Carbon consumption of developing fruit and the fruit bearing capacity of individual RoHo 3615 and Pinova apple trees
Martin Penzel 1, 2  
,   Alan Neil Lakso 3  
,   Nikos Tsoulias 1, 4  
,   Manuela Zude-Sasse 1  
More details
Hide details
Horticultural Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Germany
Agromechatronics – Sensor-based Process Management in Agriculture, Technische Universität Berlin, Germany
Horticulture Section, Cornell AgriTech, Cornell University, Geneva, NY 14456, USA
Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, Greece
Manuela Zude-Sasse   

Horticultural Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469, Potsdam, Germany
Final revision date: 2020-09-03
Acceptance date: 2020-09-15
Publication date: 2020-10-19
Int. Agrophys. 2020, 34(4): 409–423
This paper describes an approach to estimate the photosynthetic capacity and derive the optimum fruit number for each individual tree, in order to achieve a defined fruit size, which is named as the fruit bearing capacity of the tree. The estimation of fruit bearing capacity was carried out considering the total leaf area per tree as measured with a 2-D LiDAR laser scanner, LALiDAR, and key carbon-related variables of the trees including leaf gas exchange, fruit growth and respiration, in two commercial apple orchards. The range between minLALiDAR and maxLALiDAR was found to be 2.4 m² on Pinova and 4.3 m² on RoHo 3615 at fully developed canopy. The daily C requirement of the growing fruit and the associated leaf area demand, necessary to meet the average daily fruit C requirements showed seasonal variation, with maximum values in the middle of the growing period. The estimated fruit bearing capacity ranged from 33-95 fruit tree-1 and 45-121 fruit tree-1 on the trees of Pinova and RoHo 3615, respectively. This finding demonstrates sub-optimal crop load at harvest time in both orchards, above or below the fruit bearing capacity for individual trees. In conclusion, the LiDAR measurements of the leaf area combined with a carbon balance model allows for the estimation of fruit bearing capacity for individual trees for precise crop load management.
Aggelopoulou K.D., Wulfsohn D., Fountas S., Gemtos T.A., Nanos G.D., and Blackmore S., 2010. Spatial variation in yield and quality in a small apple orchard. Precis. Agric., 11, 538-556.
Arno J., Escola A., Valles J.M., Llorens J., Sanz R., et al., 2012. Leaf area index estimation in vineyards using a ground-based LiDAR scanner. Prec. Agr., 14, 290-306.
Bepete M. and Lakso A.N., 1997. Apple fruit respiration in the field: relationships to fruit growth rate, temperature, and light exposure. Acta Hortic., 451, 319-326.
Bepete M. and Lakso A.N., 1998. Differential effects of shade on early season fruit and shoot growth rates in ’Empire’ apple branches. HortScience, 33, 823-825.
Brandes N. and Zude-Sasse M., 2019. Respiratory patterns of European pear (Pyrus communis L. ‘Conference’) throughout pre- and postharvest fruit development. Heliyon, 5, e01160.
Breen K.C., Tustin D.S., Palmer J.W., and Close D.C., 2015. Method of manipulating floral bud density affects fruit set responses and productivity in apple. Sci. Hortic.-Amsterdam, 197, 244-253.
Bresilla K., Perulli G.D., Boini A., Morandi B., Corelli Grappadelli L., and Manfrini L., 2019. Single-shot convolution neural networks for real-time fruit detection within the tree. Front. Plant Sci., 611(10), 1-12.
Charles-Edwards DA., 1982. Physiological determinants of crop growth. Academic Press, Sydney.
Corelli-Grappadelli L., Lakso A.N., Flore J.A., 1994. Early season patterns of carbohydrate partitioning in exposed and shaded apple branches. J. Am. Soc. Hortic. Sci., 119, 596-603.
Doerflinger F.C., Lakso A.N. and Braun P., 2015. Adapting the MaluSim Apple tree model for the ‘Gala’ cultivar. Acta Hortic., 1068, 267-272.
Forshey C.G., Weires R.W., and van Kirk J.R., 1987. Seasonal development of the leaf canopy of ‘Macspur McIntosh’ apple trees. HortScience, 22, 881-883.
Glenn D.M., 2016. Dry matter partitioning and photosynthetic response to biennial bearing and freeze damage in ‘Empire’ apple. Sci.Hortic.-Amsterdam, 210, 1-5.
Greene D.W., Lakso A.N., Robinson T.L., and Schwallier P., 2013. Development of a fruitlet growth model to predict thinner response on apples. HortScience, 48, 584-587.
Handschack M. and Schmidt S., 1990. Grafisches Modell zur Beschreibung der Ertragsbildung bei Apfel unter Berücksichtigung von Wechselwirkungen zwischen den Ertragskom-ponenten. Arch. Gartenbau, 38, 399-405.
Hansen P., 1967. 14C-studies on apple trees. I. The effect of the fruit on the translocation and distribution of photosynthates. Physiol. Plant., 20, 382-91.
