Impact of lime application on erosive strength and bulk density of aggregates
More details
Hide details
Soil Science, Institute of Plant Nutrition and Soil Science, Hermann-Rodewald-Str. 2, 24118 Kiel, Germany
Tina Frank   

Soil Science, Institute of Plant Nutrition and Soil Science, 24118, Kiel, Germany
Final revision date: 2021-11-05
Acceptance date: 2021-11-06
Publication date: 2021-11-23
Int. Agrophys. 2021, 35(3): 301–306
  • Particle rearrangement was detected, reflected in lower bulk densities
  • Liming significantly increased the erosive strength of aggregates
  • Transport processes of C and N between the layers were positively changed
An area with well-aggregated and structured soil with a high inter-aggregate strength is favourable for use as arable land, both to withstand mechanical stresses and for optimal plant growth. The application of lime in the form of CaCO3 can facilitate the formation of a stable soil structure. Therefore, we determined the impact of lime application on the erosive strength and density of air-dry aggregates sampled from a Haplic Gleysol with a clay content of 45%. The lime was applied to the soil in the field at two different rates, resulting in the following: 36 dt CaO‑equivalents ha–1 and 54 dt CaO‑equivalents ha–1. The results show that liming significantly increased the erosive strength of aggregates. Lower densities were observed which presumably leads to an improved accessibility of the pores and the particle surfaces within the aggregates due to the application of CaCO3. Furthermore, differences between amounts of C and N were determined in the aggregate layers between the limed plots and the control plots.
We wish to express our sincere gratitude to the farmer involved in the study for his cooperation which included permission to take samples in his field.
This work was carried out in cooperation with TU Berlin and financially supported by the German Federal Environmental Foundation (Deutsche Bundesstiftung Umwelt DBU) (project no 33068/01 and 33068/02 – 2017-2021).
Becher H.H., 1991. Über die Aggregatdichte und deren mögliche Auswirkung auf den Bodenlösungstransport. Z. Pflanzenernaehr. Bodenk., 154(1), 3-8,
Bronick J. and Lal R., 2005. Soil structure and management: A review. Geoderma, 124(1-2), 3-22,
Bronswijk J.J.B. and Evers-Vermeer J.J., 1990. Shrinkage of Dutch clay soil aggregates. NJAS, 38(2), 175-194,
DIN ISO 10693, 1997. Soil quality – Determination of carbonate content – Volumetric method.
DIN ISO 11260, 2018. Soil quality – Determination of effective cation exchange capacity and base saturation level using barium chloride solution.
DIN ISO 13878, 1998. Soil quality – Determination of total nitrogen content by dry combustion ("elemental analysis").
Edemeades D.C., Judd M., and Sarathchandra S.U., 1981. The effect of lime on nitrogen mineralization as measured by grass growth. Plant Soil, 60, 177-186,
Ferreira T.R., Pires L.F., Wildenschild D., Brinatti A.M., Borges J.A.R., Auler A.C., and dos Reis A.M.H., 2019. Lime application effects on soil aggregate properties: Use of the mean weight diameter and synchrotron-based X-ray μCT techniques. Geoderma, 338, 585-596,
Frank T., Zimmermann I., and Horn R., 2020. Lime application in marshlands of Northern Germany-Influence of liming on the physicochemical and hydraulic properties of clayey soils. Soil Till. Res., 204, 104730,
Hartmann A., Gräsle W., and Horn R., 1998. Cation exchange processes in structured soils at various hydraulic properties. Soil Till. Res., 47(1-2), 67-72,
Haynes R.J. and Naidu R., 1998. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: A review. Nutr. Cycling Agroecosyst., 51, 123-137,
Holland J.E., Bennett A.E., Newton A.C., White P.J., McKenzie B.M., George T.S., Pakeman R.J., Bailey J.S., Fornara D.A., and Hayes R.C., 2018. Liming impacts on soils, crops and biodiversity in the UK: A review. Sci. Total Environ., 610-611, 316-332,
Horn R., 1990. Aggregate characterization as compared to soil bulk properties. Soil Till. Res., 17(3-4), 265-289,
Horn R. and Fleige H., 2003. A method for assessing the impact of load on mechanical stability and on physical properties of soils. Soil Till. Res., 73(1-2), 89-99,
IUSS Working Group WRB, 2014. World Reference Base for Soil Resources 2014, Update 2015: International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome (106).
Jasinska E., 2006. Management effects on carbon distribution in soil aggregates and its consequences on water repellency and mechanical strength 71. Schriftenreihe; Institut für Pflanzenernährung und Bodenkunde, Kiel.
