New pedotransfer function (“CRC”) for the prediction of unsaturated soil hydraulic conductivity using soil water retention data
Klaus Bohne 1
More details
Hide details
Universität Rostock, Institute of Soil Science, Justus-von-Liebig-Weg 6, 18051 Rostock, Germany
Technische Universität Berlin, Institute of Ecology, Ernst-Reuter-Platz 1. 10587 Berlin, Germany
Institut für Ökologie, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587, Germany
Publish date: 2019-10-29
Acceptance date: 2019-10-09
Int. Agrophys. 2019, 33(4): 503–510
Several review articles have emphasized, that a comprehensive set of pedotransfer functions may be applied throughout a wide range of disciplines of Earth system sciences and are of great importance for land surface models. Most pedotransfer functions deducing soil hydraulic data from non-hydraulic soil data such as soil texture and bulk density, yield soil water retention predictions, but do not provide information concerning soil hydraulic conductivity. For this reason, a simple method was developed to estimate soil hydraulic conductivity using soil water retention information. Empirical equations are established to predict soil hydraulic conductivity from soil water retention information. These equations are relatively straightforward and do not require the fitting of nonlinear functions. Predictions of soil hydraulic conductivity using 106 soil samples indicates the reliable performance of the new method. The prediction quality of the new method was estimated from the calibration data set, which produced equivalent results to the Zacharias and Wessolek pedotransfer function, which were even better than the predictions obtained from the original Mualem-van Genuchten model, the Soto fractal model, and the pedotransfer function reported by Weynants and Vereecken. The stochastic structure of the calibration data reflects the presence of important soil structural properties, which are not represented by the soil water retention characteristics.
Feichtinger F., 1990. Feld-, Labor- und indirekte Methoden zur Bestimmung der kapillaren Leitfähigkeit. Mitt. Bundesanstalt für Kulturtechnik und Bodenwasserhaushalt.
Hewelke P., Gnatkowski T., Tyszka J., and Żakowicz S., 2015.Analysis of water retention capacity for selected forest soils in Poland. Pol. J. Environ. Stud., 24, No. 3, 1013-1019.
Legates D.R. and McCabe G.J., 1999. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Res. Res., 35(1), 233-241.
Minasny B., Montzka C., Padarian J., and Verhoef A., 2017. Pedotransfer functions in Earth system science: challenges and perspectives. Reviews of Geophysics, DOI:10.1002/2017RG000581.
Peters A. and Durner W., 2008. Simplified evaporation method for determining soil hydraulic properties. J. Hydrol., 356, 147-162.
Puhlmann H. and von Wilpert K., 2012. Pedotransfer functions for water retention and unsaturated hydraulic conductivity of forest soils. J. Plant Nutrition Soil Sci., 175, 221-235.
Renger M., Bohne K., and Wessolek G., 2014. Verfahren zur Berechnung der ungesättigten und gesättigten Wasserleit-.
fähigkeit aus einfach zugänglichen Daten. Bodenökologie und Bodengenese, Heft 43, TU Berlin.
Renger M., Stoffregen H., Klocke J., Facklam M., Wessolek G., Roth C., and Plagge R., 1999. Ein autoregressives Verfahren zur Bestimmung der gesättigten und ungesättigten hydraulischen Leitfähigkeit. J. Plant Nutr. Soil Sci., 162, 123-130. 1522-2624(199903)162:2<123::aid-jpln123>;2-y.
Schaap M.G., Leij F.J., and van Genuchten M.Th., 2001. Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol., 251 163-176.
Soto M.A.A., Chang H.K., and van Genuchten M.Th., 2017. Fractal-based models for the unsaturated soil hydraulic functions.Geoderma, 306, 144-151.
Van Genuchten M.Th., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44, 892-898. 1980.03615995004400050002x.
Van Looy K., Bouma J., Herbst M., Koestel J., Minasny B., Mishra U., Montzka C., et al., 2017. Pedotransfer functions in earth system science: Challenges and perspectives. Reviews of Geophysics, 55(4).
Vardavas I.M., 1989. A Fibonacci search technique for model parameter selection. Ecological Modelling, 48, 65-81, Amsterdam.
Vereecken H., 1988. Pedotransfer functions for the generation of hydraulicproperties for Belgian soils. Ph.D. Dissertation Katholieke Universiteit Leuven, Leuven, Belgium.
Vogel T., van Genuchten M.Th., and Cislerova M., 2001. Effect of the shape of the soil hydraulic functions near saturation on variably-saturated flow predictions. Advances in Water Res., 24, 133-144.
Wendroth O. and Nielsen D.R., 1995. Land surface processes – sampling the landscape and analyzing spatio-temporal patterns. Proceedings of a workshop. ZALF-Bericht no. 31, Müncheberg.
Weynants M., Vereecken H., and Javaux M., 2008. Revisiting vereecken pedotransfer functions: Introducing a closed-form hydraulic model. Vadose Zone J., 8, 86-95.
Willmott C.J., Robeson S.M., and Matsuura K., 2012. A refined index of model performance. Int. J. Climatology, 32(13), 2088-2092.
Woesten J.H.M., Pachepsky Y.A., and Rawls W.J., 2001. Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. J. Hydrol., 251, 123-150.
Wösten J.H.M., Lilly A., Nemes C., and Le Bas C., 1999. Development and use of a data base of hydraulic properties of European soils. Geoderma, 90, 169-185.
Zacharias S. and Wessolek G., 2007. Excluding organic matter content from pedotransfer predictors of soil water retention. Soil Sci. Soc. Am. J., 71(1), 43-50.