RESEARCH PAPER
Landscape elements as windbreaks and their influence on microclimatic parameters in a semi-arid agricultural site in Central Europe
More details
Hide details
1
Department of Forest Ecology and Soil, Subdivision Site and Vegetation, Austrian Research Centre for Forests (BFW) Seckendorff-Gudent-Weg 8, 1130, Vienna, Austria
2
Institute of Meteorology and Climatology (BOKU-MET), BOKU University, Gregor-Mendel Straße 33, 1180, Vienna, Austria
3
Institute of Organic Farming (IFÖL), BOKU University, BOKU University, Gregor-Mendel Straße 33, 1180, Vienna, Austria
4
Experimental Farm, Groß-Enzersdorf, Boku University, Schloßhofer Straße 31, 2301, Groß-Enzersdorf, Austria
Final revision date: 2025-10-10
Acceptance date: 2025-10-31
Publication date: 2025-12-11
Corresponding author
Günther Gollobich
Department of Forest Ecology and Soil, subdivision site and vegetation, Austrian Research Centre for Forests (BFW), Seckendorff-Gudent-Weg 8, 1130, Vienna, Austria
Int. Agrophys. 2026, 40(1): 95-114
HIGHLIGHTS
- Windbreak systems significantly reduce wind velocities
- A hedgerow coefficient (∆f) was developed to standardize wind reduction
- Wind reduction effects reached 34–41% (WPS) and 31–56% (SICE)
KEYWORDS
TOPICS
ABSTRACT
In the semi-arid regions of Eastern Austria, windbreaks are essential for reducing wind velocity (WV) and grass reference and actual evapotranspiration (Et0, Etₐ), thereby influencing yields. This case study examines the effects of two windbreak systems: 1) a hedgerow-based wind protection system (WPS) and 2) a strip intercropping experiment (SICE) with variable row widths in a maize-soybean intercropping setup. Micrometeorological data were collected at both sites, including wind velocity, wind direction, air temperature, global radiation, and relative humidity at multiple heights. The WPS reduced wind velocity by 0.8-1.1 m s-1 (2 m height) and 0.6-0.8 m s-1 (1 m height) leeward of the hedge compared to a 10 m reference height. At the SICE, reductions ranged from 0.1-1.2 m s-1 (2 m) and 0.2-0.5 m s-1 (1 m). Relative wind reduction effects (WRE) reached 34-41% (WPS) and 31-56% (SICE). A hedgerow coefficient (∆f ) was used to standardize the WRE by hedgerow height and distance in different systems. Et0 decreased by 0.6-0.7 mm d-1 near the WPS, while Eta rose by 0.2-0.5 mm d-1 due to improved water availability. At the SICE, Et0 increased by 0.9-1.7 mm d-1, and Eta showed varied responses. Overall, windbreaks can enhance water use efficiency and support sustainable landscape design in semi-arid agriculture.
FUNDING
The BOKU University provided the submission fee for the article.
CONFLICT OF INTEREST
The authors declare there is no conflict of interest.
REFERENCES (35)
1.
Ableidinger, C., Erhart, E., Kromp, B., Hartl, W., 2018. Mehrnutzungshecken. Vielfältige Nutzung von Bodenschutzanlagen zur nachhaltigen Produktion, zur Erosionsvermeidung und zur Erhöhung der regionalen Wertschöpfung. Zwischenbericht BIO Forschung Austria.
2.
Ableidinger, C., Erhart, E., Amadi, E., Schütz, C., Kromp, B., Hartl, W., 2020. Klimaschutz durch Bodenschutzanlagen. Endbericht Klimagrün (Interreg ACZ142). Eigenverlag Bio Forschung Austria, Wien.
https://www.unserboden.at/file....
3.
Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration – Guidelines for computing crop water requirements. (F. -F. Nations, Hrsg.) FAO Irrigation Drainage Paper 56, Chapter 2.
4.
