Changes in pasta properties during cooking and short-time storage
More details
Hide details
Department of Thermal Technology and Food Process Engineering, University of Life Sciences, Doświadczalna 44, 20-280 Lublin, Poland
Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
Department of Equipment Operation and Maintenance in the Food Industry, University of Life Sciences, Doświadczalna 44, 20-280 Lublin, Poland
Publish date: 2019-07-18
Acceptance date: 2018-12-18
Int. Agrophys. 2019, 33(3): 323–330
The fundamental aim of this research was to study changes in the physical properties of spaghetti during cooking and after the first hour of storage. In addition, the research evaluated the cooking properties of pasta. For testing purposes, eight samples of spaghetti, produced using semolina and common wheat flour, were used. After cooking, the samples of spaghetti were stored for 2, 5, 10, 20, 30, 40, 50 and 60 min. After storage, the samples of cooked spaghetti were cut, and both the cutting force (hardness) and the cutting energy (firmness) of the samples were determined. It was found that, after storage, the cutting force and energy of cooked pasta decreased, in average terms, from 1.0 to 0.44 N and from 0.84 to 0.43 mJ, respectively. The statistical analysis showed a significant correlation between the storage time and the textural parameters of pasta. The hardness and firmness of pasta, which was al dente after cooking, were found to decrease about twice during storage, as a result of water migration. The hardness of pasta stabilised after 50 min of the storage of cooked spaghetti. Moreover, the obtained data revealed that the diameter increase index of spaghetti could indicate the quality of pasta.
AACC, 2000. Approved Methods of the American Association of Cereal Chemists. St. Paul, MN, USA: AACC Inc.
Biernacka B., Dziki D., Różyło R., Wójcik M., Miś A., Romankiewicz D., and Krzysiak Z., 2018. Relationship between the properties of raw and cooked spaghetti – new indices for pasta quality evaluation. Int. Agrophys., 32, 217-223.
Biernacka B., Dziki D., Gawlik-Dziki U., Różyło R., and Siastała M., 2017. Physical, sensorial, and antioxidant properties of common wheat pasta enriched with carob fiber. LWT - Food Sci. Technol., 77, 186-192. 1016/ j.lwt.2016.11.042.
Bonomi F., D’Egidio M.G., Iametti S., Marengo M., Marti A., Pagani M.A., and Ragg E.M., 2012. Structure-quality relationship in commercial pasta: a molecular glimpse. Food Chem., 135, 348-355.
Bouasla A., Wójtowicz A., and Zidoune M.N., 2017. Gluten-free precooked rice pasta enriched with legumes flours: Physical properties, texture, sensory attributes and microstructure. LWT - Food Sci. Technol., 75, 569-577.
Bouasla A., Wójtowicz A., Zidoune M.N., Olech M., Nowak R., Mitrus M., and Oniszczuk A., 2016. Gluten-free precooked rice-yellow pea pasta: Effect of extrusion-cooking conditions on phenolic acids composition, selected properties and microstructure. J. Food Sci., 81(5), C1070-C1079.
Carini E., Curti E., Cassotta F., Najm N.E.O., and Vittadini E., 2014. Physico-chemical properties of ready to eat, shelf-stable pasta during storage. Food Chem., 144, 74-79.
Delcour J.A., Bruneel C., Derde L.J., Gomand S.V., Pareyt B., Putseys J.A.,Wilderjans E., and Lamberts L., 2010. Fate of Starch in Food Processing: From Raw Materials to Final Food Products. Annu. Rev. Food Sci. Technol. 1, 87-111.
Del Nobile M.A., Baiano A., Conte A., and Mocci G., 2005. Influence of protein content on spaghetti cooking quality. J. Cell Sci., 41, 347-356. 12.003.
De La Pena E., Ohm J., Simsek S., and Manthey F.A., 2015. Physicochemical changes in nontraditional pasta during cooking. Cereal Chem., 92, 578-587. 1094/cchem-01-15-0014-r.
De Noni I., and Pagani M.A., 2010. Cooking properties and heat damage of dried pasta as influenced by raw material characteristics and processing conditions. Crit. Rev. Food Sci., 50, 465-472.
Dziki D. and Laskowski J., 2005. Evaluation of the cooking quality of spaghetti. Pol. J. Nutr. Food Sci., 14, 153-158.
Fardet A., Abecassis J., Hoebler C., Baldwin P., Buleon A., Berot S., and Barry J., 1999. Influence of technological modification of the protein network from pasta on in vitro starch degradation. J. Cereal Sci., 10, 133-145.
Fares C., Menga V., Martina A., Pellegrini N., Scazzina F., and Torriani S., 2015. Nutritional profile and cooking quality of a new functional pasta naturally enriched in phenolic acids, added with β-glucan and bacillus coagulans GBI-30, 6086. J. Cereal Sci., 65, 260-266.
Fuad T. and Prabhasankar P., 2010. Role of ingredients in pasta product quality: A review on recent developments. Crit. Rev. Food Sci., 50, 787-798. 10408390903001693.
