RESEARCH PAPER
Applicability of above-ground crop monitoring to identify soil compaction
 
More details
Hide details
1
Institute for Land and Water Management Research, Federal Agency for Water Management, Pollnbergstraße 1, 3252, Petzenkirchen, Austria
 
2
Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
 
3
Flanders Research Institute for Agriculture, Fischeries and Food, ILVO, Havenlaan 88/50, 1000 Brussels, Belgium
 
These authors had equal contribution to this work
 
 
Final revision date: 2025-09-25
 
 
Acceptance date: 2025-09-26
 
 
Publication date: 2025-12-10
 
 
Corresponding author
David Ramler   

Institute for Land and Water Management Research, Federal Agency for Water Management, Pollnbergstraße 1, 3252, Petzenkirchen, Austria
 
 
Int. Agrophys. 2026, 40(1): 81-94
 
HIGHLIGHTS
  • Vegetation indices (VI) were used to assess soil compaction
  • Compaction confirmed by ground measurements was poorly reflected in VI
  • Significant differences due to compaction may be detected in optimal cases
  • Crop type, growth stage, and seasonality overshadow effects of compaction
  • Detection of unknown moderate compaction via VI appears limited
KEYWORDS
TOPICS
ABSTRACT
Soil compaction affects soil health and crop yields, yet a large-scale spatial assessment of agricultural lands is challenging with traditional invasive techniques. This study examined the capability of unmanned aerial vehicle (UAV)-based multispectral imagery and analyses of vegetation indices (VIs) to indirectly identify soil compaction through the above-ground physiological responses of plants. Over two growing seasons, drone imagery and soil data from three agricultural fields in two European locations with both compacted and non-compacted areas were obtained. Seventeen VIs were derived and evaluated across various crop types and growth stages. Although soil compaction was validated through increased bulk density (4.6-14.5% higher in compacted topsoil) and lower hydraulic conductivity (below 3 cm d-1 at the surface layer), the corresponding differences in VI values were generally minimal. The indices were substantially influenced by seasonal trends and crop-specific factors, with the most notable distinctions observed in wheat fields during their peak vegetative phase. While some VIs demonstrated statistically significant differences, their practical effectiveness in reliably identifying moderate soil compaction was limited, as shown by low Cohen’s d values. These results show both the potential and current limitations of remote sensing in assessing soil compaction and provide a basis for optimising remote sensing protocols for soil monitoring.
FUNDING
This work was funded by the EJP Soil project SoilCompaC “Mapping and alleviating soil compaction in a climate change context” (grant agreement No. 862695).
CONFLICT OF INTEREST
The authors declare no conflicts of interest.
REFERENCES (60)
1.
Adamu, B., Tansey, K., Ogutu, B., 2015. Using vegetation spectral indices to detect oil pollution in the Niger Delta. Remote Sens. Lett. 6, 145-154. https://doi.org/10.1080/215070....
 
2.
Alameda, D., Villar, R., 2009. Moderate soil compaction: Implications on growth and architecture in seedlings of 17 woody plant species. Soil Till. Res. 103, 325-331. https://doi.org/10.1016/j.stil....
 
3.
Aparicio, N., Villegas, D., Araus, J.L., Casadesús, J., Royo, C., 2002. Relationship between Growth Traits and Spectral Vegetation Indices in Durum Wheat. Crop Sci. 42, 1547-1555. https://doi.org/10.2135/cropsc....
 
4.
Arvidsson, J., Håkansson, I., 2014. Response of different crops to soil compaction-Short-term effects in Swedish field experiments. Soil Till. Res. 138, 56-63. https://doi.org/10.1016/j.stil....
 
5.
Avetisyan, D., Borisova, D., Velizarova, E., 2021. Integrated evaluation of vegetation drought stress through satellite remote sensing. Forests 12(8), 974. https://doi.org/10.3390/f12080....
 
6.
Barnes, E., Clarke, T., Richards, S., Colaizzi, P., Haberland, J., Kostrzewski, P., et al., 2000. Coincident detection of crop water stress, nitrogen status and canopy density using ground-based multispectral data. Proc. Fifth Int. Conf. Precis. Agric. ASA-CSSA-SSSA, Madison, WI, USA.
 
7.
Beckett, C.T.S., Glenn, D., Bradley, K., Guzzomi, A.L., Merritt, D., Fourie, A.B., 2017. Compaction conditions greatly affect growth during early plant establishment. Ecol. Eng. 106, 471-481. https://doi.org/10.1016/j.ecol....
 
