RESEARCH PAPER
Basic soil chemical properties after 15 years in a long-term tillage and crop rotation experiment
Jiřina Száková 2  
,  
Vera Pachtrog 1  
,  
Pavel Tlustoš 2  
,  
Jindřich Černý 2  
,  
Martin Kulhánek 2  
,  
Hans-Peter Kaul 1  
,  
Pia Euteneuer 3  
,  
Gerhard Moitzi 3  
,  
 
 
More details
Hide details
1
Department of Crop Sciences, Institute of Agronomy, University of Natural Resources and Life Sciences Vienna (BOKU), Austria
2
Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Czech Republic
3
Experimental Farm Groß-Enzersdorf, Department of Crop Sciences, University of Natural Resources and Life Sciences Vienna (BOKU), Austria
CORRESPONDING AUTHOR
Reinhard W. Neugschwandtner   

Department of Crop Sciences, Institute of Agronomy, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Straße 24, 3430, Tulln, Austria
Publication date: 2020-01-16
Final revision date: 2019-09-24
Acceptance date: 2019-11-27
 
Int. Agrophys. 2020, 1(34): 133–140
KEYWORDS
TOPICS
ABSTRACT
Basic soil chemical properties were assessed in a long-term tillage and crop rotation experiment 15 years after its establishment on a Chernozem in Raasdorf (Austria) with four tillage treatments – mouldboard ploughing, no-till, deep conservation tillage and shallow conservation tillage – and two crop rotations. The following parameters were assessed: pHCaCl2, pHH2O, electrical conductivity, cation exchange capacity, total nitrogen, total organic carbon and total carbon. Among which, pHCaCl2, pHH2O, and total carbon increased with soil depth while electrical conductivity, cation exchange capacity, total nitrogen, and total organic carbon decreased with soil depth. The differences between tillage treatments occurred after 15 years in the upper soil layer from 0-5 cm with higher values of electrical conductivity under no-till, deep conservation tillage and shallow conservation tillage than with mouldboard ploughing, higher values of cation exchange capacity and total nitrogen for no-till than for mouldboard ploughing (with deep conservation tillage and shallow conservation tillage showing intermediate values) and more total organic carbon for no-till and deep conservation tillage than for mouldboard ploughing. At a 5-10 cm depth, electrical conductivity was higher for no-till than for mouldboard ploughing. Values of pHCaCl2 and pHH2O did not differ between tillage treatments in any soil layer. In deeper soil layers, tillage did not affect the analysed parameters. Crop rotation did not affect any of the analysed soil chemical properties.
 
REFERENCES (51)
1.
Aase J.K. and Pikul J.L., 1995. Crop and soil response to long-term tillage practices in the northern Great Plains. Agron. J., 87, 652-656. https://doi.org/10.2134/agronj....
 
2.
Blume H.-P., Brümmer G.W., Horn R., Kandeler E., Kögel-Knabner I., Kretzschmar R., Stahr K., and Wilk B.-M., 2019. Scheffer/Schachtschabel: Lehrbuch der Bodenkunde. Springer-Verlag GmbH, Berlin – Heidelberg. https://doi.org/10.1007/978-3-....
 
3.
Chatterjee A. and Lal R., 2009. On farm assessment of tillage impact on soil carbon and associated soil quality parameters. Soil Till. Res., 104, 270-277. https://doi.org/10.1016/j.stil....
 
4.
Crozier C.R., Naderman G.C., Tucker M.R., and Sugg. R.E., 1999. Nutrient and pH stratification with conventional and no-till management. Commun. Soil Sci. Plant Anal., 30, 65-74. https://doi.org/10.1080/001036....
 
5.
Curtin D., Fraser P.M., and Beare M.H., 2015. Loss of soil organic matter following cultivation of long-term pasture: Effects on major exchangeable cations and cation exchange capacity. Soil Res., 53, 377-385. https://doi.org/10.1071/sr1417....
 
6.
Dalal R.C., 1989. Long-term effects of no-tillage, crop residue, and nitrogen application of properties of a vertisol. Soil Sci. Soc. Am. J., 53, 1511-1515. https://doi.org/10.2136/sssaj1....
 
