Effect of lead and chloride ions on methane production in arable soils
More details
Hide details
Department of Natural Environment Biogeochemistry, Institute of Agrophysics, Polish Academy of Sciences, Poland
Final revision date: 2020-01-15
Acceptance date: 2020-02-10
Publication date: 2020-03-11
Corresponding author
Anna Walkiewicz   

Department of Natural Environment Biogeochemistry, Institute of Agrophysics, Polish Academy of Sciences, Poland
Int. Agrophys. 2020, 34(2): 185-193
Cultivated soils in high water conditions can be a source of methane (CH4). Despite the significant introduction of lead (Pb) into soils with fertilizers or sewage sludge, there are few reports on its impact on methane production in arable soils. The main premise of the study was to characterize the response of methanogenesis after soil contamination by Pb. For this reason, the effect of Pb on CH4 production in three different mineral arable soils was investigated. Lead, in the chloride form, was added at two concentrations, which were established based on the Sewage Sludge Directive(300 and 1500 mg kg-1). Additionally, two types of controls were used – water and CaCl2 with chloride ions. It was observed that the process could be slowed down at the lower Pb dose and that methane production was totally inhibited at the higher dose. Additionally, an inhibitory effect of the chloride ions on the process was also observed in the control samples. Despite the inhibition of methanogenesis, which has a positive effect on reducing the amount of emitted gas, this process cannot be analysed individually. Other reactions in the soil should also be taken into consideration, which change with the influence of the used factors.
Abdu N., Abdullahi A.A., and Abdulkadir A., 2016. Heavy metals and soil microbes. Environ. Chem. Lett., 15, 1-20, 1007/s10311-016-0587-x.
Ahn J.H., Do T.H., Kim S.D., and Hwang S., 2006. The effect of calcium on the anaerobic digestion treating swine wastewater. Biochem. Eng. J., 30, 33-38,
Altaş L., 2009. Inhibitory effect of heavy metals on methane-producing anaerobic granular sludge. J. Hazard. Mater., 162, 1551-1556, 048.
Alvim Ferraz M.C.M., and Lourenco J.C.N., 2000. The Influence of Organic Matter Content of Contaminated Soils on the Leaching Rate of Heavy Metals. Environ. Prog., 19, 53-58.
Angel R., Claus P., and Conrad R., 2012. Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME J., 6, 847-862, 1038/ismej.2011.141.
Antić-Mladenović S., Frohne T., Kresović M., Stark H.-J., Tomić Z., Licina V., and Rinklebe J., 2017. Biogeo­chemistry of Ni and Pb in a periodically flooded arable soil: Fractionation and redox-induced (im)mobilization. J. Environ. Manage., 186, 141-150,
Basiliko N. and Yavitt J.B., 2001. Influence of Ni, Co, Fe, and Na additions on methane production in Sphagnum-dominated Northern American peatlands. Biogeochemistry, 52, 133-153,
Bastviken D., Thomsen F., Svensson T., Karlsson S., Sanden P., Shaw G., Matucha M., and Oberg G., 2007. Chloride retention in forest soil by microbial uptake and by natural chlorination of organic matter. Geochemica Cosmochim. Acta, 71, 3182-3192,
Bieganowski A., Ryżak M., Sochan A., Barna G., Hernadi H., Beczek M., Polakowski C., and Mako A., 2018. Laser diffractometry in the measurements of soil and sediment particle size distribution. Adv. Agron., 151, 215-279, 10.1016/bs.agron.2018.04.003.
