Contribution of mycorrhizae to sustainable and ecological agriculture: a review
More details
Hide details
Department of Plant Protection, University of Life Sciences in Lublin, Leszczyńskiego 7, 20-069 Lublin, Poland
Department of Plant Protection, College of Agriculture and Forestry, University of Mosul, 41002 Mosul, Iraq
Final revision date: 2021-11-16
Acceptance date: 2021-11-24
Publication date: 2021-12-17
Corresponding author
Barbara Skwaryło-Bednarz   

Department of Plant Protection, University of Life Sciences in Lublin, Leszczyńskiego 7, 20-069, Lublin, Poland
Int. Agrophys. 2021, 35(4): 331-341
  • mycorrhiza, sustainable agriculture, ecology plant diseases, plant toxicity
The aim of the paper is to discuss, on the basis of the recent scientific literature, the potential of mycorrhizae as an important biological factor supporting crop production. Mycorrhizal symbiosis is a multifunctional phenomenon, therefore it should play an important role in sustainable and organic agriculture, but it is still underused. The article focuses on the influence of mycorrhizae on nutrient uptake by plants, as well as exploring the importance of mycorrhizal fungi in promoting plant growth and improving yield quality. Mycorrhizal fungi are factors which limit plant stresses, thereby indirectly contributing to a reduction in the consumption of agrochemicals. The results of many studies show that mycorrhizal symbiosis plays an important role in essential ecosystem processes by regulating the microbiological relationships in the soil, thereby creating a permanent soil structure and protecting it from air and water erosion. The detailed functioning and regulation of these mycorrhizosphere processes and their significance for plants are widely described in the scientific literature, however, the use of mycorrhizae in agriculture is still insufficient. Particular attention should be paid to the potential benefits of mycorrhizae in sustainable agriculture, as well as for ecological and safe plant production.
Akköprü A. and Demir S., 2005. Biological control of Fusarium wilt in tomato caused by Fusarium oxysporum f. sp. lycopersici by AMF Glomus intraradices and some rhizobacteria. J. Phytopathol., 153(9), 544-555.
Al-Askar A.A. and Rashad Y.M., 2010. Arbuscular mycorrhizal fungi: A biocontrol agent against common bean Fusarium root rot disease. Plant Pathol. J., 9, 31-38.
Al-Hmoud G. and Al-Momany A., 2015. Effect of four mycorrhizal products on Fusarium root rot on different vegetable crops. J. Plant Pathology Microbiol., 6(2), 1.
Allen F.M., 1982. Influence of vesicular-arbuscular mycorrhiza on water movement though Bouteloua gracilis (H.B.K) Lag ex Steud. New Phytol., 92, 191-196.
Al-Karaki G. N., Hammad R., and Rusan M., 2001. Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza, 11(1), 43-47.
Alvarez M., Huygens D., Diaz L.M., Villanueva C.A., Heyser W., and Boeckx P., 2012. The spatial distribution of acid phosphatase activity in ectomycorrhizal tissues depends on soil fertility and morphotype, and relates to host plant phosphorus uptake. Plant Cell Environ., 35(1), 126-135.
Asmelash F., Bekele T., and Birhane E., 2016. The potential role of arbuscular mycorrhizal fungi in the restoration of degraded land. Front. Microbiol., 7, 1095.
Augé R.M., 2001. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11(1), 3-42.
Azcón R., Ruiz-Lozano J.M., and Rodriguez R., 2001. Differential contribution of arbuscular mycorrhizal fungi to plant nitrate uptake (15N) under increasing N supply to the soil. Can. J. Bot., 79(10), 1175-1180.
Bano S.A. and Ashfaq D., 2013. Role of mycorrhiza to reduce heavy metal stress. Nat. Sci., 5(12A), 16-20.
Barea J.M., Toro M., Orozco M.O., Campos E., and Azcón R., 2002. The application of isotopic (32P and 15N) dilution techniques to evaluate the interactive effect of phosphate-solubilizing rhizobacteria, mycorrhizal fungi and Rhizobium to improve the agronomic efficiency of rock phosphate for legume crops. Nutrient Cycling Agroecosys., 63(1), 35-42.
