Extrusion pretreatment of maize straw – case study for a Polish biogas plants
More details
Hide details
Institute of Biosystems Engineering, Poznań University of Life Science, Wojska Polskiego 28, 60-637 Poznań, Poland
Department of Thermal Technology and Food Process Engineering, Lublin University of Life Sciences, Doświadczalna 44, 20-280 Lublin, Poland
Institute of Environmental Engineering, Częstochowa University of Technology, Brzeźnicka 60A, 42-201 Częstochowa, Poland
Acceptance date: 2019-05-22
Publication date: 2019-10-30
Int. Agrophys. 2019, 33(4): 527-535
One of the most commonly used substrates in biogas plants is maize silage, however, the application of monofermentation technology under Polish economic conditions has a tendency to rapidly bankrupt the investor. The lack of profitability of investments based on this material has encouraged investors to search for other, more economically favourable biomass sources i.e. maize straw. The aim of the research was to compare the energetic potential of untreated maize straw and extruded maize straw used for biogas production and furthermore, to determine the amount of electricity and heat generated as well as the amount of heat produced from direct combustion. The results obtained confirmed the substantial energy potential of maize straw. It has been proven that using the extrusion method as a pretreatment before the fermentation process, enables the producer to increase biogas and methane production respectively by 7.50 and 8.51%. However, the use of an extruder machine in biogas plants in Poland is economically unjustified due to its high energy consumption. Moreover, it has been shown, that the use of maize straw in the methane fermentation process enables it to generate (in Poland) a higher income than is the case of using this material in a direct combustion process.
Ahring B.K., Biswas R., Ahamed A., Teller P.J. and Uellendahl H., 2015. Making lignin accessible for anaerobic digestion by wet-explosion pretreatment. Bioresour. Technol., 175, 182-188.
Borenstein S., 2015. Is the Future of Electricity Generation really Distributed? Energy Inst. Haas. https://energyathaas.wordpress.... Accessed 1 February 2018.
Bougrier C., Delgenès J.P., and Carrere H., 2006. Combination of thermal treatments and anaerobic digestion to reduce sewage sludge quantity and improve biogas yield. Process Saf. Environ. Prot., 84, 4, 280-284.
Brückner C., Weiss D., and Mildner U., 2007. Mundgerechtere bakterienkost. Bauern Ztg., 36, 48-49.
Caceres R., Coromina N., Malińska K., and Marfa O., 2015. Evolution of process control parameters during extended composting of green waste and solid fraction of cattle slurry to obtain growing media. Biores. Technol., 179, 398-406.
Camire M.E., 1998. Chemical changes during extrusion cooking: recent advances. In: Process-induced chemical changes in food (Eds F. Shahidi, C.-T. Ho, N. van Chuyen). New York Plenum Press.
Central Statistical Office of Poland, 2016. Agriculture in 2015. Warsaw, Poland.
Cieślik M., Dach J., Lewicki A., Smurzyńska A., Janczak D., Pawlicka-Kaczorowska J., Boniecki P., Cyplik P., Czekała W., and Jóźwiakowski K., 2016. Methane fermentation of the maize straw silage under meso- and thermophilic conditions. Energy 115, 1495-1502.
Czekała W., Bartnikowska S., Dach J., Janczak D., Smurzyńska A., Kozłowski K., Bugała A., Lewicki A., Cieślik M., Typańska D., and Mazurkiewicz J., 2018. The energy value and economic efficiency of solid biofuels produced from digestate and sawdust. Energy, 159, 1118-1122.
Czekała W., Kozlowski K., Dach J., Boniecki P., Lewicki A., Janczak D., Jozwiakowski K., and Piechota T., 2015. Energy conversion from biomass to hydrogen and methane. 4th Int. Conf. Materials Engineering for Advanced Technologies (ICMEAT 2015), June 27-28, 2015, London, UK.
Czekała W., Pilarski K., Dach J., Janczak D. ,and Szymańska M., 2012. Analysis of management possibilities for digestate from biogas plant. Technika Rolnicza Ogrodnicza Leśna, 4, 13-15.