7.
Derpsch R., Friedrich T., and Kassam A., 2010. Current status of adoption of no-till farming in the world and some of its main benefits. Int. J. Agric. Biol. Eng., 3, 1-25.
 
8.
Fernández-Ugalde O., Virto I., Bescansa P., Imaz M.J., Enrique A., and Karlen D.L., 2009. No-tillage improvement of soil physical quality in calcareous, degradation-prone, semiarid soils. Soil Till. Res., 106, 29-35. https://doi.org/10.1016/j.stil....
 
9.
Franzluebbers A.J. and Hons F.M., 1996. Soil-profile distribution of primary and secondary plant-available nutrients under conventional and no tillage. Soil Till. Res., 39, 229-239. https://doi.org/10.1016/s0167-....
 
10.
Gavriloaiei T., 2012. The influence of electrolyte solutions on soil pH measurements. Rev. Chi. Bucharest, 63, 396-400.
 
11.
Guo Y., Wang X., Li X., Wang J., Xu M., and Li D., 2016. Dynamics of soil organic and inorganic carbon in the cropland of upper Yellow River Delta, China. Scient. Rep., 6, art. no. 36105. https://doi.org/10.1038/srep36....
 
12.
Hou R., Ouyang Z., Li Y., Tyler D.D., Li F., and Wilson G.V., 2012. Effects of tillage and residue management on soil organic carbon and total nitrogen in the North China Plain. Soil Sci. Soc. Am. J., 76, 230-240. https://doi.org/10.2136/sssaj2....
 
13.
Hulugalle N.R. and Weaver T.B., 2005. Short-term variations in chemical properties of Vertisols as affected by amounts, carbon/nitrogen ratio, and nutrient concentration of crop residues. Commun. Soil Sci. Plant Anal., 36, 1449-1464. https://doi.org/10.1081/css-20....
 
14.
ISO 11260, 1994. Standard of soil quality - Determination of effective cation exchange capacity and base saturation level using barium chloride solution. International Organization for Standardization, Geneva. https://doi.org/10.3403/010745....
 
15.
Kotková B., Balík J., Černý J., Kulhánek M., and Bazalová M., 2008. Crop influence on mobile sulphur content and arylsulphatase activity in the plant rhizosphere. Plant Soil Environ., 54, 100-107. https://doi.org/10.17221/2776-....
 
16.
Laine M., Rütting T., Alakukku L., Palojärvi A., and Strömmer R., 2018. Process rates of nitrogen cycle in uppermost topsoil after harvesting in no-tilled and ploughed agricultural clay soil. Nutr. Cycl. Agroecosys., 110, 39-49. https://doi.org/10.1007/s10705....
 
17.
Lal R., Logan T.J., and Rausey N.R., 1990. Long-term tillage effects on Mollic Ochraqualf in North-west Ohio. Soil Till. Res., 15, 371-382. https://doi.org/10.1016/0167-1....
 
18.
Liebhard P., 1993a. Einfluß der Primärbodenbearbeitung auf pH-Wert, Calcium-, Phosphat- und Kaliumgehalt von Ackerböden im oberösterreichischen Zentralraum (Teil 2). Bodenkultur, 44, 303-315.
 
19.
Liebhard P., 1993b. Einfluß der Primärbodenbearbeitung auf Textur und organische Substanz von Ackerböden im oberösterreichischen Zentralraum (Teil 1). Bodenkultur, 44, 199-210.
 
20.
Liebhard P., Eitzinger J., and Klaghofer E., 1994. Einfluß der Primärbodenbearbeitung auf Infiltration und Bodenwasser-vorrat im oberösterreichischen Zentralraum (Teil 4). Bodenkultur, 45, 297-311.
 
21.
Liebhard P., 1994. Einfluß der Primärbodenbearbeitung auf Lagerungsdichte, Porenvolumen und Porengrößenverteilung von Ackerböden im oberösterreichischen Zentralraum (Teil 3). Bodenkultur, 45, 125-138.
 
