Abiotic mechanisms for biochar effects on soil N2O emission
Chaohui He 1, 2, 3
Kiril Manevski 3, 4
Chunsheng Hu 2  
Wenxu Dong 2
Jiazhen Li 1, 2
More details
Hide details
University of Chinese Academy of Sciences, 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Yuhua district, Shijiazhuang 050022, China
Sino-Danish Center for Education and Research, Estern Yanqihu Campus, 380 Huaibeizhuang, Huairou district, Beijing 101408, China
Aarhus University, Department of Agroecology, Blichers Allé 20, 8830 Tjele, Denmark
Publish date: 2019-10-30
Final revision date: 2019-07-02
Acceptance date: 2019-08-07
Int. Agrophys. 2019, 33(4): 537–546
In this research, sterile soil columns with different contents of biochar made from apple-tree residues (0, 1 and 5% w/w) at three levels of water filled pore space (40, 60, and 80%) were set up in the laboratory to study nitrous oxide diffusion and binding processes. The results indicated that nitrous oxide emission can be effectively mitigated at 5% biochar regardless of soil water content. However, 1% biochar stimulated nitrous oxide diffusion compared to the other biochar treatments, which was opposite to expectations due to the stronger aeration than adsorption effect, while 0% had a suppression effect between 1 and 5%. Nitrous oxide emissions increased with increasing water filled pore space due to concomitantly decreasing biochar tortuousity at high water content. The increase of nitrogen from 1.11 to 1.50% on the biochar surface in the 5% treatment, and from 1.11 to 1.46% in the 100% biochar treatment, suggested that the main abiotic mechanisms for mitigation of nitrous oxide emission is adsorption and subsequent reactions with C = C bonds on apple-tree biochar surfaces since C = O and C-O bonds both increased and C=C/C-C/C-H declined.
Alowitz M.J. and Scherer M.M., 2002. Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal. Environ. Sci. Technol., 36(3), 299-306.
Avdeev V.I., Ruzankin S.F., and Zhidomirov G.M., 2005. Molecular mechanism of direct alkene oxidation with nitrous oxide: DFT analysis. Kinetics and Catalysis, 46(2), 177-188.
Baggs E.M., 2011. Soil microbial sources of nitrous oxide: recent advances in knowledge, emerging challenges and future direction. Current Opinion in Environmental Sustainability, 3(5), 321-327.
Carabineiro S.A., Fernandes F.B., Silva R.J.C., Vital J.S., Ramos A.M., and Fonseca I.M., 2008. N2O reduction by activated carbon over iron bimetallic catalysts. Catalysis Today, 133-135, 441-447. 2007.11.019.
Case S.D.C., McNamara N.P., Reay D.S., and Whitaker J., 2012. The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil – The role of soil aeration. Soil Biol. Biochem., 51, 125-134.
Cayuela M.L., Sanchez-Monedero M.A., Roig A., Hanley K., Enders A., and Lehmann J., 2013. Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions? Scientific Reports 3, 1732.
Cayuela M.L., van Zwieten L., Singh B.P., and Jeffery S., Roig A., and Sánchez-Monedero M.A., 2014. Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agric. Ecosys. Environ., 191, 5-16.
Chang J., Clay D.E., Clay S.A., Chintala R., Miller J.M., and Schumacher T., 2016. Biochar reduced nitrous oxide and carbon dioxide emissions from soil with different water and temperature cycles. Agronomy J., 108(6), 2214-2221.
Chintala R., Owen R.K., Schumacher T.E., Spokas K.A., McDonald L.M., Kumar S., Clay D.E., Malo D.D., and Bleakley B., 2015. Denitrification kinetics in biomass-and biochar-amended soils of different landscape positions. Environ. Sci. Pollution Res. Int., 22(7), 5152-5163.
Cornelissen G., Rutherford D.W., Arp H.P., Dorsch P., Kelly C.N., and Rostad C.E., 2013. Sorption of pure N2O to biochars and other organic and inorganic materials under anhydrous conditions. Environ. Sci. Technol., 47(14), 7704-7712.
Grundl T., 1994. A review of the current understanding of redox capacity in natural, disequilibrium systems. Chemosphere, 28(3), 613-626.
Grutzmacher P., Puga A.P., Bibar M.P.S., Coscione A.R., Packer A.P., and de Andrade C.A., 2018. Carbon stability and mitigation of fertilizer induced N2O emissions in soil amended with biochar. Sci. Total Environ., 625, 1459-1466.
Hans C.B.H., Christian B.K., Hanne N.K., Ole K.B., and Jan S., 1996. Abiotic nitrate reduction to ammonium: key role of green rust. Environ. Sci. Technol., 30(6), 2053-2056.
Harter J., Krause H.M., Schuettler S., Ruser R., Fromme M., Scholten T., Kappler A., and Behrens S., 2014. Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community. ISME J., 8(3), 660-674.
He L.L., Zhao X., Wang S.Q., and Xing G.X., 2016. The effects of rice-straw biochar addition on nitrification activity and nitrous oxide emissions in two Oxisols. Soil Till. Res., 164, 52-62.
IPCC, 2013. Climate Change 2013: The Physical Science Basis. Cambridge University Press, Cambridge, UK and New York, USA.
Joseph S., Husson O., Graber E., van Zwieten L., Taherymoosavi S., Thomas T., Nielsen S., Ye J., Pan G., Chia C., Munroe P., Allen J., Lin Y., Fan X., and Donne S., 2015. The electrochemical properties of biochars and how they affect soil redox properties and processes. Agronomy, 5(3), 322-340.