Blagodatskaya E. V, Pampura T. V, Dem’yanova E.G., and Myakshina T.N., 2006. Effect of lead on growth characteristics of microorganisms in soil and rhizosphere of Dactylis glomerata. Eurasian Soil Sci., 39, 653-660,
Bodelier P.L. and Steenbergh A.K., 2014. Interactions between methane and the nitrogen cycle in light of climate change. Curr. Opin. Environ. Sustain., 9-10, 26-36,
Brzezińska M., Nosalewicz M., Pasztelan M., and Włodarczyk T., 2012. Methane production and consumption in loess soil at different slope position. Sci. World J., 2012, 1-8,
Caporale A.G. and Violante A., 2016. Chemical processes affecting the mobility of heavy metals and metalloids in soil environments. L. Pollut., 2, 15-27, 10.1007/s40726 -015-0024-y.
Charlatchka R. and Cambier P., 2000. Influence of reducing conditions on solubility of trace metals in contaminated soils. Water. Air. Soil Pollut., 118, 143-167.
Chowdhury T.R. and Dick R.P., 2013. Ecology of aerobic methanotrophs in controlling methane fluxes from wetlands. Appl. Soil Ecol., 65, 8-22, 2012.12.014.
Contin M., Goi D., De Nobili M., 2012. Land application of aerobic sewage sludge does not impair methane oxidation rates of soils. Sci. Total Environ., 441, 10-18,
Einola J.K.M., Kettunen R.H., and Rintala J.A., 2007. Responses of methane oxidation to temperature and water content in cover soil of a boreal landfill. Soil Biol. Biochem., 39, 1156-1164,
Fotidis I.A., Karakashev D., Kotsopoulos T.A., Martzopoulos G.G., and Angelidaki I., 2013. Effect of ammonium and acetate on methanogenic pathway and methanogenic community composition. FEMS Microbiol. Ecol., 83, 38-48,
Fronzek S., Pirttioja N., Carter T.R., Bindi M., Ho H., Palosuo T., Ruiz-ramos M., Tao F., Trnka M., Acutis M., Asseng S., Baranowski P., Basso B., Bodin P., Buis S., Cammarano D., Deligios P., Destain M., Dumont B., Ewert F., Ferrise R., François L., Gaiser T., Hlavinka P., Jacquemin I., Christian K., Kollas C., Krzyszczak J., Lorite I.J., Minet J., Minguez M.I., Montesino M., Moriondo M., Müller C., Nendel C., Öztürk I., Perego A., Rodríguez A., Ruane A.C., Ruget F., Sanna M., Semenov M.A., Slawinski C., Stratonovitch P., Supit I., Waha K., Wang E., Wu L., Zhao Z., and Rötter R.P., 2018. Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change. Agric. Syst., 159, 209-224,
Furtak K. and Gajda A.M., 2017. Activity of dehydrogenases as an indicator of soil environment quality. Polish J. Soil, 50, 33-40,
Gambrell R.P., Wiesepape J.B., Patrick W.H., and Duff M.C., 1991. The effects of pH, redox, and salinity on metal release from a contaminated sediment. Water. Air. Soil Pollut., 57-58, 359-367,
Gogo S. and Pearce D.M.E., 2009. Saturation of raised bog peat exchange sites by Pb2+ and Al3+ stimulates CH4 production. Soil Biol. Biochem., 41, 2025-2028, j.soilbio. 2009.07.015.
Guérin F., Abril G., de Junet A., and Bonnet M.P., 2008. Anaerobic decomposition of tropical soils and plant material: Implication for the CO2 and CH4 budget of the Petit Saut Reservoir. Appl. Geochemistry, 23, 2272-2283,
Gustavsson M., Karlsson S., Oberg G., Sanden P., Svensson T., Valinia S., Thiry Y., and Bastviken D., 2012. Organic matter chlorination rates in different boreal soils: The role of soil organic matter content. Environ. Sci. Technol. 46, 1504-1510.
Hao L.P., Mazéas L., Lü F., Grossin-Debattista J., He P.J., and Bouchez T., 2017. Effect of ammonia on methane production pathways and reaction rates in acetate-fed biogas processes. Water Sci. Technol., 75, 1839-1848,
IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
Jagadeesh Babu Y., Nayak D.R., and Adhya T.K., 2006. Potassium application reduces methane emission from a flooded field planted to rice. Biol. Fertil. Soils, 42, 532-541,
Joulian C., Escoffier S., Le Mer J., Neue H.U., and Roger P.A., 1997. Populations and potential activities of methanogens and methanotrophs in rice fields: relations with soil properties. Eur. J. Soil Biol., 33, 105-116.