Bhattacharyya P.N. and Jha D.K., 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol., 28, 1327-1350.
Becker D.M., Bagley S.T., and Podila G.K., 1999. Effects of mycorrhizal-associated streptomycetes on growth of Laccaria bicolor, Cenococcum geophilum, and Armillaria species and on gene expression in Laccaria bicolor. Mycologia, 33-40.
Begum N., Qin C., Ahanger M.A., Raza S., Khan M.I., Ashraf M., Ahmed N., and Zhang L., 2019. Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front. Plant Sci., 10. 1068.
Berruti A., Lumini E., Balestrini R., and Bianciotto V., 2015. Arbuscular mycorrhizal fungi as natural biofertilizers: Let’s benefit from past successes. Front Microbiol., 6, 1559.
Berta G., Sampo S., Gamalero E., Massa N., and Lemanceau P., 2005. Suppression of Rhizoctonia root-rot of tomato by Glomus mossae BEG12 and Pseudomonas fluorescens A6RI is associated with their effect on the pathogen growth and on the root morphogenesis. Eur. J. Plant Pathol., 111(3), 279-288.
Bhagawati B., Goswami B.K., and Singh C.S., 2000. Management of disease complex of tomato caused by Meloidogyne incognita and Fusarium oxysporum f. sp. lycopersici through bioagent. Indian J. Nematol., 30(1), 16-21.
Bi H.H., Song Y.Y., and Zeng R.S., 2007. Biochemical and molecular responses of host plants to mycorrhizal infection and their roles in plant defence. Allelopathy J., 20(1), 15.
Błaszkowski J. and Czerniawska B., 2011. Aarbuscular mycorrhizal fungi (Glomeromycota) associated with roots of Ammophila arenaria growing in maritime dunes of Bornholm (Denmark). Acta Societatis Botanicorum Poloniae, 80, 1, 63-76.
Bødker L., Kjøller R., Kristensen K., and Rosendahl S., 2002. Interactions between indigenous arbuscular mycorrhizal fungi and Aphanomyces euteiches in field-grown pea. Mycorrhiza, 12(1), 7-12.
Brundrett M., 2004. Diversity and classification of mycorrhizal associations. Biol. Rev. Camb. Philos. Soc., 79(3), 473-495.
Candido V., Campanelli G., D’Addabbo T., Castronuovo D., Renco M., and Camele I., 2013. Growth and yield promoting effect of artificial mycorrhization combined with different fertiliser rates on field-grown tomato. Italian J. Agron., 8(3), 22.
Castillo C., Morales A., Rubio R., and Barea J.M., 2013. Interactions between native arbuscular mycorrhizal fungi and phosphate solubilizing fungi and their effect to improve plant development and fruit production by Capsicum annuum L. Afr. J. Microbiol. Res., 7(26), 3331-3340.
Cavagnaro T.R. and Martin A.W., 2011. Arbuscular mycorrhizas in southeastern Australian processing tomato farm soils. Plant and Soil, 340(1-2), 327-336.
Chitarra W., Pagliarani C., Maserti B., Lumini E., Siciliano I., Cascone P., Schubert A., Gambino G., Balestrini R., and Guerrieri E., 2016. Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiology, 171, 1009-1023.
Colella T., Candido V., Campanelli G., Camele I., and Battaglia D., 2014. Effect of irrigation regimes and artificial mycorrhization on insect pest infestations and yield in tomato crop. Phytoparasitica, 42(2), 235.
Colla G., Rouphael Y., Cardarelli M., Tullio M., Rivera C.M., and Rea E., 2008. Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biol. Fertil. Soils, 44(3), 501-509.
Conversa G., Lazzizera C., Bonasia A., and Elia A., 2013. Yield and phosphorus uptake of a processing tomato crop grown at different phosphorus levels in a calcareous soil as affected by mycorrhizal inoculation under field conditions. Biol. Fertil. Soils, 49(6), 691.