Dach J., Boniecki P., Przybył J., Janczak D., Lewicki A., Czekała W., Witaszek K., Rodriguez Carmona P.C., and Cieślik M., 2014. Energetic efficiency analysis of the agricultural biogas plant in 250 kW(e) experimental installation. Energy, 69, 34-38.
Energy Regulatory Office, 2018. Electricity selling price in 2017,
Energy Regulatory Office, 2017. Yellow certificate price in 2018,
Gu Y., Zhang Y.L., and Zhou X.F., 2015. Effect of Ca(OH)2 pretreatment on extruded rice straw anaerobic digestion. Bioresour. Technol., 196, 116-122.
Herkowiak M., Adamski M., Dworecki Z., Waliszewska B., Pilarski K., Witaszek K., Niedbała G., and Piekutowska M. 2018. Analysis of the possibility of obtaining thermal energy from combustion of selected cereal straw species. J. Res. Appl. Agric. Eng., 63(4), 68-72.
Hjorth M., Gränitz K., Adamsen A.P.S., and Møller H.B., 2011. Extrusion as a pretreatment to increase biogas production. Bioresour. Technol., 102(8), 4989-4994.
Igliński B., Buczkowski R., Iglińska A., Cichosz M., Piechota G., and Kujawski W., 2012. Agricultural biogas plants in Poland: investment process, economic and environmental aspects, biogas potential. Renew Sustain Energy Rev., 16(7), 4890-4900.
Irlbeck N.A., Russell J.R., Hallauer A.R., and Buxton D.R., 1993. Nutritive value and ensiling characteristics of maize stover as influenced by hybrid maturity and generation, plant density and harvest date. Animal Feed Sci. Technol., 41(1), 51-64.
Karunanithy C. and Muthukumarappan K., 2010. Influence of extruder temperature and screw speed on pretreatment of corn stover while varying enzymes and their ratios. Appl.Biochem. Biotechnol., 162(1), 264-279.
Kołodziej B. and Matyka M., 2010. Renewable energy sources - agricultural energy resources (in Polish). PWRiL, Poznań,.
Kratky L. and Jirout T., 2015. The effect of process parameters during the thermal-expansionary pretreatment of wheat straw on hydrolysate quality and on biogas yield. Renew. Energy, 77, 250-258.
Lamsal B., Yoo J., Brijwani K., and Alavi S., 2010. Extrusion as a thermo-mechanical pre-treatment for lignocellulosic ethanol. Biomass Bioenergy, 34(12), 1703-1710.
Lehmann Maschinenbau, 2012. Bio-extrusion. http://www.lehmann-maschinenba....
Lewicki A., Dach J., Czekała W., Janczak D., Cieślik M., Witaszek M., and Carmona P.C.R., 2014. Testing the biogas substrate efficiency from the Experimental Farm of Poznan University of Life Sciences in Przybroda biogas plant. Archives of Waste Management and Environmental Protection, 16(1), 27-30.
Li J.H., Zhang R.H., Siddhu M.A.H., He Y.F., Wang W., Li Y.Q., Chen C., and Liu G.Q., 2015. Enhancing methane production of corn stover through a novel way: Sequent pretreatment of potassium hydroxide and steam explosion. Bioresour. Technol., 181, 345-350.
Liu X.Y., Zicari S.M., Liu G.Q., Li Y.Q., and Zhang R.H., 2015. Pretreatment of wheat straw with potassium hydroxide for increasing enzymatic and microbial degradability. Bioresour. Technol., 185, 150-157.
Mani S., Tabil L.G., and Sokhansanj S., 2004. Grinding performance and physical properties of wheat and barley straws, corn stover and switchgrass. Biomass Bioenergy, 27(4), 339-352.
McKendry P., 2002. Energy production from biomass (part 1): overview of biomass. Biores. Technol., 83(1), 37-46.
Mesarić P. and Krajcar S., 2015. Home demand side management integrated with electric vehicles and renewable energy sources. Energy Buildings, 108, 1-9.
Mo Z. and Pilarski K., 2011. Preliminary comparison of biogas productivity from maize silage and maize straw silage. J. Res. Appl. Agric. Eng., 56(2), 108-110.
Mosier N., Wyman C., Dale B., Elander R., Lee Y.Y., Holtzapple M., and Ladisch M., 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol., 96, 673-686.
