New biochars from raspberry and potato stems absorb more methane than wood offcuts and sunflower husk biochars
Adam Kubaczyński 1  
,   Anna Walkiewicz 1  
,   Anna Pytlak 1  
,   Małgorzata Brzezińska 1  
More details
Hide details
Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
Adam Kubaczyński   

Department of Natural Environment Biogeochemistry, Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
Final revision date: 2020-08-11
Acceptance date: 2020-08-25
Publication date: 2020-09-10
Int. Agrophys. 2020, 34(3): 355–364
The reduction in greenhouse gas emissions from agriculture is of particular importance at present. In recent times, biochar addition to the soil was suggested as a means of mitigating greenhouse gases emissions from arable fields. More specifically, biochars with useful properties and those produced from easily available waste materials are still being sought. In the presented experiment, the CH4 absorption potential of four biochars incubated at 60 and 100% water holding capacity with the addition of 1% CH4 (v/v) was investigated for 28 days at 25oC. The potato stem and raspberry stem biochars showed much higher potentials for CH4 uptake than wood offcuts biochar and sunflower husk biochar. Potato stem and raspberry stem biochars incubated at 60% water holding capacity were characterized by a methane uptake rate of 8.01 ± 0.47 and 5.78 ± 0.17 mg CH4-C kg-1 d-1, respectively. The methane removal potentials of the other biochars were clearly lower. The advantage of the biochars from raspberry and potato stems over the wood offcuts biochar also results from their significantly lower production of carbon dioxide. Consequently, these materials have a high potential for agricultural use, in view of their impact on the greenhouse gas balance of the soil.
Almeida R.F., Spokas K.A., Teixeira D.B., and La Scala Jr, N., 2019. Biochar insights from laboratory incubations monitoring O2 consumption and CO2 production. Biochar,
Banik C., Lawrinenko M., Bakshi S., and Laird D.A., 2018. Impact of pyrolysis temperature and feedstock on surface charge and functional group chemistry of biochars. J. Environ. Qual., 47, 452-461.
Chistoserdova L. and Kalyuzhnaya M.G., 2018. Current trends in methylotrophy. Trends Microbiol., 26, 703-714.
Coomes O.T. and Miltner B.C., 2017. Indigenous charcoal and biochar production: potential for soil improvement under shifting cultivation systems. L. Degrad. Dev., 28, 811-821.
Farzad S., Taghikhani V., Aminshahidi B., and Lay E.N., 2007. Experimental and theoretical study of the ef fect of moisture on methane adsorption and desorption by activated carbon at 273. 5 K. J. Nat. Gas Chem., 16, 22-30.
Fungo B., Guerena D., Thiongo M., Lehmann J., Neufeldt H., and Kalbitz K., 2014. N2O and CH4 emission from soil amended with steam-activated biochar. J. Plant Nutr. Soil Sci., 177, 34-38.
Gomez J.D., Denef K., Stewart C.E., Zheng J., and Cotrufo M.F., 2014. Biochar addition rate influences soil microbial abundance and activity in temperate soils. Eur. J. Soil Sci., 65, 28-39.
Gul S., Whalen J.K., Thomas B.W., Sachdeva V., and Deng H., 2015. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agric. Ecosyst. Environ., 206, 46-59.
Guo W., Feng L., Wu D., Zhang C., and Tian X., 2019. Effectiveness of flame for preplant pest management in leaf vegetable fields. Horttechnology, 29, 788-794.
Han X., Sun X., Wang C., Wu M., Dong D., Zhong T., Thies J.E., and Wu W., 2016. Mitigating methane emission from paddy soil with rice-straw biochar amendment under projected climate change. Sci. Rep., 6, 1-10.
He Y., Zhou X., Jiang L., Li M., Du Z., Zhou G., Shao J., Wang X., Xu Z., Hosseini Bai S., Wallace H., and Xu C., 2017. Effects of biochar application on soil greenhouse gas fluxes: a meta-analysis. GCB Bioenergy, 9, 743-755.