Joseph S.D., Camps-Arbestain M., Lin Y., Munroe P., Chia C.H., Hook J., Van Zwieten L., Kimber S., Cowie A., Singh B.P., Lehmann J., Foidl N., Smernik R.J., and Amonette J.E., 2010. An investigation into the reactions of biochar in soil. Soil Res., 48, 501-515.
Karhu K., Mattila T., Bergström I., and Regina K., 2011. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity – Results from a short-term pilot field study. Agric., Ecosys. Environ., 140(1-2), 309-313.
Lan Y., Meng J., Yang X., Jiang L.L., Liu Z.Q., Liu S.N., and Chen W.F., 2015. Effects of different straw incorporation ways on N2O emission and soil physicochemical properties of brown soil (in Chinese). Chinese J. Ecol., 34(3), 790-796.
Lassey K. and Harvey M., 2007. Nitrous oxide: the serious side of laughing gas. Water Atmosphere, 15(2), 10-11.
Lin X., Spokas K., Venterea R., Zhang R., Baker J., and Feyereisen G., 2014. Assessing microbial contributions to N2O impacts following biochar additions. Agronomy, 4(4), 478-496.
Lin Y., Munroe P., Joseph S., Kimber S., and Van Zwieten L., 2012. Nanoscale organo-mineral reactions of biochars in ferrosol: an investigation using microscopy. Plant Soil, 357(1-2), 369-380.
Liu Q., Zhang Y., Liu B., Amonette J.E., Lin Z., Liu G., Ambus P., and Xie Z., 2018. How does biochar influence soil N cycle? A meta-analysis. Plant and Soil, 426(1), 211-225.
Lu R.K., 2000. Methods of Soil and Agro-Chemical Analysis (in Chinese). China Agric. Sci. Technol. Press, Beijing, China.
Moraghan J.T. and Buresh R.J., 1977. Chemical reduction of nitrite and nitrous oxide by ferrous iron. Soil Sci. Soc. Am. J., 41, 47-50. 03615995004100010017x.
Novak J.M., Busscher W.J., Laird D.L., Ahmedna M., Watts D.W., and Niandou M.A.S., 2009. Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Sci., 174(2), 105-112.
Quin P., Joseph S., Husson O., Donne S., Mitchell D., Munroe P., Phelan D., Cowie A., and Van Zwieten L., 2015. Lowering N2O emissions from soils using eucalypt biochar: the importance of redox reactions. Scientific Reports, 5, 16773.
Rogovska N., Laird D., Cruse R., Fleming P., Parkin T., and Meek D., 2011. Impact of biochar on manure carbon stabilization and greenhouse gas emissions. Soil Sci. Soc. Am. J., 75(3), 871-879.
Sang C., Kim B.H., and Lund C.R.F., 2005. Effect of NO upon N2O decomposition over Fe/ZSM-5 with low iron loading. J. Physical Chem. B, 109(6), 2295-2301.
Smith P., Martino D., Cai Z., Gwary D., Janzen H., Kumar P., McCarl B., Ogle S., O’Mara F., Rice C., Scholes B., Sirotenko O., Howden M., McAllister T., Pan G., Romanenkov V., Schneider U., Towprayoon S., Wattenbach M., and Smith J., 2008. Greenhouse gas mitigation in agriculture. Phil. Trans. R. Soc. B, Biological Sci., 363(1492), 789-813.
Stark J.M. and Firestone M.K., 1995. Mechanisms for soil- moisture effects on the activity of nitrifying bacteria. Appl. Environ. Microbiol., 61(1), 218-221.
Thomas C.R., Miao S.L., and Sindhoj E., 2009. Environmental factors affecting temporal and spatial patterns of soil redox potential in Florida Everglades Wetlands. Wetlands, 29(4), 1133-1145.
van Zwieten L., Kimber S., Morris S., Downie A., Berger E., Rust J., and Scheer C., 2010. Influence of biochars on flux of N2O and CO2 from ferrosol. Australian J. Soil Res., 48(6), 555-568.
van Zwieten L., Singh B., Joseph S., Kimber S., Cowie A., and Chan Y.K., 2009. Biochar and emissions of non-CO2 greenhouse gases from soil. In: Biochar for Environmental Management Science and Technology (Eds J. Lehmann, S. Joseph). Earthscan Press, UK.
Venterea R.T., Halvorson A.D., Kitchen N., Liebig M.A., Cavigelli M.A., Grosso S.J.D., Motavalli P.P., Nelson K.A., Spokas K.A., Singh B.P., Stewart C.E., Ranaivoson A., Strock J., and Collins H., 2012. Challenges and opportunities for mitigating nitrous oxide emissions from fertilized cropping systems. Frontiers in Ecology the Environment, 10(10), 562-570.
Wang Z.Y., Zheng H., Luo Y., Deng X., Herbert S., and Xing B.S., 2013. Characterization and influence of biochars on nitrous oxide emission from agricultural soil. Environ. Pollution, 174, 289-296. 2012.12.003.
Whitfield M., 1974. Thermodynamic limitations on the use of the platinum electrode in Eh measurements. Limnology and Oceanography, 19(5), 857-865.
Yanai Y., Toyota K., and Okazaki M., 2007. Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Sci. Plant Nutr., 53(2), 181-188. j.1747-0765.2007.00123.x.