Hansen P., 1969. 14C-Studies on apple trees. IV. Photosynthate consumption in fruits in relation to the leaf-fruit ratio and to the leaf-fruit position. Physiol. Plant., 22, 186-198.
Hobart M., Pflanz M., Weltzien C., and Schirrmann M., 2020. Growth Height Determination of Tree Walls for Precise Monitoring in Apple Fruit Production Using UAV Photogrammetry. Remote Sensing, 12(10), 1656, 1-17.
Iwanami H., Moriya-Tanaka Y., Honda C., Hanada T., and Wada M., 2018. A model for representing the relationships among crop load, timing of thinning, flower bud formation, and fruit weight in apples. Sci. Hortic.-Amsterdam, 242, 181-187.
Jackson J.E. and Palmer J.W., 1980. A computer model study of light interception by orchards in relation to mechanised harvesting and management. Sci. Hortic.-Amsterdam., 13, 1-7.
Janoudi A. and Flore J.A., 2005. Application of ammonium thiosulfate for blossom thinning in apples. Sci. Hortic.-Amsterdam, 104, 161-168.
Jones H.G., 1981. Carbon dioxide exchange of developing apple (Malus pumila Mitt.) fruits. J. Exp. Bot., 32, 1203-1210.
Kofler J., Milyaev A., Capezzone F., Stojnić S., Mićić N., et al., 2019. High crop load and low temperature delay the onset of bud initiation in apple. Sci. Rep., 9, 17986 (2019).
Koike H., Yoshizawa S., and Tsukahara K., 1990. Optimum crop load and dry weight partitioning in Fuji/M.26 apple trees. J. Jap. Soc. Hort. Sci., 58, 827-834.
Lakso A.N., 1984. Leaf area development patterns in young pruned and unpruned apple trees.J. Amer. Soc. Hort. Sci., 109, 861-865.
Lakso A.N., 2011. Early fruit growth and drop - the role of carbon balance in the apple tree. Acta Hortic., 903, 733-742.
Lakso A.N., Corelli Grappadelli L., Barnard J., and Goffinet M.C., 1995. An expolinear model of the growth pattern of the apple fruit. J. Hort. Sci., 70(4), 389-394.
Lakso A.N., Piccioni R.M., Denning S.S., Sottile F., and Costa Tura J., 1999. Validating an apple dry matter production model with whole canopy gas exchange measurements in the field. Acta Hortic., 499, 115-122.
Lakso A.N., White M.D., and Tustin D.S., 2001. Simulation modeling of the effects of short and long-term climatic variations on carbon balance of apple trees. Acta Hortic., 557, 473-480.
Lakso A.N., Greene D.W., and Palmer J.W., 2006. Improvements on an apple carbon balance model. Acta Hortic., 707, 57-61.
Lakso A.N. and Johnson R.S., 1990. A simplified dry matter production model for apple using automatic programming simulation software. Acta Hortic., 276, 141-148.
Lakso A.N. and Robinson T.L., 2014. Integrating physiological models in applied fruit crop research. Acta Hortic., 1058, 285-290.
Lakso A.N. and Goffinet M.C., 2017. Advances in understanding apple fruit development. In: Achieving sustainable cultivation of apples (Ed. K. Evans), Burleigh Dodds Science Publishing, Cambridge, United Kingdom.
Ligges U., Short T., Kienzle P., et al., 2015. Package ‘signal’. R Foundation for Statistical Computing.
Lopez G., Boini A., Manfrini L., Torres-Ruiz J.M., Pierpaoli E., Zibordi M., and Corelli-Grappadelli L., 2018. Effect of shading and water stress on light interception, physiology and yield of apple trees. Agr. Water Manag., 210, 140-148.
McArtney S.J. and Obermiller J.D., 2012. Use of 1-Aminocyclopropane carboxylic acid and metamitron for delayed thinning of apple fruit. Hortscience, 47, 1612 - 1616.
Manfrini L., Taylor J.A., and Corelli-Grappadelli L., 2009. Spatial analysis of the effect of fruit thinning on apple crop load. Eur. J. Hor. Sci., 74(2), 54-60.
McCree K.J., 1972. Test of current definitions of photosynthetically active radiation against leaf photosynthesis data. Agr. Meteorol., 10, 443-53.
McQueen J.C., Minchin P.E.H., Thorpe M.R., Silvester W.B., 2005. Short-term storage of carbohydrate in stem tissue of apple (Malus domestica), a woody perennial: evidence for involvement of the apoplast. Funct. Plant Biol., 32, 1027-1031.
Mirás-Avalos J.M., Egea G., Nicolas E., et al., 2011. QualiTree, a virtual fruit tree to study the management of fruit quality. II. Parameterisation for peach, analysis of growth-related processes and agronomic scenarios. Trees, 25, 785-799.
Monteith J.L., 1977. Climate and the efficiency of crop production in Britain. Philos. Trans. R. Soc. Lond., Ser. B, 281, 277-294.