Huang D., Yang L., Ko J.H., and Xu Q., 2019. Comparison of the methane-oxidizing capacity of landfill cover soil amended with biochar produced using different pyrolysis temperatures. Sci. Total Environ., 693, 133594.
IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,
Jeffery S., Verheijen F.G.A., Kammann C., and Abalos D., 2016. Soil Biology and biochemistry biochar effects on methane emissions from soils: A meta-analysis. Soil Biol. Biochem., 101, 251-258.
Jones D.L., Murphy D. V., Khalid M., Ahmad W., Edwards-Jones G., and DeLuca T.H., 2011. Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biol. Biochem., 43, 1723-1731.
Kammann C., Ippolito J., Hagemann N., Borchard N., Cayuela M.L., Estavillo J.M., Fuertes-Mendizabal T., Jeffery S., Kern J., Novak J., Rasse D., Saarnio S., Schmidt H.P., Spokas K., and Wrage-Mönnig N., 2017. Biochar as a tool to reduce the agricultural greenhouse-gas burden-knowns, unknowns and future research needs. J. Environ. Eng. Landsc. Manag., 25, 114-139.
La H., Hettiaratchi J.P.A., Achari G., Verbeke T.J., and Dunfield P.F., 2018. Biofiltration of methane using hybrid mixtures of biochar, lava rock and compost. Environ. Pollut., 241, 45-54.
Lehmann J., Rillig M.C., Thies J., Masiello C.A., Hockaday W.C., and Crowley D., 2011. Biochar effects on soil biota - A review. Soil Biol. Biochem., 43, 1812-1836.
Lehmann J. and Rondon M., 2006. Bio-char soil management on highly weathered soils in the humid tropics. Biological Approaches to Sustainable Soil Systems, 3, 517-530.
Luo Y., Yu Z., Zhang K., Xu J., and Brookes P.C., 2016. The properties and functions of biochars in forest ecosystems. J. Soils Sediments, 16, 2005-2020.
Mackay G.R., 2009. New light on a hidden treasure. Rome: FAO, 136, Exp. Agric., 45, 376-376.
Malyan S.K., Bhatia A., Kumar A., Gupta D.K., Singh R., Kumar S.S., Tomer R., Kumar O., and Jain N., 2016. Methane production, oxidation and mitigation: A mechanistic understanding and comprehensive evaluation of influencing factors. Sci. Total Environ., 572, 874-896.
Noyce G.L., Winsborough C., Fulthorpe R., and Basiliko N., 2016. The microbiomes and metagenomes of forest biochars. Sci. Rep., 6, 1-12.
Özçimen D. and Karaosmanoǧlu F., 2004. Production and characterization of bio-oil and biochar from rapeseed cake. Renew. Energy, 29, 779-787.
Pytlak A., Stępniewska Z., Kuźniar A., Szafranek-Nakonieczna A., Wolińska A., and Banach A., 2014. Potential for aerobic methane oxidation in carboniferous coal measures. Geomicrobiol. J., 31, 737-747.
Pytlak A., Sujak A., Szafranek-Nakonieczna A., Grządziel J., Banach A., Goraj W., Gruszecki W.I., and Stępniewska Z., 2020. Water-induced molecular changes of hard coals and lignites. Int. J. Coal Geol., 224, 103481.
Qi L., Pokharel P., Ni C., Gong X., Zhou P., Niu H., Wang Z., and Gao M., 2020. Biochar changes thermal activation of greenhouse gas emissions in a rice-lettuce rotation microcosm experiment. J. Clean. Prod., 247.
Reddy K.R., Yargicoglu E.N., Yue D., and Yaghoubi P., 2014. Enhanced microbial methane oxidation in landfill cover soil amended with biochar. J. Geotech. Geoenvironmental Eng., 140, 1-11.
Ribas A., Mattana S., Llurba R., Debouk H., Sebastià M.T., and Domene X., 2019. Biochar application and summer temperatures reduce N2O and enhance CH4 emissions in.
a Mediterranean agroecosystem: Role of biologically-induced anoxic microsites. Sci. Total Environ., 685, 1075-1086.