8.
Bendig, J., Bolten, A., Barteh, G., 2013. UAV-based imaging for multi-temporal, very high resolution crop surface models to monitor crop growth variability. Photogramm. Fernerkundung Geoinf. 6, 551-562. https://doi.org/10.1127/1432-8....
 
9.
Bento, N.L., Silva Ferraz, G.A. e, Santana, L.S., de Oliveira Faria, R., da Silva Amorim, J., de Lourdes Oliveira e Silva, M., et al., 2024. Soil compaction mapping by plant height and spectral responses of coffee in multispectral images obtained by remotely piloted aircraft system. Precis. Agric. 25, 729-750. https://doi.org/10.1007/s11119....
 
10.
Beylich, A., Oberholzer, H.-R., Schrader, S., Höper, H., Wilke, B.-M., 2010. Evaluation of soil compaction effects on soil biota and soil biological processes in soils. Soil Till. Res. 109, 133-143. https://doi.org/10.1016/j.stil....
 
11.
Bouwman, L.A., Arts, W.B.M., 2000. Effects of soil compaction on the relationships between nematodes, grass production and soil physical properties. Appl. Soil Ecol. 14, 213-222. https://doi.org/10.1016/S0929-....
 
12.
Broge, N.H., Leblanc, E., 2001. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 76, 156-172. https://doi.org/10.1016/S0034-....
 
13.
Buschmann, C., Nagel, E., 1993. In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation. Int. J. Remote Sens. 14, 711-722. https://doi.org/10.1080/014311....
 
14.
Cao, Q., Miao, Y., Feng, G., Gao, X., Li, F., Liu, B., et al., 2015. Active canopy sensing of winter wheat nitrogen status: An evaluation of two sensor systems. Comput. Electron. Agric. 112, 54-67. https://doi.org/10.1016/j.comp....
 
15.
Chávez, R.O., Clevers, J.G.P.W., Decuyper, M., de Bruin, S., Herold, M., 2016. 50 years of water extraction in the Pampa del Tamarugal basin: Can Prosopis tamarugo trees survive in the hyper-arid Atacama Desert (Northern Chile)? J. Arid Environ. 124, 292-303. https://doi.org/10.1016/j.jari....
 
16.
Chen, H., Cohen, P., Chen, S., 2010. How big is a big odds ratio? interpreting the magnitudes of odds ratios in epidemiological studies. Commun. Stat. - Simul. Comput. 39, 860-864. https://doi.org/10.1080/036109....
 
17.
Chen, P., Tremblay, N., Wang, J., Vigneault, P., Huang, W., Li, B., 2010. New index for crop canopy fresh biomass estimation (in Chinese). Spectrosc. Spectr. Anal. 30, 512-517.
 
18.
Choi, J.E., Song, K.E., Hong, S.H., Konvalina, P., Chung, I.J., Kim, C.M., et al., 2024. Changes in growth and leaf hyperspectral reflectance of zoysiagrass (Zoysia japonica Steud.) under various soil compaction intensities. Hortic. Sci. 51, 127-140. https://doi.org/10.17221/173/2....
 
19.
Cohen, J., 1988. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Academic Press, New York, NY.
 
20.
Czyż, E.A., 2004. Effects of traffic on soil aeration, bulk density and growth of spring barley, Soil Till. Res. 79(2), 153-166, https://doi.org/10.1016/j.stil....
 
21.
Daughtry, C.S.T., Walthall, C.L., Kim, M.S., de Colstoun, E.B., McMurtrey, J.E., 2000. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 74, 229-239. https://doi.org/10.1016/S0034-....
 
22.
Dinis, C., Surový, P., Ribeiro, N., Oliveira, M.R.G., 2015. The effect of soil compaction at different depths on cork oak seedling growth. New For. 46, 235-246. https://doi.org/10.1007/s11056....
 
23.
Edrris, M.K., Al-Gaadi, K.A., Hassaballa, A.A., Tola, E., 2020. The response of potato crop to the spatiotemporal variabi-lity of soil compaction under centre pivot irrigation system. Soil Use Manag. 36, 212-222. https://doi.org/10.1111/sum.12....
 
24.
Gitelson, A.A., 2004. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. J. Plant Physiol. 161, 165-173. https://doi.org/10.1078/0176-1....
 
25.
Gitelson, A.A., Kaufman, Y.J., Merzlyak, M.N., 1996. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 58, 289-298. https://doi.org/10.1016/S0034-....
 
