ¢ 1.94b 0.69 d 1,02d
Black rice 1335a 57.06d 9.08 a 2.04a 1.18 ¢ 143 a
Pr>Fc 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000*
CV (%) 8.37 7.26 10.38 13.39 10.63 8.67
General average 12.21 66.74 7.05 1.74 1.69 1.2

The asterisk (*) was explained as indicating statistical significance at p < 0.05 by the F test (ANOVA).
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Fig. 2. Boxplots of physicochemical characteristics for red, white, black, and parboiled rice types.

The PCA for the physicochemical characteristics (Fig. 3)
considers variables such as moisture, protein, lipids, fiber,
starch, and ash, which are laboratory-derived attributes of
the grains. The analysis of the plot reveals partial clustering
among the rice types, where black rice tends to be distinctly
separated from the others, possibly due to its higher lipid
and protein contents, as previously shown in Fig. 2. Red
and white rice exhibit greater overlap, indicating that, based
solely on physicochemical variables, there is greater simi-
larity between these two types. This supports the findings
shown by Pereira et al. (2023), who reported that tradi-

tional physicochemical characteristics, though relevant,
are not always sufficient to clearly distinguish rice variet-
ies with intermediate morphology and composition. While
good dispersion among the samples is noted-suggesting
a reasonable degree of differentiation — it is not sufficient-
ly strong, especially when compared to the spectral data,
to guarantee clear separation of all rice types. Although
useful, physicochemical PCA demonstrates limitations in
distinguishing rice types, particularly those more similar in
laboratory attributes (Gao et al., 2024; Hazrul et al., 2025).
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Fig. 4. Mean spectral signatures of black, red, white, and parboiled rice types.

In contrast, the PCA for Spectral Characteristics, which
considers spectral bands from 350 to 2500 nm, shows
a markedly greater discrimination between groups. In this
PCA, unlike the physicochemical one, there is a clear-
er separation among the rice types. Each group — black,
red, white, and parboiled rice — tends to cluster in distinct
regions of the plot. This indicates that spectral signatures
capture specific structural and compositional features of
each type, which are often imperceptible in laboratory
analyses. Thus, spectral PCA provides better discrimina-
tion among rice types, demonstrating that spectral data are
more sensitive to grain composition than traditional phys-
icochemical data. This sensitivity of spectral data to grain
composition was also reported by Kang et al. (2024) when
discriminating among other rice varieties.

This analysis may be crucial in the post-harvest con-
text, where decisions impact quality preservation, market
value, and operational efficiency (Mahmood et al., 2024;
Miiller et al., 2022). Therefore, PCA not only contributes
to subsequent predictive models but also reinforces the role
of non-destructive technologies as screening and real-time
quality control tools in post-harvest processes.

3.2. Spectral signatures of rice types

Figure 4 shows the mean spectral reflectance curves
for black, red, white, and parboiled rice, covering the
spectral range from 350 to 2500 nm. The curves exhibit
well-defined patterns among the different rice types, partic-
ularly in the VIS (350-700 nm) and SWIR (700-2 500 nm)
regions, confirming the capability of spectroscopy to differ-
entiate the groups.

Regarding black rice, as shown in Fig. 4, lower reflec-
tance values are observed throughout the entire spectrum,
especially in the visible region. The visible color of black
rice results from light reflected off the bran layer, which
is rich in anthocyanins; thus, the higher the anthocyanin
concentration, the darker and more intense the appearance.
Darker black rice grains contain higher concentrations of
these beneficial compounds compared to lighter or white
grains (Theiventhiran et al., 2020; Brunet-Loredo et al.,
2023; Borah et al., 2025). White rice, in turn, exhibits
higher overall reflectance, particularly in the VIS and tran-
sition regions with the SWIR, which is expected due to its
lighter coloration (Garcia-Salcedo et al., 2023; Aekram
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et al., 2025). Red and parboiled rice occupy intermediate
positions, presenting relatively similar signatures, though
subtle differences are noticeable in specific regions, such
as between 1100-1400 nm and 1900-2 100 nm. This visu-
alization reinforces that spectral signatures are unique to
each rice type, reflecting their distinct spectral and structur-
al characteristics.