Kabata-Pendias A., 2010. Trace Elements in Soils and Plants, Fourth Edition. CRC Press, London,
Kelebemang R., Dinake P., Sehube N., Daniel B., Totolo O., and Laetsang M., 2017. Speciation and mobility of lead in shooting range soils. Chem. Speciat. Bioavailab., 29, 143-152,
Keller J.K. and Wade J., 2018. No evidence for trace metal limitation on anaerobic carbon mineralization in three peatland soils. Geoderma, 314, 95-101,
Kirschke S., Bousquet P., Ciais P., Saunois M., Canadell J.G., Dlugokencky E.J., Bergamaschi P., Bergmann D., Blake D.R., Bruhwiler L., Cameron-Smith P., Castaldi S., Chevallier F., Feng L., Fraser A., Heimann M., Hodson E.L., Houweling S., Josse B., Fraser P.J., Krummel P.B., Lamarque J.-F., Langenfelds R.L., Le Quéré C., Naik V., O’Doherty S., Palmer P.I., Pison I., Plummer D., Poulter B., Prinn R.G., Rigby M., Ringeval B., Santini M., Schmidt M., Shindell D.T., Simpson I.J., Spahni R., Steele L.P., Strode S. a., Sudo K., Szopa S., van der Werf G.R., Voulgarakis A., van Weele M., Weiss R.F., Williams J.E., and Zeng G., 2013. Three decades of global methane sources and sinks. Nat. Geosci., 6, 813-823, 1038/ngeo1955.
Kitowski I., Sujak A., Wiącek D., Strobel W., and Rymarz M., 2014. Trace element residues in eggshells of Grey Heron (Ardea cinerea) from colonies of East Poland. North. West. J. Zool., 10, 346-354,
Koyama T. and Kimura M., 1998. Inhibitors of methane production in paddy soils. Soil Sci. Plant Nutr., 44, 667-674,
Kugelman I.J. and Chin K.K., 1971. Toxicity, Synergism, and Antagonism in Anaerobic Waste Treatment Processes, 55-90,
Kumar S., Das A., Srinivas G.L.K., Dhar H., Kumar V., and Wong J., 2016. Effect of calcium chloride on abating inhibition due to volatile fatty acids during the start-up period in anaerobic digestion of municipal solid waste. Environ. Technol., 37, 1501-1509,
Kuźniar A., Banach A., Stȩpniewska Z., Frąc M., Oszust K., Gryta A., Kłos M., and Wolińska A., 2018. Community-level physiological profiles of microorganisms inhabiting soil contaminated with heavy metals. Int. Agrophys., 32, 101-109,
Laing G. Du, Rinklebe J., Vandecasteele B., Meers E., and Tack F.M.G., 2009. Trace metal behaviour in estuarine and riverine floodplain soils and sediments: A review. Sci. Total Environ., 407, 3972-3985, 07.025.
Loka Bharathi P.A., Sathe V., and Chandramohan D., 1990. Effect of lead, mercury and cadmium on a sulphate-reducing bacterium. Environ. Pollut., 67, 361-374, 1016/0269-7491(90)90072-K.
Łukowski A. and Wiater J., 2016. The content and solubility of lead in arable soils of the Podlasie Province (eastern Poland). Soil Sci. Annu., 67, 190-196,
Lv Z., Hu M., Harms H., Richnow H.H., Liebetrau J., and Nikolausz M., 2014. Stable isotope composition of biogas allows early warning of complete process failure as a result of ammonia inhibition in anaerobic digesters. Bioresour. Technol., 167, 251-259,
Majdinasab A. and Yuan Q., 2017. Performance of the biotic systems for reducing methane emissions from landfill sites: A review. Ecol. Eng., 104, 116-130, 2017.04.015.