Aust G., Pock H., Schild A., Horvath D., Amann C., Schaffer H., et al., 2023. EBOD2. Acesssed on 24. 4. 2023 von EBOD2:
https://bodenkarte.at.
5.
Böhm, C., Kanzler, M., Freese, D., 2014. Wind speed reductions as influenced by woody hedgerows grown for biomass in short rotation alley cropping systems in Germany. Agroforestry Systems 88, 579-591.
https://doi.org/10.1007/s10457....
6.
Bitog, J.P., Lee, I.B., Hwang, H.S., Shin, M.H., Hong, S.W., Seo, I.H., et al., 2012. Numerical simulation study of a tree windbreak. Biosystems Eng. 111(1), 40-48.
https://doi.org/10.1016/j.bios....
7.
Blessing, D.J., Gu, Y., Cao, M., Cui, Y., Wang, X., Asante-Badu, B., 2022. Overview of the advantages and limitations of maize-soybean intercropping in sustainable agriculture and future prospects: A review. Chilean J. Agric. Res. 82(1), 177-188.
http://dx.doi.org/10.4067/S071....
8.
Brandle, J.R., Hodges, L., Zhou, X.H., 2004. Windbreaks in North American agricultural systems. In New Vistas in Agroforestry: A Compendium for 1st World Congress of Agroforestry 65-78. Springer Netherlands.
https://doi.org/10.1007/978-94....
9.
Campi, P., Palumbo, A.D., Mastrorilli, M., 2009. Effects of tree windbreak on microclimate and wheat productivity in a Mediterranean environment. European J. Agronomy 30(3), 220-227.
https://doi.org/10.1016/j.eja.....
10.
Campi, P., Palumbo, A.D., Mastrorilli, M., 2012. Evapotranspiration estimation of crops protected by windbreak in a Mediter-ranean region. Agricultural Water Management 104, 153-162.
https://doi.org/10.1016/j.agwa....
11.
Cleugh, H.A., 1998. Effects of windbreaks on airflow, microclimates and crop yields. Agroforestry Systems 41, 55-84.
12.
Dufkova, J., 2007. Determination of wind erosion next to shelterbelts. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 55(5), 65-70.
14.
Gagarin, E., 1949. Holzanbau zum Schutz der Felder Rußlands. Forstwirtschaftliches Zentralblatt.
15.
Gerersdorfer, T., Eitzinger, J., Bahrs, E., Brandenburg, C., 2010. Der Beitrag von Landschaftsstrukturen (zB Windschutzhecken) zur Ertragssituation im Ackerbau in Ostösterreich. Berichte des Meteorologischen Instituts der Albert-Ludwigs-Universität Freiburg, 32.
16.
Hanming, H.E., Lei, Y., Lihua, Z., Han, W., Liming, F., Yong, X., Chengyun, L., 2012. The temporal-spatial distribution of light intensity in maize and soybean intercropping systems. J. Resour. Ecology 3(2), 169-173.
https://doi.org/10.5814/j.issn....
17.
He, Y., Jones, P.J., Rayment, M., 2017. A simple parameterisation of windbreak effects on wind speed reduction and resulting thermal benefits to sheep. Agricultural Forest Meteorology 239, 96-107.
https://doi.org/10.1016/j.agrf....
18.
Heisler, G.M., Dewalle, D.R., 1988. 2. Effects of windbreak structure on wind flow. Agriculture, Ecosystems Environment 22, 41-69.
https://doi.org/10.1016/0167-8....
19.
Kanzler, M., Böhm, C., Mirck, J., Schmitt, D., Veste, M., 2019. Microclimate effects on evaporation and winter wheat (Triticum aestivum L.) yield within a temperate agroforestry system. Agroforestry Systems 93, 1821-1841.
https://doi.org/10.1007/s10457....
20.
Kort, J., 1988. Benefits of windbreaks to field and forage crops. Agriculture, Ecosystems Environ. 22, 165-190.