Cwalina-Ambroziak B., Damszel M.M., and Głosek-Sobieraj M., 2015. The effect of biological and chemical control agents on the health status of the very early potato cultivar Rosara. J. Plant Prot. Res., 55(4), 389-395.
Dasgan H.Y., Kusvuran S., and Ortas I., 2008. Responses of soilless grown tomato plants to arbuscular mycorrhizal fungal (Glomus fasciculatum) colonization in re-cycling and open systems. Afr. J. Biotechnol., 7(20), 3606-3613.
Declerck S., Risede J.M., Rufyikiri G., and Delvaux B., 2002. Effects of arbuscular mycorrhizal fungi on severity of root rot of bananas caused by Cylindrocladium spathiphylli. Plant Pathol., 51(1), 109-115.
Demir S., 2004. Influence of arbuscular mycorrhiza on some physiological growth parameters of pepper. Turk. J. Biol., 28, 85-90.
Demir S. and Akköprü A., 2005. Using of arbuscular mycorrhizal fungi (AMF) for biocontrol of soil-borne fungal pathogens. In: Biological control of plant diseases: current concepts (Eds S.B. Chincholkar, K.G. Mukerji). Howarth Press, NY, USA, 17-46.
Diedhiou P.M., Hallmann J., Oerke E.C., and Dehne H.W., 2003. Effects of arbuscular mycorrhizal fungi and a non-pathogenic Fusarium oxysporum on Meloidoyne incognita infestation of tomato. Mycorrhiza, 13,199-204.
Ellouze W., Hamel C., Freire Cruz A., Ishii T., Gan Y., Bouzid S., and St-Arnaud M., 2012. Phytochemicals and Spore Germination: At the Root of AMF Host Preference? Appl. Soil Ecol., 60, 98-104.
Elmer W.H., 2002. Influence of formononetin and NaCl on mycorrhizal colonization and Fusarium crown and root rot of asparagus. Plant Disease, 86, 1318-1324.
Fester T., 2013. Arbuscular mycorrhizal fungi in a wetland constructed for benzene-, methyl tert-butyl ether- and ammonia-contaminated groundwater bioremediation. Microb. Biotechnol., 1, 80-84. https://doi.10.1111/j.1751-791....
Finlay R.D., 2008. Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J. Exp. Bot., 59, 1115-1126.
Fritz M., Jakobsen I., Lyngkjær M. F., Thordal-Christensen H., and Pons-Kühnemann J., 2006. Arbuscular mycorrhiza reduces susceptibility of tomato to Alternaria solani. Mycorrhiza, 16, 413-419.
Gałązka A. and Gawryjołek K., 2015. Glomalin – soil glicoprotein produced by arbuscular mycorhizal fungus (in Polish). Post. Microbiol., 54, 4, 331-343.
Gaur A. and Adholeya A., 2004. Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr. Sci., 86, 528-534.
George E., 2000. Nutrient uptake. Contributions of arbuscular mycorrhizal fungi to plant mineral nutrition. In: Arbuscular mycorrhizas: physiology and function (Eds Y. Kapulnik, D.D. Douds). Kluwer Academic, The Netherlands, 307-343.
Giri B. and Mukerji K.G., 2004. Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza, 14(5), 307-312.
Gosling P., Hodge A., Goodlass G., and Bending G.D., 2006. Arbuscular mycorrhizal fungi and organic farming. Agric. Ecosyst. Environ., 113, 17-35.
Govindarajulu M., Pfeffer P.E., Jin H.R., Abubaker J., Douds D.D., and Allen J.W., 2005. Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature, 435, 819-823.
Guru V., Tholkappian P., and Viswanathan K., 2011. Influence of arbuscular mycorrhizal fungi and Azospirillum co-inoculation on the growth characteristics, nutritional content, and yield of tomato crops grown in south India. Indian. J. Fundamental Applied Life Sci., (JLS), 1(4), 84-92.
Hao Z., Christie P., Qin L., Wang C., and Li X., 2005. Control of Fusarium wilt of cucumber seedlings by inoculation with an arbuscular mycorrhizal fungus. J. Plant Nutr., 28(11), 1961-1974.