Malyan S.K., Bhatia A., Kumar A., Gupta D.K., Singh R., Kumar S.S., Tomer R., Kumar O., and Jain N., 2016. Methane production, oxidation and mitigation: A mechanistic understanding and comprehensive evaluation of influencing factors. Sci. Total Environ., 572, 874-896,
Mansfeldt T., 2004. Redox potential of bulk soil and soil solution concentration of nitrate, manganese, iron, and sulfate in two Gleysols. J. Plant Nutr. Soil Sci., 167, 7-16,
Mishra S.R., Bharati K., Sethunathan N., and Adhya T.K., 1999. Effects of heavy metals on methane production in tropical rice soils. Ecotoxicology and Environmental Safety, 44(1), 129-136, 1809.
Mishra S.R., Pattnaik P., Sethunathan N., and Adhya T.K., 2003. Anion-mediated salinity affecting methane production in a flooded alluvial soil. Geomicrobiol. J., 20, 579-586,
Muñoz M.A., Codina J.C., De Vicente A., Sanchez J.M., Borrego J.J., and Moriñigo M.A., 1996. Effects of nickel and lead and a support material on the methanogenesis from sewage sludge. Lett. Appl. Microbiol., 23, 339-342, 1111/j.1472-765X.1996.tb00203.x.
Murray P.A. and Zinder S.H., 1985. Nutritional Requirements of Methanosarcina Strain TM-1. Appl. Environ. Microbiol., 50, 49-55.
Nosalewicz M., Brzezińska M., Pasztelan M., and Supryn G., 2011. Methane in the environment(a review). Acta Agroph., 18, 355-373.
Öberg G. and Sandén P., 2005. Retention of chloride in soil and cycling of organic matter-bound chlorine. Hydrol. Process., 19, 2123-2136,
Pająk M., Błońska E., Frąc M., and Oszust K., 2016. Functional diversity and microbial activity of forest soils that are heavily contaminated by lead and zinc. Water. Air. Soil Pollut., 227,
Pawłowska M., Rozej A., and Stepniewski W., 2011. The effect of bed properties on methane removal in an aerated biofilter - Model studies. Waste Manag., 31, 903-913,
Penning H. and Conrad R., 2007. Quantification of carbon flow from stable isotope fractionation in rice field soils with different organic matter content. Org. Geochem., 38, 2058-2069,
Rinklebe J., Shaheen S.M., and Yu K., 2016. Release of As , Ba, Cd , Cu , Pb , and Sr under pre-de fi nite redox conditions in different rice paddy soils originating from the USA and Asia. Geoderma, 270, 21-32,
Sanderson P., Naidu R., and Bolan N., 2016. The effect of environmental conditions and soil physicochemistry on phosphate stabilisation of Pb in shooting range soils. J. Environ. Manage., 170, 123-130, 2016.01.017.
Sankhla M.S., Kumari M., Nandan M., Kumar R., and Agrawal P., 2016. Heavy metal contamination in soil and their toxic effect on human health : a review study. Int. J. All Res. Educ. Sci. Methods, 4, 13-19.