Gonzalez J.J., McCarthy K.L., and McCarthy M.J., 2000. Textural and structural changes in lasagna after cooking. J. Texture Stud., 31, 93-108. 4603.2000.tb00286.x.
Guler S., Koksel H., and Ng P.K.W., 2002. Effects of industrial pasta drying temperatures on starch properties and pasta quality. Food Research International, 35, 421-427.
Kim S., Lee J.W., Heo Y., and Moon B., 2016. Effect of pleurotus eryngii mushroom b-glucan on quality characteristics of common wheat pasta. J. Food Sci., 81, C835-40.
Krishnan M. and Prabhasankar P., 2012. Health based pasta: redefining the concept of the next generation convenience food. Crit. Rev. Food Sci., 52, 9-20.
Larrosa V., Lorenzo G., Zaritzky N., and Califano A., 2015. Dynamic rheological analysis of gluten-free pasta as affected by composition and cooking time. J. Food Engin., 160, 11-18.
Larrosa V., Lorenzo G., Zaritzky N., and Califano A., 2016. Improvement of the texture and quality of cooked gluten-free pasta. LWT - Food Sci. Technol., 70, 96-103. https: //
Lee S.J., Rha M., Koh W., Park W., Lee C., and Kwon Y.A., 2002. Measurement of cooked noodle stickiness using a modified instrumental method. Cereal Chem., 79, 838-842.
Marti A., Seetharaman K., and Pagani M.A., 2013. Rheological approaches suitable for investigating starch and protein properties related to cooking quality of durum wheat pasta. J. Food Quality, 36, 133-138.
Martinez C., Pablo D. Risotta, Alberto E., Leon M., and Amon Ch., 2007. Physical, sensory and chemical evaluation of cooked spaghetti. J. Texture Stud., 38, 666-683.
McCarthy K.L., Gonzalez J.J., and McCarthy M.J., 2002. Change in moisture distribution in lasagna pasta post cooking. J. Food Sci., 67, 1785-1789. 1365-2621.2002.tb08723.x.
Micale R., Giallanza A., Russo G., and La Scalia G., 2017. Selection of a sustainable functional pasta enriched with opuntia using ELECTRE III methodology. Sustainability (Switzerland), 9, 885.
Micale R., Giallanza A., Enea M., and La Scalia G., 2018. Economic assessment based on scenario analysis for the production of a new functional pasta. J. Food Engin., 237, 171-176.
Ozyurt G., Uslu L., Yuvka I., Gokdogan S., Atci G., Ak B., and Isik O., 2015. Evaluation of the cooking quality characteristics of pasta enriched with spirulina platensis. J. Food Quality 38, 268-272.
Rosenthal A.J., 1999. Food texture: Measurement and Perception. Aspen Publisher Inc., USA, pp. 298.
Różyło R., Dziki D., Gawlik-Dziki U., Cacak-Pietrzak G., Mi A., and Rudy S., 2015. Physical properties of gluten-free bread caused by water addition. Int. Agrophys., 29, 353-364.
Rudy S., Dziki D., Krzykowski A., Gawlik-Dziki U., Polak R., Różyło R., and Kulig R., 2015. Influence of pre-treatments and freeze-drying temperature on the process kinetics and selected physico-chemical properties of cranberries (Vaccinium macrocarpon Ait.). LWT - Food Sci. Technol., 63, 497-503.
Sanguinetti A.M., Del Caro A., Scanu A., Fadda C., Milella G., Catzeddu P., and Piga A., 2016. Extending the shelf life of gluten-free fresh filled pasta by modified atmosphere packaging. LWT - Food Sci. Technol., 71, 96-101. 10.1016/j.lwt.2016.03.010.
Scanlon M.G., Edwards N.M.,and Dexter J. E, 2005. Pasta: strength and structure. New Food, 8,14-15.
Sissons M.J., Soh H.N., and Turner M.A., 2007. Role of gluten and its components in influencing durum wheat dough properties and spaghetti cooking quality. J. Sci. Food Agric., 87, 1874-1885.
Sobota A., Rzedzicki Z., Zarzycki P., and Kuzawińska E., 2015. Application of common wheat bran for the industrial production of high-fibre pasta. Int. J. Food Sci. Technol., 50, 111-119.
Sobota A., Zarzycki P., Rzedzicki Z, Sykut-Domańska E., and Wirkijowska A., 2013. Effect of cooking time on the texture and cooking quality of spaghetti. Acta Agroph., 2013, 20(4), 693-703.
Sobota A. and Skwira A., 2009. Physical properties and chemical composition of extruded pasta. Acta Agroph., 13, 245-260.
Wood J.A., 2009. Texture, processing and organoleptic properties of chickpea-fortied spaghetti with insights to the underlying mechanisms of traditional durum pasta quality. J. Cereal Sci., 49, 128-133.
Wójtowicz A., and Mościcki L., 2014. Influence of legume type and addition level on quality characteristics, texture and microstructure of enriched precooked pasta. LWT - Food Sci. Technology, 59, 1175-1185.
Wójtowicz A., 2006. Influence of extrusion parameters on some texture characteristics of precooked semolina pasta. Acta Agroph., 8, 1049-1060.