These patterns support the use of machine learning
models and spectral analysis for the prediction of nutrition-
al attributes. Such findings are particularly relevant in the
post-harvest context, as they enable the rapid and non-de-
structive screening of rice lots, optimizing classification
processes and the commercial targeting of grains. The figure

M.V. ARF et al.

also provides visual evidence complementary to Fig. 1,
emphasizing that rice types exhibit distinct signatures, thus
enabling their identification.

3.3. Evaluation of shallow and deep learning models

As presented in Fig. 5, the shallow learning models
SVM, RF, and GB consistently formed the best-perform-
ing group in almost all physicochemical attributes. These
models reached the highest R and R? values and the lowest
MAE and RMSE, remaining statistically similar in the
ANOVA and Scott-Knott tests shown in Tables 5-10. For
example, in the prediction of protein content in Fig. Se,
SVM reached R = 0.952 and R? = 0.904, followed closely
by RF and GB with equally high accuracy.

10 Comparison of All Metrics Across Models for Lipid Prediction b) Comparison of All Metrics Across Models for Starch Prediction
: 1.0 = Model
B P e
- % 35 B CNN i:;LI
0.5 o N o ° 1.0 ? = RNN
== -
- % == RF
- AT 0.9 5 30 [ SVM
0.0 o == GB
o 0.9 % = R
% 25 = °
o Q v
3 T 30.8 3
05 . S ° S .
g g S, L.
0.8 ° 0
Model
-1.01 Model 0.7/ == CNN 15 5
== NN ] = RN o
== RNN B RF
m— RF 077 == svm 10] B e
151 == svm =GB
- G5 0.61 == 1R =T
3 LR o 05
MAE RMSE
R R2 MAE RMSE R Metri R2 Metric
Metric etric
0) . _ _ . d) . . .
Comparison of Metrics between Fiber Prediction Models i Comparison of Metrics between Ash Prediction Models
1.0 — - Mode ’ ° Model
%% B == CNN _ é % 9 = CNN
%’ % [ RNN E %’ 0.5 [0 RNN
o I RF 0.8 = ‘%LI E RF
0.8 % = SVM . o = SVM
== GB == GB
3 R o @ 0.4 =3 LR
0.6 é 5
g%° g 3
2 = 203
) £ . g o
@ 0.4 &
04 & Model é 0.2
é B CNN _
[ RNN =
% 021 mm rr -
=
02 = é_%é == svM ° 01 == -
= 68 = - ==
E% == LR = ==
R R2 MAE RMSE 0.0 R R2 MAE RMSE
Metric Metric Metric
©) . . e f) , , , -
Comparison of Metrics between Protein Prediction Models i Comparison of Metrics betwgesn Moisture Prediction Models
Model ' ;ﬁ%o . By==—ot Model
= CNN < l olo o = CNN
B RNN 0.8 = =1 RNN
1.2 Bmm RF 20 I RF
Y - | : =1 SWM
= GB m GB
=3 (R = =3 IR
1.0 0.2 ©
e 1.5
L = o g
(1] o o N o
>08{ o % = >
° 02 1.0 =
Model
== CNN =
0.6 1 057 = RN
> E [ 0.5 >
il 1© 0.8/ == svm %‘%%‘?
= GB [~
04 === = T e
1.0
R R2 MAE RMSE R R2 MAE ] RMSE
Metric Metric Metric