Harrier L.A. and Watson C.A., 2004. The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manag. Sci., 60(2), 149-157.
Hart M., Ehret D.L., Krumbein A., Leung C., Murch S., Turi C., and Franken P., 2015. Inoculation with arbuscular mycorrhizal fungi improves the nutritional value of tomatoes. Mycorrhiza, 25, 359-376.
Hodge A., Campbell C.D., and Fitter A.H., 2001. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature, 413(6853), 297-299.
Hodge A. and Fitter A.H., 2010. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc. National Academy Sci. USA, 107, 13754-13759.
Hussain M.I. and Reigosa M.J., 2011. A chlorophyll fluorescence analysis of photosynthetic efficiency, quantum yield and photon energy dissipation in PSII antennae of Lactuca sativa L. leaves exposed to cinnamic acid. Plant Physiol. Biochem., 49(11), 1290-1298.
Jamiołkowska A., Księżniak A., Gałązka A., Hetman B., Kopacki M., and Skwaryło-Bednarz B., 2018. Impact of abiotic factors on development of the community of arbuscular mycorrhizal fungi in the soil. Int. Agrophys., 32, 133-140.
Jamiołkowska A., Thanoon A.H., Skwaryło-Bednarz B., Patkowska E., and Mielniczuk E., 2020a. Mycorrhizal inoculation as an alternative for the ecological production of tomato (Lycopersicon esculentum Mill.). Int. Agrophys., 34(2), 253-264.
Jamiołkowska A., Skwaryło-Bednarz B., Patkowska E., Buczkowska H., Gałązka A., Grządziel J., and Kopacki M., 2020b. Effect of mycorrhizal inoculation and irrigation on biological properties of sweet pepper rhizosphere in organic field cultivation. Agronomy-Basel, 1693.
Joseph P.J. and Sivaprasad P., 2000. The potential of arbuscular mycorrhizal associations for biocontrol of soil-borne diseases. Springer Science and Business Media LLC: New York, NY, USA
Jung S.C., Martinez-Medina A., Lopez-Raez J.A., and Pozo M.J., 2012. Mycorrhiza-induced resistance and priming of plant defenses. J. Chem. Ecol., 38(6), 651-664.
Junqin L., Meng B., Chai H., Yang X. Song W., Li S., Lu A., Zhang T., and Sun W., 2019. Arbuscular mycorrhizal fungi alleviate drought stress in C3 (Leymus chinensis) and C4 (Hemarthria altissima) grasses via altering antioxidant enzyme activities and photosynthesis. Front. Plant Sci., 10, 499.
Kareem T.A. and Hassan M.S., 2014. Evaluation of Glomus mosseaeas biocontrol agents against Rhizoctonia solani on tomato. J. Biol. Agric. Healthc., 4(2), 15-19.
Kasiamdari R.S., Smith S.E., Smith F.A., and Scott E.S., 2002. Influence of the mycorrhizal fungus, Glomus coronatum, and soil phosphorus on infection and disease caused by binucleate Rhizoctonia and Rhizoctonia solani on mung bean (Vigna radiata). Plant Soil, 238(2), 235-244.
Khabou W., Hajji B., Zouari M., Rigane H., and Abdallah F.B., 2014. Arbuscular mycorrhizal fungi improve growth and mineral uptake of olive tree under gypsum substrate. Ecol. Eng., 73, 290-296.
Khalvati M.A., Hu Y., Mozafar A., and Schmidhalter U., 2005. Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress. Plant Biol. (Stuttg), 7(6), 706-12.
Kiriachek S.G., Azevedo L.B.C., Peres L.E.P., and Lambais M.R., 2009. Regulation of arbuscular mycorrhizae development (in Spanish). Rev. Bras. Ciênc. Solo, 33(1).
Kobra N., Jalil K., and Youbert G., 2009. Effects of three Glomus species as biocontrol agents against Verticillium-induced wilt in cotton. J. Plant Prot. Res., 49(2), 185-189.
Kowalik P., 2001. Pesticides as a source of pollution (in Polish). Wyd. PWN, Warsaw, Poland.