Musacchi S. and Serra S., 2018. Apple fruit quality: overview on pre-harvest factors. Sci. Hortic.-Amsterdam, 234, 409-430.
Pallas B., Da Silva D., Valsesia P., Yang W., Guillaume O., et al., 2016. Simulation of carbon allocation and organ growth variability in apple tree by connecting architectural and source-sink models. Ann. Bot., 118, 317-330.
Palmer J.W., 1992. Effects of varying crop load on photosynthesis, dry matter production and partitioning of Crispin/M.27 apple trees. Tree Physiol., 11, 19-33.
Palmer J.W., Giuliani R., and Adams H.M., 1997. Effect of crop load on fruiting and leaf photosynthesis of ‘Braeburn’/M.26 apple trees. Tree Physiol., 17, 741-746.
Palmer J.W., Wünsche J.N., Meland M., and Hann A., 2002. Annual dry matter production by three apple cultivars at four within-row spacings in New Zealand. J. Hort. Sci. Biotechnol., 77, 712-717.
Pavel E .W. and DeJong T.M., 1995. Seasonal patterns of nonstructural carbohydrates of apple (Malus pumila Mill.) fruits: relationship with relative growth rates and contribution to solute potential. J. Hort. Sci., 70, 127-134.
Penzel M. and Kröling C., 2020. Thinning efficacy of metamitron on young ‘RoHo 3615’ (Evelina®) apple. Sci. Hortic.-Amsterdam, 272, 1-6.
Penzel M., Pflanz M., Gebbers R., and Zude-Sasse M., 2020. Tree adapted mechanical flower thinning prevents yield loss caused by over thinning of trees with low flower set in apple. Eur. J. Hort. Sci., 2021 (in press).
R Core Team, 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Robinson T.L., Lakso A.N., and Greene D., 2017. Precision crop load management: The practical implementation of physiological models. Acta Hortic., 1177, 381-390.
Schechter I., Proctor J.T.A., and Elfving D.C., 1993. Characterization of seasonal fruit growth of `Idared’ apple. Sci. Hortic.-Amsterdam, 54, 203-210.
Schumacher R., 1962. Fruchtentwicklung und Blütenknos-penbildung beim Apfel in Abhängigkeit von der Blattmasse, unter Berücksichtigung der abwechselnden Tragbarkeit. Ph.D. Thesis, ETH Zürich.
Skene D.S., 1966. The distribution of growth and cell division in the fruit of Cox’s Orange Pippin. Ann. Bot., 30(3), 493-512.
Stanley C.J., Tustin D.S., Lupton G.B., McArtney S., Cashmore W.M., and De Silva H.N., 2000. Towards understanding the role of temperature in apple fruit growth response in three geographical regions within New Zealand. J. Hortic. Sci. Biotech., 75(4), 413-422.
Treder W., 2008. Relationship between yield, crop density coefficient and average fruit weight of ‘Gala’ apple. J. Fruit Orn. Plant Res., 16, 53-63.
Tsoulias N., Paraforos D.S., Fountas S., and Zude-Sasse M., 2019. Estimating canopy parameters based on the stem position in apple trees using a 2D LiDAR. Agronomy, 9(11), 740, 1-18.
Tsoulias N., Paraforos D.S., Xanthopoulos G., Zude-Sasse M., 2020. Apple shape detection based on geometric and radiometric features using a LiDAR laser scanner. Remote Sensing, 12: 2481.
Vanbrabant Y., Delalieux S., Tits L., Pauly K., Vandermaesen J., and Somers B., 2020. Pear Flower Cluster Quantification Using RGB Drone Imagery. Agronomy, 10, 407, 1-26.
Wagenmakers P.S., 1996. Effects of light and temperature on potential apple production. Acta Hortic., 416, 191-198.
Walton E.F., Wünsche J.N., and Palmer J.W., 1999. Estimation of the bioenergetic costs of fruit and other organ synthesis in apple. Physiol. Plant., 106, 129-134.
Warrington I.J., Faulton T.A., Halligan E.A., and de Silva H.N., 1999. Apple fruit growth and maturity are affected by early season temperatures. J. Amer. Soc. Hort. Sci., 124, 468-477.
Wójcik P., Rutkowski K., and Treder W., 2001. Quality and storability of ‘Gala’ apples as affected by crop load. Folia Hortic., 13(2), 89-96.
Wünsche J.N., Lakso A.N., Robinson T.L., Lenz F., and Denning S.S., 1996. The bases of productivity in apple production systems: the role of light interception by different shoot types. J. Amer. Soc. Hort. Sci., 121, 886-893.
Xia G., Cheng L., Lakso A.N., and Goffinet M., 2009. Effects of nitrogen supply on source-sink balance and fruit size of ‘Gala Apple’ trees. Hort. Sci., 134, 126-133.
Yoder K.S., Peck G.M., Combs L.D., and Byers R.E., 2013. Using a pollen tube growth model to improve apple blossom thinning for organic production. Acta Hortic., 1001, 207-214.