Fig. 5. Boxplots of R, R%, MAE, and RMSE for all models for each rice attribute: a) lipids, b) starch, ¢) moisture, d) ash, e) protein,
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Table 5. Analysis of variance of machine learning models for the different types of rice in protein prediction
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Model R R? MAE RMSE
LR 0.826970 a 0.584926 a 0.964798 a 1.212073 a
RNN 0.875092 b 0.760400 b 0.679102 ¢ 0.911554 b
CNN 0.917549 ¢ 0.719705 b 0.756813 b 0.956924 b
GB 0.946986 d 0.894261 ¢ 0.431075d 0.611450 ¢
RF 0.949667 d 0.899362 ¢ 0.416296 d 0.597104 ¢
SVM 0.952401 d 0.903906 ¢ 0.409373 d 0.581563 ¢
Prob>F 0.0000* 0.0000%* 0.0000* 0.0000*
CV (%) = 2.82 8.58 13.83 14.06
Overall mean 0.9114440 0.7937598 0.6095761 0.8117780
*Explanation as in Table 4.
Table 6. Analysis of variance of machine learning models for the different types of rice in starch prediction

Model R R? MAE RMSE
RNN 0.833538 a 0.677346 a 2.585056 d 3.468162 d
LR 0.913455b 0.808589 a 2.151020 ¢ 2.671538 ¢
CNN 0.977529 ¢ 0.947339 ¢ 1.088146 b 1.394123 b
GB 0.986908 ¢ 0.973679 d 0.766993 a 0.984199 a
RF 0.987449 ¢ 0.974739 d 0.748048 a 0.966918 a
SVM 0.987520 ¢ 0.974626 d 0.761022 a 0.972568 a
Prob>F 0.0000* 0.0000* 0.0000* 0.0000*
CV (%) = 1.35 2.75 8.97 7.96
Overall mean 0.9477333 0.8927196 1.3500474 1.7429178

*Explanation as in Table 4.

Table 7. Analysis of variance of machine learning models for the different types of rice in moisture prediction

Model R R? MAE RMSE
LR 0.761479 a 0.376972 b 0.740377 b 0.933110 b
CNN 0.850031 b -0.232026 a 0.912414 b 1.122891 b
RNN 0.927148 ¢ 0.852417 ¢ 0.280969 a 0.452444 a
GB 0.935030 ¢ 0.872243 ¢ 0.229157 a 0418233 a
RF 0.941759 ¢ 0.884839 ¢ 0.223402 a 0.397731 a
SVM 0.945649 ¢ 0.889280 ¢ 0.199913 a 0.388168 a
Prob>F 0.0000* 0.0000* 0.0000* 0.0000%
CV (%) = 2.59 97.80 60.45 45.55
Overall mean 0.8935161 0.6072874 0.4310389 0.6187627

*Explanation as in Table 4.
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Table 8. Analysis of variance of machine learning models for the different types of rice in fiber prediction
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Model R R’ MAE RMSE
LR 0912111 a 0.806076 a 0.284225b 0.362201 b
RNN 0.944472 b 0.890028 b 0.206893 ¢ 0.271541 ¢
CNN 0.954765 ¢ 0.704363 ¢ 0.379771 a 0.442052 a
GB 0.974320d 0.948111d 0.121865d 0.187390d
RF 0.976409 d 0.952487 d 0.120353 d 0.179621d
SVM 0.979788 d 0.958903 d 0.125506 d 0.165917d
Prob>F 0.0000* 0.0000* 0.0000* 0.0000*
CV (%)= 0.87 5.24 13.35 12.34
Overall mean 0.9569776 0.8766614 0.2064355 0.2681203
*Explanation as in Table 4.
Table 9. Analysis of variance of machine learning models for the different types of rice in ash prediction

Model R R? MAE RMSE
RNN 0.479685 a 0.224316 a 0.108010 b 0.141589b
LR 0.680372 b 0.111755b 0.118993 b 0.151002 b
SVM 0.831289 ¢ 0.685680 d 0.072255a 0.090049 a
CNN 0.845071 ¢ 0.511615¢ 0.115809 b 0.137690 b
GB 0.891771d 0.791237 ¢ 0.054818 a 0.073521 a
RF 0.894952 d 0.797437 e 0.054389 a 0.072392 a
Prob>F 0.0000* 0.0000* 0.0000* 0.0000%*
CV (%) = 4.44 12.69 39.03 30.43
Overall mean 0.7705233 0.5203401 0.0873789 0.1110405

*Explanation as in Table 4.

