Impacts of regional climate change on barley yield and its geographical variation in South Korea
Jonghan Ko 1
Chi Tim Ng 2  
Jun-Hwan Kim 3
Byunwoo Lee 4
More details
Hide details
Applied Plant Science, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
Statistics, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
Crop Production and Physiology Research, National Institute of Crop Science, 181 Hyeoksin-ro, Iseo-myeon, Wanju-Gun, Jeollabuk-do 55365, Republic of Korea
Department of Plant Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
Publish date: 2019-02-14
Acceptance date: 2018-08-07
Int. Agrophys. 2019, 33(1): 81–96
Geospatial variations in barley production due to climate change were evaluated for different geographic regions of South Korea over the next hundred years under the climate change scenarios of representative concentration pathways 4.5 and 8.5. We employed a geospatial crop simulation modelling strategy based on the CERES-barley model in the DSSAT crop model package version 4.6 to simulate grid-based geospatial variation in barley yield. An open field experiment and a temperature gradient field chamber experiment were performed to obtain model coefficients for South Korea and to assess the performance of CERES-barley under elevated temperature conditions. Projected barley yield data were further used to establish a new landscape classification system to provide agricultural policymakers with useful information on coping with climate change. Expected yields of four barley cultivars for the whole nation showed moderate increases under representative concentration pathways 4.5 and rapid increases under representative concentration pathways 8.5. More differences in yield were observed between different geospatial regions. Based on k-means clustering and the impact of climate change on barley yield, regional characteristics of the whole country could be classified into six categories. The geospatial crop simulation modelling could be extended to determine geospatial variations in staple crop productions due to other environmental scenarios of interest.
1. Ahn J., Hur J., and Shim K., 2010. A simulation of the agro-climate index over the Korean Peninsula using dynamical downscaling with a numerical weather prediction model. Kor. J. Agric. Forest Meteorol., 12, 1-10.
2. Ahuja L.R., Rojas K.W., Hanson J.D., Shafer M.J. and Ma L., (Eds), 2000. Root Zone Water Quality Model. Modeling management effects on water quality and crop production. Water Resources Publications, LLC, CO, USA.
3. Allen L.H., Boote K.J., Jones J.W., Valle R.R., Acock B., Rogers H.H., and Dahlman R.C., 1987. Response of vegetation to rising carbon dioxide: photosynthesis, biomass, and seed yield of soybean. Global Biochem. Cycles, 1, 1-14.
4. Bunce J.A., 2000. Responses of stomatal conductance to light, humidity and temperature in winter wheat and barley grown at three concentrations of carbon dioxide in the field. Global Change Biol., 6, 371-382.
5. Chloupeka O., Hrstkovaa P., and Schweigert P., 2004. Yield and its stability, crop diversity, adaptability and response to climate change, weather and fertilisation over 75 years in the Czech Republic in comparison to some European countries. Field Crops Res., 85, 167-190.
6. Chun J., Li S., Wang Q., Lee W., Lee E., Horstmann N., Park H., Veasna T., Vanndy L., Pros K., and Vang S., 2016. Assessing rice productivity and adaptation strategies for Southeast Asia under climate change through multi-scale crop modeling. Agric. Syst., 143, 14-21.
7. FAO, 2017. Crops/Regions/World List/Production Quantity for Barley, 2014 (pick list). Food and Agriculture Organization Corporate Statistical Database (FAOSTAT).
8. Godwin D.C., Ritchie J.T., Singh U., and Hunt L.A., 1989. A User’s Guide to CERES-wheat – v2.10. Int. Fert. Develop. Center, Muscle Shoals, 89 pp.
9. Gornall J., Betts R., Burke E., Clark R., Camp J., Willett K., and Wilshire A., 2010. Implications of climate change for agricultural productivity in the early twenty-first century. Phil. Trans. Royal Soc., B, 365, 2973-2989.
10. Hijmans R.J., Guiking-Lens I.M., and van Diepen C.A., 1994. WOFOST 6.0: User’s guide for the WOFOST 6.0 crop growth simulation model. Wageningen, Nederland.
11. Hong S., Zhang Y., Hyun B., Sonn Y., Kim Y., Jung S., Park C., Song K., Jang B., Choe E., Lee Y., Ha S., Kim M., Lee J., Jung G., Ko B., and Kim G., 2009. An introduction of Korean soil information system. Kor. J. Soil Sci. Fert., 42, 21-28.
12. IPCC, 2013. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Eds T.F. Stocker D. Qin G.-K. Plattner M.M.B. Tignor S.K. Allen J. Boschung A. Nauels Y. Xia V. Bex, and P.M. Midgley). Cambridge University Press, New York, NY, USA.
13. Jamieson P.D., Berntsen J., Ewert F., Kimball B.A., Olesen J.E., Pinter Jr., P.J., Porter J.R., and Semenov M.A., 2000. Modeling CO2 effects on wheat with varying nitrogen supplies. Agric. Ecosys. Environ., 82, 27-37.
14. Jones J.W., Hoogenboom G., Porter C.H., Boote K.J., Batchelor W.D., Hunt L.A., Wilkens P.W., Singh U., Gijsman A.J., and Ritchie J.T., 2003. The DSSAT cropping system model. Europ. J. Agron., 18, 235-265.
15. Kim H., Lim S., Kwak J., Lee D., Lee S., Ro H., and Choi W., 2011. Dry matter and nitrogen accumulation and partitioning in rice (Oryza sativa L.) exposed to experimental warming with elevated CO2. Plant Soil, 32, 59-71.