Jastrow J.D., 1996. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biol. Biochem., 28(4-5), 665-676,
John B., Yamashita T., Ludwig B., and Flessa H., 2005. Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use. Geoderma, 128(1-2), 63-79,
Kay B.D., 1990. Rates of change of soil structure under different cropping systems. Advances in Soil Science, 12, 1-52,
Kuzyakov Y. and Blagodatskaya E., 2015. Microbial hotspots and hot moments in soil: Concept & review. Soil Biol. Biochem., 83, 184-199,
McGill R., Tukey J.W., and Larsen W.A., 1978. Variations of box plots. Am. Stat., 32(1), 12,
Mordhorst A., 2013. Soil Structure-Carbon Relations of Differently Textured and Managed Arable Soils Subjected to Mechanical Loading. Schriftenreihe, Institut für Pflanzenernährung und Bodenkunde 99. Schriftenreihe, Instiut für Pflanzenernährung und Bodenkunde, Kiel.
Mordhorst A., Peth S., and Horn R., 2013. Degradation effects on organic carbon and mechanical strength within aggregates from a Stagnic Luvisol depending on tillage intensity. In: Soil degradation. Advances in geoecology 42 (Eds J. Krümmelbein, R. Horn, M. Pagliai). Catena Verlag GmbH, Reiskirchen.
Muneer M. and Oades J.M., 1989. The role of Ca-organic interactions in soil aggregate stability. III. Mechanisms and models. Aust. J. Soil Res., 27, 411-423,
Muñoz C., Torres P., Alvear M., and Zagal E., 2012. Physical protection of C and greenhouse gas emissions provided by soil macroaggregates from a Chilean cultivated volcanic soil. Acta Agric. Scand. B - Soil Plant Sci., 62(8), 739-748,
Naveed M., Arthur E., de Jonge L.W., Tuller M., and Moldrup P., 2014. Pore structure of natural and regenerated soil aggregates: An X-Ray computed tomography analysis. Soil Sci. Soc. Am. J., 78(2), 377,
Park E.J. and Smucker A.J.M., 2005a. Erosive strengths of concentric regions within soil macroaggregates. Soil Sci. Soc. Am. J., 69(6), 1912-1921,
Park E.J. and Smucker A.J.M., 2005b. Saturated hydraulic conductivity and porosity within macroaggregates modified by tillage. Soil Sci. Soc. Am. J., 69(1), 38,
Park E.-J. and Smucker A.J.M., 2005c. Dynamics of carbon sequestered in concentric layers of soil macroaggregates. The Korean J. Ecol., 28(4), 181-188,
Peth S., Horn R., Beckmann F., Donath T., Fischer J., and Smucker A.J.M., 2008. Three-dimensional quantification of intra-aggregate pore-space features using synchrotron-radiation-based microtomography. Soil Sci. Soc. Am. J., 72(4), 897-907,
R Core Team, 2017. R Studio version 3.5.1.
Santos D., Smucker A.J.M., Murphy S.L.S., Taubner H., and Horn R., 1997. Uniform separation of concentric surface layers from soil aggregates. Soil Sci. Soc. Am. J., 61(3), 720,
Schroeder G., 1968. Landwirtschaftlicher Wasserbau, Vierte umgearbeitete Auflage ed. Handbibliothek für Bauingenieure, Ein Hand- und Nachschlagebuch für Studium und Praxis. Springer, Berlin, Heidelberg.
Six J., Elliott E.T., and Paustian K., 2000. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem., 32, 2099-2103,
Smucker A.J.M., Park E.-J., Dorner J., and Horn R., 2007. Soil micropore development and contributions to soluble carbon transport within macroaggregates. Vadose Zone J., 6(2), 282,
Snedecor G.W. and Cochran W.G., 1996. Statistical methods, 8th ed. Iowa State University Press, Iowa.
Tisdall J.M. and Oades J.M., 1982. Organic matter and water-stable aggregates in soils. J. Soil Sci., 33, 141-163,
Totsche K.U., Amelung W., Gerzabek M.H., Guggenberger G., Klumpp E., Knief C., Lehndorff E., Mikutta R., Peth S., Prechtel A., Ray N., and Kögel-Knabner I., 2018. Microaggregates in soils. J. Plant Nutr. Soil Sci., 35, 117,
Urbanek E., Horn R., and Smucker A.J.M., 2014. Tensile and erosive strength of soil macro-aggregates from soils under different management system. J. Hydrol. Hydromech., 62(4), 324-333,
VDLUFA, 2000. Bestimmung des Kalkbedarfs von Acker - und Grünlandböden. Verband Deutscher Landwirtschaftlicher Untersuchungs - und Forschungsanstalten.
Wang Y., Cui Y.-J., Tang A.M., Benahmed N., and Duc M., 2017. Effects of aggregate size on the compressibility and air permeability of lime-treated fine-grained soil. Eng. Geol., 228, 167-172,
Wiesmeier M., Steffens M., Mueller C.W., Kölbl A., Reszkowska A., Peth S., Horn R., and Kögel-Knabner I., 2012. Aggregate stability and physical protection of soil organic carbon in semi-arid steppe soils. Eur. J. Soil Sci., 63(1), 22-31,