Lambers H., Raven J.A., Shaver G.R., and Smith S.E., 2008. Plant nutrient-acquistion strategies change with soil age. Trends in Ecol. Evolution (TREE), 23(2), 95-103.
Larcher W., 1995. Physiological Plant Ecology. Berlin: Springer-Verlag.
Liu J., Maldonado-Mendoza I., Lopez-Meyer M., Cheung F., Town C.D., and Harrison M.J., 2007. Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J., 50(3), 529-544.
Liu R., Wang F., and Meng X., 2002. Arbuscular mycorrhizal fungi in the islands of the Bohai bay. Mycosystema, 21(4), 525-532.
Liu T., Sheng M., Wang C.Y., Chen H., Li Z., and Tang M., 2015. Impact of arbuscular mycorrhizal fungi on the growth, water status, and photosynthesis of hybrid poplar under drought stress and recovery. Photosynthetica, 53(2), 250-258.
Mahmood I. and Rizvi R., 2010. Mycorrhiza and organic farming. Asian J. Plant Sci., 9, 241-248.
Manila S. and Nelson R., 2014. Biochemical changes induced in tomato as a result of arbuscular mycorrhizal fungal colonization and tomato wilt pathogen infection. Asian J. Plant Sci. Res., 4(1), 62-68.
Matloob A.A.H. and Juber K.S., 2013. Biological control of bean root rot disease caused by Rhizoctonia solani under green house and field conditions. Agric. Biol. J. North America, 4(5), 512-519.
Matsubaraa Y., Okada T., and Nahiyan A.S.M., 2010. Tolerance to allelopathy and Fusarium disease, changes in antioxidant substance in mycorrhizal asparagus plants raised in decline soil. Acta Hortic., 883, 417-423.
McDonald B. and Linde C., 2002. Pathogen population genetics, evolutionary potential, and durable resistance. Annu. Rev. Phytopathol., 40(1), 349-379.
Michałojć Z., Jarosz Z., Pitura K., and Dzida K., 2015. Effect of mycorrhizal colonization and nutrient solutions concentration on the yielding and chemical composition of tomato grown in rockwool and straw medium. Acta Sci. Pol. Hortorum Cultus, 14, 15-27.
Motha S.V., Hindumathi A., and Bhumi N.R., 2014. Influence of arbuscular mycorrhizal fungi on plant growth promotion and biological control of Verticillium wilt of tomato (Lycopersicon esculentum). Int. J. Pharma Bio Sci., 5(4): B1000-B1009.
Naher U.A., Othman R., and Panhwar Q.A., 2013. Beneficial effects of mycorrhizal association for crop production in the tropics a review. Int. J. Agric. Biol., 15(5), 1021-1028.
Nelson R. and Achar P.N., 2001. Stimulation of growth and nutrient uptake by VAM fungi in Brassica oleracea var. capitata. Biologia Plantarum, 44(2), 277-281.
Nzanza B., Marais D., and Soundy P., 2012. Effect of arbuscular mycorrhizal fungal inoculation and biochar amendment on growth and yield of tomato. Int. J. Agric. Biol., 14, 965-969.
Oseni T.O., Shongwe N.S., and Masarirambi M.T., 2010. Effect of arbuscular mycorrhiza (AM) inoculation on the performance of tomato nursery seedlings in vermiculite. Int. J. Agric. Biol., 12, 789-792.
Ozgonen H., 2001. The effect of salicylic acid and endomycorrhizal fungus Glomus etunicatum on plant development of tomato and Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici. Turkish J. Agric. Forest., 25, 25-29.
Paszkowski U., 2006. Mutualism and parasitism: The yin and yang of plant symbioses. Curr. Opin. Plant Biol., 9(4), 364-370.
Poorter H., Niinemets Ü., Walter A., Fiorani F., and Schurr U., 2010. A method to construct dose-response curves for a wide range of environmental factors and plant traits by means of a meta-analysis of phenotypic data. J. Exp. Bot., 61(8), 2043-2055.
Pozo M.J. and Azcón-Aguilar C., 2007. Unraveling mycorrhiza-induced resistance. Curr. Opin. Plant Biol. 10(4), 393-398.