26.
Gitelson, A.A., Keydan, G.P., Merzlyak, M.N., 2006. Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophys. Res. Lett. 33. https://doi.org/10.1029/2006GL....
 
27.
Gitelson, A.A., Viña, A., Arkebauer, T.J., Rundquist, D.C., Keydan, G., Leavitt, B., 2003. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys. Res. Lett. 30. https://doi.org/10.1029/2002GL....
 
28.
Hemmat, A., Adamchuk, V.I., 2008. Sensor systems for measuring soil compaction: Review and analysis. Comput. Electron. Agric. 63, 89-103. https://doi.org/10.1016/j.comp....
 
29.
Hoefer, G., Hartge, K.H., 2010. Subsoil Compaction: Cause, Impact, Detection, and Prevention. In: Dedousis, A.P., Bartzanas, T. (Eds), Soil Engineering. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 121-145. https://doi.org/10.1007/978-3-....
 
30.
Huang, J., Liao, H., Zhu, Y., Sun, J., Sun, Q., Liu, X., 2012. Hyperspectral detection of rice damaged by rice leaf folder (Cnaphalocrocis medinalis). Comput. Electron. Agric. 82, 100-107. https://doi.org/10.1016/j.comp....
 
31.
Huete, A.R., 1988. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 25, 295-309. https://doi.org/10.1016/0034-4....
 
32.
Kaufman, Y.J., Tanre, D., 1992. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 30, 261-270. https://doi.org/10.1109/36.134....
 
33.
Keller, T., Lamandé, M., Naderi-Boldaji, M., de Lima, R.P., 2022. Soil Compaction Due to Agricultural Field Traffic: An Overview of Current Knowledge and Techniques for Compaction Quantification and Mapping. In: Saljnikov, E., Mueller, L., Lavrishchev, A., Eulenstein, F. (Eds.), Advances in Understanding Soil Degradation. Springer Int. Publishing, Cham, Switzerland, 287-312. https://doi.org/10.1007/978-3-....
 
34.
Khanal, S., Kushal KC, Fulton, J.P., Shearer, S., Ozkan, E., 2020. Remote sensing in agriculture-accomplishments, limitations, and opportunities. Remote Sens. 12. https://doi.org/10.3390/rs1222....
 
35.
Kross, A., McNairn, H., Lapen, D., Sunohara, M., Champagne, C., 2015. Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops. Int. J. Appl. Earth Obs. Geoinf. 34, 235-248. https://doi.org/10.1016/j.jag.....
 
36.
Kulkarni, S.S., Bajwa, S.G., Huitink, G., 2010. Investigation of the effects of soil compaction in cotton. Trans. ASABE 53, 667-674. https://doi.org/10.13031/2013.....
 
37.
Lebert, M., Brunotte, J., Sommer, C., Böken, H., 2006. Bodengefüge gegen Verdichtungen schützen – Lösungsan-sätze für den Schutz landwirtschaftlich genutzter Böden. J. Plant Nutr. Soil Sci. 169, 633-641. https://doi.org/10.1002/jpln.2....
 
38.
Lipiec, J., Hatano, R., 2003. Quantification of compaction effects on soil physical properties and crop growth. Geoderma 116, 107-136. https://doi.org/10.1016/S0016-....
 
39.
Lipiec, J., Medvedev, V.V., Birkas, M., Dumitru, E., Lyndina, T.E., Rousseva, S., et al., 2003. Effect of soil compaction on root growth and crop yield in Central and Eastern Europe. Int. Agrophysics 17, 61-69.
 
40.
Liu, H., Colombi, T., Jäck, O., Keller, T., Weih, M., 2022. Effects of soil compaction on grain yield of wheat depend on weather conditions. Sci. Total Environ. 807, 150763. https://doi.org/10.1016/j.scit....
 
41.
Malhi, S.S., Nyborg, M., Goddard, T., Puurveen, D., 2011. Long-term tillage, straw and N rate effects on quantity and quality of organic C and N in a Gray Luvisol soil. Nutr. Cycl. Agroecosystems 90, 1-20. https://doi.org/10.1007/s10705....
 
42.
Osco, L.P., Ramos, A.P.M., Pereira, D.R., Moriya, É.A.S., Imai, N.N., Matsubara, E.T., et al., 2019. Predicting canopy nitrogen content in citrus-trees using random forest algorithm associated to spectral vegetation indices from UAV-Imagery. Remote Sens. 11. https://doi.org/10.3390/rs1124....
 