Table 10. Analysis of variance of machine learning models for the different types of rice in the prediction of lipids

Model R R’ MAE RMSE
LR 0.498860 a -0.651551 a 0.325620 ¢ 0.410776 ¢
RNN 0.794359 b 0.628090 ¢ 0.150674 a 0.195300 a
GB 0.799374 b 0.632075 ¢ 0.153244 a 0.194911 a
RF 0.801374 b 0.636410 ¢ 0.150537 a 0.193632 a
CNN 0.809633 b 0.430318 b 0.226324 b 0.272005 b
SVM 0.810526 b 0.650851 0.150325a 0.189891 a
Prob>F 0.0000* 0.0000* 0.0000* 0.0000*
CV (%) = 4.01 27.83 20.49 16.21
Overall mean 0.7523545 0.3876988 0.1927873 0.2427526

*Explanation as in Table 4.
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The overall pattern was stable for starch, moisture, and
fiber in Fig. 5b, 5c, and 5f, reinforcing the robustness of
shallow learning approaches for this hyperspectral data-
set. Two exceptions were observed. In the lipid prediction
shown in Fig. 5a, RNN presented performance like SVM,
RF, and GB, joining the same statistical group. For ash in
Fig. 5d, the separation of statistical groups differed slightly
from the other attributes, although SVM, RF, and GB still
presented the best absolute accuracy.

In general, the deep learning models CNN and RNN
showed greater variability and lower predictive stability
compared to shallow models, which were expected to be
given the moderate size of the dataset. Overall, the shallow
algorithms presented the most consistent and reliable per-
formance across all rice attributes.

This behavior reinforces recent findings in the scientific
literature that highlight the robustness of models like SVM
and RF for regression tasks with hyperspectral data (Feyisa
et al.,2020; Liu et al., 2022; Tunca et al., 2023), especially
in contexts involving moderate-sized datasets without sig-
nificant temporal variation (Li et al., 2023; Nagy and Neff
2024). This is partly due to the ability of these algorithms to
capture nonlinear relationships in the data without depend-
ing on complex adjustments, such as deep hidden layers
or extended training sequences. In addition, the GB model
proved to be a relevant tool for predicting physicochemical
properties in maize (Zheng et al., 2024; Zhao et al., 2025)
and soybean (Huber et al., 2022; Li et al., 2023) using com-
plex spectroscopic data — findings that were also replicated
in this study.

Deep learning models, although promising, demonstrat-
ed greater variability across folds and were more susceptible
to overfitting or required finer hyperparameter tuning. For
instance, the CNN exhibited inferior performance across
almost all analyzed variables, likely due to its limited abili-
ty to capture the sequential dependencies present in spectral
data. The RNN performed slightly better, as it is more suit-
ed to sequence modeling, but still lagged behind traditional
models — a result that may be attributed to the relatively
small dataset, a common limitation in experimental studies
with physical samples (Liu et al., 2024).

These findings reinforce that, for the context evaluated
here — predicting physicochemical properties from hyper-
spectral data — classical machine learning models remain
among the most efficient approaches (Carneiro et al.,
2023), both for their precision and statistical consistency,
demonstrating that they are highly effective tools in various
agricultural scenarios.

4. CONCLUSIONS

This study provides evidence of the effectiveness of
integrating hyperspectral spectroscopy (350-2 500 nm) and
machine learning algorithms for predicting the physico-
chemical attributes of different rice types, including protein,
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starch, moisture, fiber, ash, and lipids. Among the evaluated
models, SVM exhibited superior performance, demonstrat-
ing statistical robustness and strong generalization ability
across the variables. The detailed analysis of spectral bands
enabled the identification of representative regions for pre-
diction, reinforcing the potential for developing optimized
multispectral sensors. Overall, the findings consolidate the
application of non-destructive models in the post-harvest
context, offering advancements for the optimization of
industrial operations as well as improvements in accuracy
for classification and quality control processes.
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