Oleszek M., Tys J., Więcek D., Król A., and Kuna J., 2016. The possibility of meeting greenhouse energy and CO2 demands through utilisation of cucumber and tomato residues. BioEnergy Res., 9(2), 624-632.
Papadias D., Ahmed S., and Kumar R., 2012. Fuel quality issues with biogas energy – an economic analysis for a stationary fuel cell system. Energy, 44, 257-277.
Papurello D., Lanzini A., Tognana L., Silvestri S., and Santarelli M., 2015. Waste to energy: exploitation of biogas from organic waste in a 500 Wel solid oxide fuel cell (SOFC) stack. Energy, 85, 145-158.
Piwowar A., Dzikuć M., and Adamczyk J., 2016. Agricultural biogas plants in Poland – selected technological, market and environmental aspects. Renewable and Sustainable Energy Reviews 58, 69-74.
Polish Power Exchange, 2017. TGE monthly market reports for 2017: December.
Przybył J., Wojcieszak D., Mioduszewska N., and Durczak K., 2013. Biogas yield of maize straw. Agric. Eng., 4(148), 103-111.
Rafique R., Poulsen T.G., Nizami A.S., Murphy J.D., and Kiely G., 2010. Effect of thermal, chemical and thermo- chemical pre-treatments to enhance methane production. Energy, 35(12), 4556-4561.
Reilly M., Dinsdale R., and Guwy A., 2015. Enhanced biomethane potential from wheat straw by low temperature alkaline calcium hydroxide pre-treatment. Bioresour. Technol., 189, 258-265.
Rodriguez C., Alaswad A., Benyounis K.Y., and Olabi A.G., 2017. Pretreatment techniques used in biogas production from grass. Renewable and Sustainable Energy Reviews, 68(2), 1193-1204.
Ruffino B., Campo G., Genon G., Lorenzi E., Novarino D., Scibilia G., and Zanetti M., 2015. Improvement of anaerobic digestion of sewage sludge in a wastewater treatment plant by means of mechanical and thermal pre-treatments: performance, energy and economical assessment. Bioresour. Technol., 175, 298-308.
Russell J.R., 1986. Influence of harvest date on the nutritive value and ensiling characteristics of maize stover. Animal Feed Sci. Technol., 14(1-2), 11-27.
Shaefer H., 1994. VDI-Lexikon Energietechnik. Springer-Verlag Berlin Heidelberg.
Tedesco S., Benyounis K.Y., and Olabi A.G., 2016. Mechanical pretreatment effects on macroalgae-derived biogas production in co-digestion with sludge in Ireland. Energy 61, 27-33.
Theuretzbacher F., Blomqvist J., Lizasoain J., Klietz L., Potthast A., Horn S.J., Nilsen P.J., Gronauer A., Passoth V., and Bauer A., 2015a. The effect of a combined biological and thermo-mechanical pretreatment of wheat straw on energy yields in coupled ethanol and methane generation. Bioresour. Technol., 194, 7-13.
Theuretzbacher F., Lizasoain J., Lefever C., Saylor M.K., Enguidanos R., Weran N., Gronauer A., and Bauer A., 2015b. Steam explosion pretreatment of wheat straw to improve methane yields: investigation of the degradation kinetics of structural compounds during anaerobic digestion. Bioresour. Technol., 179, 299-305.
White E.M., Latta G., Alig R.J., Skog K.E., and Adams D.M., 2013. Biomass production from the U.S. forest and agriculture sectors in support of a renewable electricity standard. Energy Policy, 58, 64-74.
Zhang Q., Hu J., and Lee D.J., 2016. Biogas from anaerobic digestion processes: Research updates. Renewable Energy, 98, 108-119.
Zhang X., Ruoshui W., Molin H., and Martinot E., 2010. A study of the role played by renewable energies in China’s sustainable energy supply. Energy, 35, 4392-4399.
Zheng Y., Zhao J., Xu F., and Li Y., 2014. Pretreatment of lignocellulosic biomass for enhanced biogas production. Progress in Energy and Combustion Science, 42, 35-53.
Journals System - logo
Scroll to top