Schwede S., Bruchmann F., Thorin E., and Gerber M., 2017. Biological syngas methanation via immobilized methanogenic archaea on biochar. Energy Procedia, 105, 823-829.
Skopp J., Jawson M.D., and Doran J.W., 1990. Steady-state aerobic microbial activity as a function of soil water content. Soil Sci. Soc. Am. J., 54, 1619-1625.
Sokołowska Z., Szewczuk-Karpisz K., Turski M., Tomczyk A., Cybulak M., and Skic K., 2020. Effect of wood waste and sunflower husk biochar on tensile strength and porosity of dystric cambisol artificial aggregates. Agronomy, 10.
Spokas K.A. and Reicosky D.C., 2009. Impacts of sixteen different biochars on soil greenhouse gas production. Ann. Environ. Sci., 3, 179-193.
Syed R., Saggar S., Tate K., and Rehm B.H.A., 2016. Assessment of farm soil, biochar, compost and weathered pine mulch to mitigate methane emissions. Appl. Microbiol. Biotechnol., 100, 9365-9379.
Thomazini A., Spokas K., Hall K., Ippolito J., Lentz R., and Novak J., 2015. GHG impacts of biochar: Predictability for the same biochar. Agric. Ecosyst. Environ., 207, 183-191.
Tomczyk A., 2020. Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Bio/Technol., 19, 191-215.
Vincent C., Hallman G., Panneton B., and Fleurat-Lessard F., 2003. Management of agricultural insects with physical control methods. Annu. Rev. Entomol., 48, 261-281.
Walkiewicz A., Brzezińska M., Wnuk E., and Jabłoński B., 2020a. Soil properties and not high CO2 affect CH4 production and uptake in periodically waterlogged arable soils. J. Soils Sediments, 20, 1231-1240.
Walkiewicz A., Kalinichenko K., Kubaczyński A., Brzezińska M., and Bieganowski A., 2020b. Usage of biochar for mitigation of CO2 emission and enhancement of CH4 consumption in forest and orchard Haplic Luvisol (Siltic) soils. Appl. Soil Ecol., 156.
Wu Z., Song Y., Shen H., Jiang X., Li B., and Xiong Z., 2019. Biochar can mitigate methane emissions by improving methanotrophs for prolonged period in fertilized paddy soils. Environ. Pollut., 253, 1038-1046.
Xiong X., Liu X., Yu I.K.M., Wang L., Zhou J., Sun X., Rinklebe J., Shaheen S.M., Ok Y.S., Lin Z., and Tsang D.C.W., 2019. Potentially toxic elements in solid waste streams: Fate and management approaches. Environ. Pollut., 253, 680-707.
Yang T., Sun W., and Yue D., 2017. Characterizing the effects of biologically active covers on landfill methane emission flux and bio-oxidation. J. Environ. Eng. (United States), 143, 1-9.
Yoo G., Kim H., Chen J., and Kim Y., 2014. Effects of biochar addition on nitrogen leaching and soil structure following fertilizer application to rice paddy soil. Soil Sci. Soc. Am. J., 78, 852-860.
Yu L., Tang J., Zhang R., Wu Q., and Gong M., 2012. Effects of biochar application on soil methane emission at different soil moisture levels. Biol. Fertil. Soils, 49.
Yu Z., Chen L., Pan S., Li Y., Kuzyakov Y., Xu J., Brookes P.C., and Luo Y., 2018. Feedstock determines biochar-induced soil priming effects by stimulating the activity of specific microorganisms. Eur. J. Soil Sci., 69, 521-534.
Zaremba Ł., 2014. Polish and global market of raspberries and their preserves (in Polish). Zesz. Nauk. Szk. Głównej Gospod. Wiej. w Warszawie Probl. Rol. Światowego, 14(29), 148-156.
Zubkova V., Strojwas A., Bielecki M., Kieush L., and Koverya A., 2019. Comparative study of pyrolytic behavior of the biomass wastes originating in the Ukraine and potential application of such biomass. Part 1. Analysis of the course of pyrolysis process and the composition of formed products. Fuel, 254, 115688.