43.
Perry, C.R., Lautenschlager, L.F., 1984. Functional equivalence of spectral vegetation indices. Remote Sens. Environ. 14, 169-182. https://doi.org/10.1016/0034-4....
 
44.
Qi, J., Chehbouni, A., Huete, A.R., Kerr, Y.H., Sorooshian, S., 1994. A modified soil adjusted vegetation index. Remote Sens. Environ. 48, 119-126. https://doi.org/10.1016/0034-4....
 
45.
Ren, L., D’Hose, T., Borra-Serrano, I., Lootens, P., Hanssens, D., De Smedt, P., et al., 2022. Detecting spatial variability of soil compaction using soil apparent electrical conductivity and maize traits. Soil Use Manag. 38, 1749-1760. https://doi.org/10.1111/sum.12....
 
46.
Reynolds, W.D., Drury, C.F., Tan, C.S., Fox, C.A., Yang, X.M., 2009. Use of indicators and pore volume-function characteristics to quantify soil physical quality. Geoderma 152, 252-263. https://doi.org/10.1016/j.geod....
 
47.
Reynolds, W.D., Drury, C.F., Yang, X.M., Tan, C.S., 2008. Optimal soil physical quality inferred through structural regression and parameter interactions. Geoderma 146, 466-474. https://doi.org/10.1016/j.geod....
 
48.
Rondeaux, G., Steven, M., Baret, F., 1996. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 55, 95-107. https://doi.org/10.1016/0034-4....
 
49.
Rose, T., Bowden, B., 2013. Matching soil nutrient supply and crop demand during the growing season. In: Improving Water and Nutrient‐Use Efficiency in Food Production Systems. pp. 93-103. https://doi.org/10.1002/978111....
 
50.
Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., Harlan, J.C., 1974. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. NASA/GSFC Type III Final Rep. 371.
 
51.
Sealey, L.L., Van Rees, K.C.J., 2019. Influence of skidder traffic on soil bulk density, aspen regeneration, and vegetation indices following winter harvesting in the Duck Mountain Provincial Park, SK. For. Ecol. Manag. 437, 59-69. https://doi.org/10.1016/j.fore....
 
52.
Shaheb, M.R., Venkatesh, R., Shearer, S.A., 2021. A Review on the effect of soil compaction and its management for sustainable crop production. J. Biosyst. Eng. 46, 417-439. https://doi.org/10.1007/s42853....
 
53.
Sripada, R.P., Heiniger, R.W., White, J.G., Meijer, A.D., 2006. Aerial color infrared photography for determining early in-season nitrogen requirements in corn. Agron. J. 98, 968-977. https://doi.org/10.2134/agronj....
 
54.
Talbot, B., Rahlf, J., Astrup, R., 2018. An operational UAV-based approach for stand-level assessment of soil disturbance after forest harvesting. Scand. J. For. Res. 33, 387-396. https://doi.org/10.1080/028275....
 
55.
Tan, Y., Sun, J.-Y., Zhang, B., Chen, M., Liu, Y., Liu, X.-D., 2019. Sensitivity of a ratio vegetation index derived from hyperspectral remote sensing to the brown planthopper stress on rice plants. Sensors. https://doi.org/10.3390/s19020....
 
56.
Tandzi, L., Mutengwa, C.S., 2020. Factors Affecting Yield of Crops. In: Amanullah, D. (Ed.), IntechOpen, Rijeka.
 
57.
Thapa, S., Rudd, J.C., Xue, Q., Bhandari, M., Reddy, S.K., Jessup, K.E., et al., 2019. Use of NDVI for characterizing winter wheat response to water stress in a semi-arid environment. J. Crop Improv. 33, 633-648. https://doi.org/10.1080/154275....
 
58.
Vincini, M., Frazzi, E., D’Alessio, P., 2008. A broad-band leaf chlorophyll vegetation index at the canopy scale. Precis. Agric. 9, 303-319. https://doi.org/10.1007/s11119....
 
59.
Wang, R., Cherkauer, K., Bowling, L., 2016. Corn response to climate stress detected with satellite-Based NDVI time series. Remote Sens. https://doi.org/10.3390/rs8040....
 
60.
Yeom, J., Jung, J., Chang, A., Ashapure, A., Maeda, M., Maeda, A., et al., 2019. Comparison of vegetation indices derived from UAV data for differentiation of tillage effects in agriculture. Remote Sens. 11, 1548. https://doi.org/10.3390/rs1113....
 
eISSN:2300-8725
ISSN:0236-8722
Journals System - logo
Scroll to top