Saunois M., Bousquet P., Poulter B., Peregon A., Ciais P., Canadell J.G., Dlugokencky E.J., Etiope G., Bastviken D., Houweling S., Janssens-Maenhout G., Tubiello F.N., Castaldi S., Jackson R.B., Alexe M., Arora V.K., Beerling D.J., Bergamaschi P., Blake D.R., Brailsford G., Brovkin V., Bruhwiler L., Crevoisier C., Crill P., Covey K., Curry C., Frankenberg C., Gedney N., Höglund-Isaksson L., Ishizawa M., Ito A., Joos F., Kim H.S., Kleinen T., Krummel P., Lamarque J.F., Langenfelds R., Locatelli R., Machida T., Maksyutov S., McDonald K.C., Marshall J., Melton J.R., Morino I., Naik V., O’Doherty S., Parmentier F.J.W., Patra P.K., Peng C., Peng S., Peters G.P., Pison I., Prigent C., Prinn R., Ramonet M., Riley W.J., Saito M., Santini M., Schroeder R., Simpson I.J., Spahni R., Steele P., Takizawa A., Thornton B.F., Tian H., Tohjima Y., Viovy N., Voulgarakis A., Van Weele M., Van Der Werf G.R., Weiss R., Wiedinmyer C., Wilton D.J., Wiltshire A., Worthy D., Wunch D., Xu X., Yoshida Y., Zhang B., Zhang Z., and Zhu Q., 2016. The global methane budget 2000-2012. Earth Syst. Sci. Data, 8, 697-751,
Serrano-Silva N., Sarria-Guzmán Y., Dendooven L., and Luna-Guido M., 2014. Methanogenesis and methanotrophy in soil: a review. Pedosphere, 24, 291-307,
Sherene T., 2010. Mobility and transport of heavy metals in polluted soil environment. Biol. Forum - An Int. J., 2, 112-121.
Stępniewska Z., Goraj W., Kuźniar A., Banach A., Górski A., Pytlak A., and Urban D., 2018. Methane oxidation by endophytic bacteria inhabiting Sphagnum sp. and some vascular plants. Wetlands, 38, 411-422,
Sun L., Chen S., Chao L., and Sun T., 2007. Effects of flooding on changes in Eh, pH and speciation of cadmium and lead in contaminated soil. Bull. Environ. Cintamination Toxicol., 79, 514-518, -9274-8.
Szafranek-Nakonieczna A. and Stępniewska Z., 2015. The influence of the aeration status (ODR, Eh) of peat soils on their ability to produce methane. Wetl. Ecol. Manag., 23, 665-676,
Szafranek-Nakonieczna A., Wolińska A., Zielenkiewicz U., Kowalczyk A., Stępniewska Z., and Błaszczyk M., 2018. Activity and identification of methanotrophic bacteria in arable and no-tillage soils from Lublin Region (Poland). Microb. Ecol., doi:10.1007/s00248-018-1248-3.
Tate K.R., 2015. Soil methane oxidation and land-use change – from process to mitigation. Soil Biol. Biochem., 80, 260-272,
van Langerak E.P.A., Gonzalez-Gil G., van Aelst A., van Lier J.B., Hamelers H.V.M., and Lettinga G., 1998. Effects of high calcium concentrations on the development of methanogenic sludge in upflow anaerobic sludge bed (UASB) reactors. Water Res., 32, 1255-1263, /S0043 -1354(97)00335-7.
VijayaVenkataRaman S., Iniyan S., and Goic R., 2012. A review of climate change, mitigation and adaptation. Renew. Sustain. Energy Rev., 16, 878-897, 10.1016/j.rser.2011.09.009.
Walkiewicz A., Brzezińska M., and Bieganowski A., 2018. Methanotrophs are favored under hypoxia in ammonium-fertilized soils. Biol. Fertil. Soils, 54, 861-870,
Wnuk E., Walkiewicz A., and Bieganowski A., 2017. Methane oxidation in lead-contaminated mineral soils under different moisture levels. Environ. Sci. Pollut. Res., 24, 25346-25354,
Yang S. and Chang H., 1998. Effect of environmental conditions on methane production and emission from paddy soil. Agric. Ecosyst. Environ., 69, 69-80,
Zeng L.S., Liao M., Chen C.L., and Huang C.Y., 2006. Effects of lead contamination on soil enzymatic activities, microbial biomass and rice physiological indices in soil-lead-rice (Oryza sativa L.) system. Chemosphere, 65, 567-574. doi: 10.1016/j.ecoenv.2006.05.001.
Journals System - logo
Scroll to top