21.
Ma, R., Li, J., Ma, Y., Shan, L., Li, X., Wei, L., 2019. A wind tunnel study of the airflow field and shelter efficiency of mixed windbreaks. Aeolian Res. 41, 100544.
https://doi.org/10.1016/j.aeol....
22.
Miri, A., Maleki, S., Middleton, N., 2021. An investigaation into climatic and terrestrial drivers of dust storms in the Sistan region of Iran in the early twenty-first century. Science Total Environ. 757.
https://doi.org/10.1016/j.scit....
23.
Ouda, S.A., El Mesiry, T., Abdallah, E.F., Gaballah, M.S., 2007. Effect of water stress on the yield of soybean and maize grown under different intercropping patterns. Australian J. Basic Applied Sci. 1(4), 578-585.
24.
Peri, P., Bloomberg, L., Bloomberg, M., 2002. Windbreaks in southern Patagonia, Argentinia: A review of research on growth models, windspeed reduction, and effects on crops. Agroforestry Systems 56, 129-144.
https://doi.org/10.1023/A:1021....
26.
Řeháček, D., Khel, T., Kučera, J., Vopravil, J., Petera, M., 2017. Effect of windbreaks on wind speed reduction and soil protection against wind erosion. Soil Water Res. 12(2).
https://doi.org/10.17221/45/20....
27.
Stahr, M., 2017. Einfluss einer Hecke auf das angrenzende Mikroklima und die Ertragswirksamkeit bei Sommergerste im ökologischen Landbau im Marchfeld der Vegetationsperiode 2016. Master Thesis: University of Applied Life Sciences (BOKU), Vienna.
28.
Sudmeyer, R.A., Speijers, J., 2007. Influence of windbreak orientation, shade and rainfall interception on wheat and lupin growth in the absence of below-ground competition. Agroforestry Systems 71, 201-214.
https://doi.org/10.1007/s10457....
29.
Thevs, N., Strenge, E., Aliev, K., Eraaliev, M., Lang, P., Baibagysov, A., Xu, J., 2017. Tree shelterbelts as an element to improve water resource management in Central Asia. Water 9(11), 842.
https://doi.org/10.3390/w91108....
30.
Vacek, Z., Rehácek, D., Cukor, J., Vacek S., Khel, T., Sharma, R., et al., 2018. Windbreak efficiency in agricultural landscape of the Central Europe: Multiple approaches to wind erosion control. Environ. Manag. 942-954.
https://doi.org/10.1007/s00267....
31.
Vanneste, T., Govaert, S., Spicher, F., Brunet, J., Cousins, S., Decocq, G., et al., 2020. Contrasting microclimates among hedgerows and woodlands across temperate Europe. (Elsevier, Hrsg.) Agric. Forest Meteorology 281.
https://doi.org/10.1016/j.agrf....
32.
Veste, M., Littmann, T., Kunneke, A., Du Toit, B., Seifert, T., 2020. Windbreaks as part of climate-smart landscapes reduce evapotranspiration in vineyards, Western Cape Province, South Africa. Plant, Soil Environ. 66(3).
https://doi.org/10.17221/616/2....
33.
Wendt, H., 1951. Der Einfluss der Hecken auf den landwirtschaflichen Ertrag. Archive for Scientific Geography (Erdkunde), 115-124.
34.
Weninger, T., Scheper, S., Lackóová, L., Kitzler, B., Gartner, K., King, N., et al., 2021. Ecosystem services of tree windbreaks in rural landscapes – a systematic review. Environmental Research Letters 1-19.
35.
Weninger, T., Gartner, K., Riedel, S., Scheper, S., Michel, K., 2022. Der windschutzeffekt von bodenschutzanlagen am beispiel marchfeld. Österreichische Wasser-und Abfallwirtschaft 74(5), 251-257.
https://doi.org/10.1007/s00506....