22.
Liebhard P., Eitzinger J., and Klaghofer E., 1995. Einfluß der Primärbodenbearbeitung auf Aggregatstabilität und Eindringwiderstand im oberösterreichischen Zentralraum (Teil 5). Bodenkultur, 46, 1-18.
 
23.
Limousin G. and Tessier D., 2007. Effects of no-tillage on chemical gradients and topsoil acidification. Soil Till. Res., 92, 167-174. https://doi.org/10.1016/j.stil....
 
24.
López-Fando C. and Pardo M.T., 2009. Changes in soil chemical characteristics with different tillage practices in a semi-arid environment. Soil Till. Res., 104, 278-284. https://doi.org/10.1016/j.stil....
 
25.
Martínez E., Fuentes J.-P., Pino V., Silva P., and Acevedo E., 2013. Chemical and biological properties as affected by no-tillage and conventional tillage systems in an irrigated Haploxeroll of Central Chile. Soil Till. Res., 126, 238-245. https://doi.org/10.1016/j.stil....
 
26.
Moitzi G., Neugschwandtner R.W., Kaul H.-P., and Wagentristl H., 2019. Energy efficiency of winter wheat in a long-term tillage experiment under Pannonian climate conditions. Eur. J. Agron., 103, 24-31. https://doi.org/10.1016/j.eja.....
 
27.
Moitzi G., Szalay T., Schüller M., Wagentristl H., Refenner K., Weingartmann H., Liebhard P., Boxberger J., and Gronauer A., 2013. Effects of tillage systems and mechanization on work time, fuel and energy consumption for cereal cropping in Austria. Agric. Eng. Int.: CIGR J., 15, 94-101.
 
28.
Moreno F., Murillo J.M., Pelegrín F., and Girón I.F., 2006. Long-term impact of conservation tillage on stratification ratio of soil organic carbon and loss of total and active CaCO3. Soil Till. Res., 85, 86-93. https://doi.org/10.1016/j.stil....
 
29.
Neugschwandtner R.W., Liebhard, P., Kaul H.-P., and Wagentristl H., 2014. Soil chemical properties as affected by tillage and crop rotation in a long-term field experiment. Plant Soil Environ., 60, 57-62. https://doi.org/10.17221/879/2....
 
30.
Neugschwandtner R.W. and Kaul H.-P., 2015. Nitrogen uptake, use and utilization efficiency by oat-pea intercrops. Field Crops Res., 179, 113-119. https://doi.org/10.1016/j.fcr.....
 
31.
Neugschwandtner R.W., Liebhard P., Kaul H.-P., and Wagentristl H., 2015a. Winter wheat yields in a long-term tillage experiment under Pannonian climate conditions. Plant Soil Environ., 61, 145-150. https://doi.org/10.17221/820/2....
 
32.
Neugschwandtner R.W., Wagentristl H., and Kaul H.-P., 2015b. Concentrations and uptake of macro and micronutrients by chickpea compared to pea, barley and oat in central Europe. J. Kulturpflanzen, 67, 404-409.
 
33.
Neugschwandtner R.W., Wagentristl H., and Kaul H.-P., 2015c. Nitrogen yield and nitrogen use of chickpea compared to pea, barley and oat in Central Europe. Int. J. Plant Prod., 9, 291-304. https://doi.org/10.17557/tjfc.....
 
34.
Neugschwandtner R., Ziegler K., Kriegner S., Wagentristl H., and Kaul H.-P., 2015d. Nitrogen yield and nitrogen fixation of winter faba beans. Acta Agric. Scand. Sect. B Soil Plant Sci., 65, 658-666. https://doi.org/10.1080/090647....
 
35.
Neugschwandtner R.W. and Kaul H.-P., 2016a. Concentrations and uptake of macronutrients by oat and pea in intercrops in response to N fertilization and sowing ratio. Arch. Agron. Soil Sci., 62, 1236-1249. https://doi.org/10.1080/036503....
 
36.
Neugschwandtner R.W. and Kaul H.-P., 2016b. Concentrations and uptake of micronutrients by oat and pea in intercrops in response to N fertilization and sowing ratio. Bodenkultur, 67, 1-15. https://doi.org/10.1515/boku-2....
 