Pozo M.J., Cordier C., Dumas-Gaudot E., Gianinazzi S., Barea J.M., and Azcón-Aguilar C., 2002. Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. J. Exp. Bot., 53(368), 525-34.
Pozo M.J., Van Loon L.C., and Pieterse C.M.J., 2005. Jasmonates-signals in plant-microbe interactions. J. Plant Growth Regul., 23(3), 211-222.
Qiu Z., Wang L., and Zhou Q., 2013. Effects of bisphenol A on growth, photosynthesis and chlorophyll fluorescence in above-ground organs of soybean seedlings. Chemosphere, 90(3), 1274-1280.
Quilambo O.Q., 2003. The vesicular-arbuscular mycorrhizal symbiosis. Afr. J. Biotechnol., 2(12), 539-546.
Ratti N., Verma H.N., Gautam S.P., 2010. Effect of Glomus species on physiology and biochemistry of Catharanthus roseus. Indian J. Microbiol., 50(3), 355-60.
Redecker D., 2002. Molecular identification and phylogeny of arbuscular mycorrhizal fungi. Plant Soil, 244(1), 67-73.
Reynolds H.L., Hartley A.E., Vogelsang K.M., Bever J.D., and Schultz P.A., 2005. Arbuscular mycorrhizal fungi do not enhance nitrogen acquisition and growth of old-field perennials under low nitrogen supply in glasshouse culture. New Phytologist, 167(3), 869-880.
Saia S., Amato G., Frenda A.S., Giambalvo D., and Ruisi P., 2014. Influence of arbuscular mycorrhizae on biomass production and nitrogen fixation of berseem clover plants subjected to water stress. PLoS One, 9(3), e90738.
Saladin G. and Clément C., 2005. Physiological side effects of pesticides on non-target plants. In: Agriculture and Soil Pollution (Ed. J.V. Livingston). Nova Science Publishers, Inc., Hauppauge, NY, USA.
Salvioli A., Zouari I., Chalot M., and Bonfante P., 2012. The arbuscular mycorrhizal status has an impact on the transcriptome profile and amino acid composition of tomato fruit. BMC Plant Biology, 12(1), 44.
Sannazzaro A.I., Ruiz O.A., Albertó E.O., and Menéndez A.B., 2006. Alleviation of salt stress in Lotus glaber by Glomus intraradices. Plant Soil, 285(1), 279-287.
Santander C. and Olave J., 2012. Effect of symbiosis in the production of melon seedlings with arbuscular mycorrhizal fungi. IDESIA (Chile), 30(2), 75-83.
Sheng M., Tang M., Chen H., Yang B., Zhang F., and Huang Y., 2008. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza, 18(6), 287-296.
Siddiqui Z.A. and Singh L.P., 2004. Effects of soil inoculants on the growth, transpiration and wilt disease of chickpea. J. Plant Dis. Prot., 111, 2, 151-157.
Smith S.E. and Read D.J., 2008. Mineral nutrition, toxic element accumulation and water relations of arbuscular mycorrhizal plants. In: Mycorrhizal Symbiosis (Eds S. Smith, D. Read). Academic Press, 145-187.
Smith S.E. and Smith F.A., 2011. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystems scales. Annu. Rev. Plant Biol., 62, 227-250.
Smith S.E. and Smith F.A., 2012. Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia, 104(1), 1-13.
Song Y., Chen D., Lu K., Sun Z., and Zeng R., 2015. Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus. Front. Plant Sci., 6, 786.
Souza F.A., Dalpé Y., Declerck S., Providencia I.E., and Séjalon-Delmas N., 2005. Life history strategies in Gigasporaceae. Insight from monoxenic culture. In: In vitro culture of Mycorrhizas (Eds S. Declerck, D. G. Strullu, J.A. Fortin). Heidelberg, Germany: Springer-Verlag, 73-91.
Subramanian K.S., Santhanakrishnan P., and Balasubramanian P., 2006. Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. Scientia Horticulturae, 107(3), 245-253.