16. Kirschbaum M.U.F., 2000. Forest growth and species distribution in a changing climate. Tree Physiol., 20, 309-322.
17. Ko J., Ahuja L.R., Saseendran S.A., Green T.R., Ma L., Nielsen D.C., and Walthall C.L., 2012. Climate change impacts on dryland cropping systems in the Central Great Plants, USA. Climatic Change, 111, 445-472.
18. Kottek M., Grieser J., Beck C., Rudolf B., and Rubel R., 2006. World map of the Koppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259-263.
19. Li S., Wang Q., and Chun J., 2017. Impact assessment of climate change on rice productivity in the Indochinese Peninsula using a regional-scale crop model. Int. J. Climatol., 34, 1147-1160.
20. Lobell D.B. and Field C.B., 2007. Global scale climate-crop yield relationships and the impacts of recent warming. Environ. Res. Lett., 2, 1-7.
21. Lobell D.B., Schlenker W., and Costa-Roberts J., 2011. Climate trends and global crop production since 1980. Science, 333, 616-620.
22. Long S.P., Ainsworth E.A., Leakey A.D.B., Nosberger J., and Ort D.R., 2006. Food for thought: Lower-than-expected crop yield stimulation with rising CO2 concentrations. Science, 312, 1918-1921.
23. McMaster G.S., 1993. Another Wheat (Triticum spp.) Model? Progress and applications in crop modeling. Rivista di Agronomia, 27, 264-272.
24. Nash J.E. and Sutcliffe J.V., 1970. River flow forecasting through conceptual models: Part I. A discussion of principles. J. Hydrol., 10, 282-290.
25. Olesen J.E., Trnka M., Kersebaum, K.C., Skjelvåg A.O., Seguin B., Peltonen-Sainio P., Rossi F., Kozyra J., and Micale F., 2011. Impacts and adaptation of European crop production systems to climate change. Europ. J. Agron., 34, 96-112.
26. Otter-Nacke S., Rirchie J.T., Godwin D.C., and Singh U., 1991. A User’s Guide to CERES Barley– V2.10, International Fertilizer Development Center Simulation Manual, IFDC-SM-3, 87 pp.
27. Peart R.M., Jones R.B., Curry K., Boote K.J., and Allen L.H., 1989. Impacts of climate change on crop yield in the Southern U.S.A. In: The potential effects of global climate change on the United States, Report to Congress (Eds J.B. Smith, D.A. Tirpak), U.S. Environmental Protection Agency, EPA-230-05-89-050, Washing D.C., Appendix C.
28. Ramankutty N., Foley J.A., Norman J., and McSweeney K., 2002. The global distribution of cultivable lands: current patterns and sensitivity to possible climate change. Global Ecol. Biogeog., 11, 377-392.
29. Reyenga P.J., Howden S.M., Meinke H., and McKeon G.M., 1999. Modeling global climate change impacts on wheat cropping in south-east Queensland, Australia. Aust. Enviro. Model Software, 14, 297-306.
30. Rosenzweig C., Elliott J., Deryngd D., Ruane A.C., Müllere C., Arneth A., Boote K.J., Folberth C., Glotter M., Khabarov N., Neumann K., Piontek F., Pugh T.A.M., Schmid E., Stehfest E., Yang H., and Jones J.W., 2014. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. PNAS, 111, 3268-3273.
31. Tao F., Rötter R.P., Palosuo T., Díaz-Ambrona C.G.H., Mínguez M.I., Semenov M.A., Kersebaum K.C., Nendel C., Cammarano D., Hoffmann H., Ewert F., Dambreville A., Martre P., Rodríguez L., Ruiz-Ramos M., Gaiser T., Höhn J.G., Salo T., Ferrise R., Bindi M., and Schulman A.H., 2017. Designing future barley ideotypes using a crop model ensemble. Europ. J. Agron., 82, 144-162.
32. Thornton P.K., Jones P.G., Alagarswamy G., and Andersen J., 2009. Spatial variation of crop yield response to climate change in East Africa. Global Environ. Change, 19, 54-65.
33. Trnka M., Dubrovský M., and Žalud Z., 2004. Climate change impacts and adaptation strategies in spring barley production in the Czech Republic. Climatic Change, 64, 227-255.
34. Tubiello F.N., Donatelli M., Rosenzweig C., and Stockle C.O., 2000. Effects of climate change and elevated CO2 on cropping systems: model predictions at two Italian locations. Europ. J. Agron., 13, 179-189.
35. White J.W., Hoogenboom G., Kimball B.A., and Wall G.W., 2011. Methodologies for simulating impacts of climate change on crop production. Field Crops Res., 124, 357-368.
36. Williams J.R., Jones C.A., Kiniry J.R., and Spanel D.A., 1989. The EPIC crop growth model. Trans. ASAE, 32, 497-511.
37. Yun S., Kang B., Lim S., Choi W., Ko J., Yoon S., Ro H., and Kim H., 2012. Further understanding CH4 emissions from a flooded rice field exposed to experimental warming with elevated [CO2]. Agric. For. Meteorol., 154, 75-83.
38. Zawadzki J., Cieszewski C.J., Zasada M., and Lowe R.C., 2005. Applying geostatistics for investigations of forest ecosystems using remote sensing imagery. Silva Fenica., 39(4): 599-617.