37.
ÖNORM L 1083, 1999. Chemische Bodenuntersuchungen - Bestimmung der Acidität (pH-Wert). Österreichisches Normungsinstitut, Wien.
 
38.
Pekrun C., Kaul H.-P., and Claupein W., 2003. Soil tillage for sustainable nutrient management. In: Soil Tillage in Agroecosystems (Ed. A. El Titi). CRC Press, Boca Raton, 83-113. https://doi.org/10.1201/978142....
 
39.
Perez-Brandán C., Arzeno J.L., Huidobro J., Grümberg B., Conforto C., Hilton S., Bending G.D., Meriles J.M., and Vargas-Gil S., 2012. Long-term effect of tillage systems on soil microbiological, chemical and physical parameters and the incidence of charcoal rot by Macrophomina phaseolina (Tassi) Goid in soybean. Crop Prot., 40, 73-82. https://doi.org/10.1016/j.crop....
 
40.
Rahman M.H., Okubo A., Sugiyama S., and Mayland H.F., 2008. Physical, chemical and microbiological properties of an Andisol as related to land use and tillage practice. Soil Till. Res., 101, 10-19.
 
41.
Salinas-García J.R., Velázquez-García J. de, Gallardo-Valdez M., Díaz-Mederos P., Caballero-Hernández F., Tapia-Vargas L.M., and Rosales-Robles E., 2002. Tillage effects on microbial biomass an nutrient distribution in soils under rain-fed corn production in central-western Mexico. Soil Till. Res., 66, 143-152. https://doi.org/10.1016/s0167-....
 
42.
Scheffer F., Schachtschabel P., and Blume H.-P., 2010. Lehrbuch der Bodenkunde. Spektrum Akademischer Verlag, Heidelberg.
 
43.
Sims J.R. and Haby V.A., 1971. Simplified colorimetric determination of soil organic matter. Soil Sci., 112, 137-141. https://doi.org/10.1097/000106....
 
44.
Shukla M.K., Lal R., and Ebinger M., 2006. Determining soil quality indicators by factor analysis. Soil Till. Res., 87, 194-204. https://doi.org/10.1016/j.stil....
 
45.
Spiegel H., Dersch G., Hösch J., and Baumgarten A., 2007. Tillage effects on soil organic carbon and nutrient availability in a long-term field experiment in Austria. Bodenkultur, 58, 47-58.
 
46.
Soane B.D., Ball B.C., Arvidsson J., Basch G., Moreno F., and Roger-Estrade J., 2012. No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil Till. Res., 118, 66-87. https://doi.org/10.1016/j.stil....
 
47.
Steppuhn H., van Genuchten M.T., and Grieve C.M., 2005. Root-zone salinity: II. Indices for tolerance in agricultural crops. Crop Sci., 45, 221-232. https://doi.org/10.2135/cropsc....
 
48.
Szalay T., Moitzi G., Liebhard P., and Weingartmann H., 2015. Influence of different tillage systems on fuel consumption and requirement of working time in winter wheat cropping in a semiarid area of production. Bodenkultur, 66, 39-48.
 
49.
Thomas G.A., Dalal R.C., and Standley J., 2007. No-till effects on organic matter, pH, cation exchange capacity and nutrient distribution in a Luvisol in the semi-arid subtropics. Soil Till. Res., 94, 295-304. https://doi.org/10.1016/j.stil....
 
50.
Triantafilis J., Lesch S.M., La Lau K., and Buchanan S.M., 2009. Field level digital soil mapping of cation exchange capacity using electromagnetic induction and a hierarchical spatial regression model. Aust. J. Soil Res., 47, 651-663. https://doi.org/10.1071/sr0824....
 
51.
Vašák F., Černý J., Buráňová Š., Kulhánek M., and Balík J., 2015. Soil pH changes in long-term field experiments with different fertilizing systems. Soil Water Res., 10, 19-23. https://doi.org/10.17221/7/201....
 
eISSN:2300-8725
ISSN:0236-8722