Tahat M.M., Kumaruzaman S., and Othman R., 2010. Mycorrhizal fungi as a biocontrol agent. Plant Pathol. J., 9(4), 198-207.
Tahat M.M. and Sijam K., 2012. Arbuscular mycorrhizal fungi and plant root exudates bio-communications in the rhizosphere. Afr. J. Microbiol. Res., 6(46), 7295-7301.
Tanwar A., Aggarwal A., Kadian N., and Gupta A., 2013. Arbuscular mycorrhizal inoculation and super phosphate application influence plant growth and yield of Capsicum annuum. J. Soil Sci. Plant Nutr., 13(1), 55-66.
Tawaraya K., 2003. Arbuscular mycorrhizal dependency of different plant species and cultivars. Soil Sci. Plant Nutr., 49, 5, 655-668.
Taylor A.F.S. and Alexander I., 2005. The ectomycorrhizal symbiosis: life in the real world. Mycologist, 1993, 102-112.
Trotta A., Varese G.C., Gnavi E., Fusconi A., Sampò S., and Berta G., 1996. Interactions between the soilborne root pathogen Phytophthora nicotinae var. parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plants. Plant Soil, 185(2), 199-209.
Utkhede R., 2006. Increased growth and yield of hydroponically grown greenhouse tomato plants inoculated with arbuscular mycorrhizal fungi and Fusarium oxysporum f. sp. radicis-lycopersici. Biocontrol, 51(3), 393-400.
Wahb-Allah M., Abdel-Razzak H., Aslsdon A., and Ibrahim A., 2014. Growth, yield, fruit quality and water use efficiency of tomato under arbuscular mycorrhizal inoculation and irrigation level treatments. Life Sci. J., 11, 109-117.
Wang C., Li X., Zhou J., Wang G., and Dong Y., 2008. Effects of arbuscular mycorrhizal fungi on growth and yield of cucumber plants. Commun. Soil Sci. Plant Anal., 39(3-4), 499-509.
Wang F., Adams C.A., Yang W., Sun Y., and Shi Z., 2020. Benefits of arbuscular mycorrhizal fungi in reducing organic contaminant residues in crops: Implications for cleaner agricultural production. Crit. Rev. Environ. Sci. Technol., 50(15), 1580-1612.
Whipps J.M., 2004. Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can. J. Bot., 82, 1198-1227.
Wu Q.S., Zou Y.N., Liu W., Ye X.F., Zai H.F., and Zhao L.J., 2010. Alleviation of salt stress in citrus seedlings inoculated with mycorrhiza: changes in leaf antioxidant defense systems. Plant Soil Environ., 56(10), 470-475.
Yao M., Tweddell R., and Desilets H., 2002. Effect of two vesicular-arbuscular mycorrhizal fungi on the growth of micropropagated potato plantlets and on the extent of disease caused by Rhizoctonia solani. Mycorriza, 12, 235-242.
Zadehbagheri M., Azarpanah A., and Javanmardi S., 2014. Perspective of arbuscular mycorrhizal fungi phytoremediation on contamination and remediation heavy metals soil in sustainable agriculture. American-Eurasian J. Agric. Environ. Sci., 14(4), 379-386. https://doi.10.5829/idosi.aeja....
Zhang Q., Gao X., Ren Y., Ding X., Qiu J., Li N., Zeng F., and Chu Z., 2018. Improvement of Verticillium Wilt resistance by applying arbuscular mycorrhizal fungi to a cotton variety with high symbiotic efficiency under field conditions. Int. J. Mol. Sci., 19(1), 241.
Zhu X.C., Song F.B., Liu S.Q., Liu T.D., and Zhou X., 2012. Arbuscular mycorrhizae improves photosynthesis and water status of Zea mays L. under drought stress. Plant Soil Environ., 58(4), 186-191.
Zuccarini P. and Okurowska P., 2008. Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress. J. Plant Nutr., 31(3), 497-513.
Zuccaro A., Lahrmann U., and Langen G., 2014. Broad compatibility in fungal root symbioses. Curr. Opin. Plant Biol., 20, 135-145.
Journals System - logo
Scroll to top