RESEARCH PAPER
Modeling the hydraulic conductivity of two soils amended with biochars using a statistical-physical model
 
 
More details
Hide details
1
Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
 
2
Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45 E, 15-351 Białystok, Poland
 
 
Final revision date: 2025-05-20
 
 
Acceptance date: 2025-05-26
 
 
Publication date: 2025-07-28
 
 
Corresponding author
Jerzy Lipiec   

Zakład Badań Systemu Gleba-Roślina, Instytut Agrofizyki PAN, ul. Doświadczalna 4, 20-290, Lublin, Poland
 
 
Int. Agrophys. 2025, 39(4): 413-425
 
Author contributions: B. Usowicz: Conceptualization, Investigation, Software, Writing – review and editing. J. Lipiec: Conceptualization, Formal analysis, Methodology, Writing – original draft.
HIGHLIGHTS
  • The statistical-physical model was suitable for predicting hydraulic properties
  • Biochars increased hydraulic conductivity of loamy soil
  • Volume of capillaries increased in response to biochar additions in sandy soil
  • Biochars increased capillary length in loamy soil and decreased it in sandy soil
KEYWORDS
TOPICS
ABSTRACT
This study aimed to predict the effect of biochars (from woodchips, rice straw, and manure processed at temperatures from 300 to 700°C) on hydraulic conductivity, volumes of variously sized capillaries (from 360.4 to 0.24 µm radius), and equivalent capillary length of sandy and loamy soils using the statistical-physical model. The model analyzes the connections between soil and biochar and spaces occupied by water and air. The biochars decreased the predicted hydraulic conductivity at the matric potentials from −1 to around −70 cm H2O by 9 to 25% and increased by 1.6 to 19% at a drier range of potential from around −500 to −15 000 cm H2O in the sandy soil and increased in the loamy soil across the whole potential range. The greatest effect on the hydraulic conductivity had biochars from the rice straw in sandy soil and woodchips in loamy soil. The biochars generally increased the volumes of all capillaries in the sandy soil. They decreased the volumes of larger capillaries (360.4-3.6 µm radius) and increased that of capillaries of 0.53 µm radius in the loamy soil. All biochars typically decreased the equivalent capillary length in the sandy soil and increased in the loamy soil.
FUNDING
The work was partially funded by the HORIZON 2020, European Commission, Programme: H2020-SFS-2015-2: SoilCare for profitable and sustainable crop production in Europe, project No. 677407 (SoilCare, 2016-2021).
CONFLICT OF INTEREST
The authors declare no competing interests.
REFERENCES (74)
1.
Aldrees, A., Nachabe, M., 2019. Capillary length and field capacity in draining soil profiles. Water Res. Res. 55, 4499-4507. https://doi.org/10.1029/2018WR....
 
2.
Ajayi, A.E., Holthusen, D., Horn, R., 2016. Changes in microstructural behaviour and hydraulic functions of biochar amended soils. Soil Till. Res. 155, 166-175.
 
3.
Arya, L.M., Leij, F.J., Shouse, P.J., Van Genuchten, M.Th., 1999. Relationship between the hydraulic conductivity function and the particle size distribution. Soil Sci. Soc. Am. J. 63, 1063-1070.
 
4.
Azadmard B., Mosaddeghi M.R., Ayoubi S., Chavoshi E., Raoof M., 2018. Spatial variability of near-saturated soil hydraulic properties in Moghan plain, North-Western Iran. Arabian J. Geosci. 11(16), 452.
 
5.
Azadmard B., Mosaddeghi M.R., Ayoubi S., Chavoshi E., Raoof M., 2020. HYPERLINK “javascript:void(0)” Estimation of near-saturated soil hydraulic properties using hybrid genetic algorithm-artificial neural network. Ecohydrology Hydrobiology 20(3), 437-449.
 
6.
Blanco-Canqui, H., 2017. Biochar and soil physical properties. Soil Sci. Soc. Am. J. 81, 687-47 711. https://doi.org/10.2136/sssaj2....
 
7.
Barnes, R.T., Gallagher, M.E., Masiello, C.A., Liu, Z., Dugan, B., 2014. Biochar-induced changes in soil hydraulic conductivity and dissolved nutrient fluxes constrained by laboratory experiments. PLoS ONE 9(9): e108340. https://doi.org/10.1371/journa....
 
8.
Brooks, R.H., Corey, A.T., 1964. Hydraulic properties of porous media. Hydrology papers. Colorado State University, Fort Collins, Colorado 3, 1-27.
 
9.
Chen, M., Alim, N., Zhang, Y., Xu, N., Cao, X., 2018. Contrasting effects of biochar nanoparticles on the retention and transport of phosphorus in acidic and alkaline soils. Environ. Pollut. 239, 562…570. https://doi.org/10.1016/j.envp....
 
10.
Chen, X., Duan, M., Zhou, B., Cui, L., 2022. Effects of biochar nanoparticles as a soil amendment on the structure and hydraulic characteristics of a sandy loam soil. Soil Use Manag. 38, 836-849. https://doi.org/10.1111/sum.12....
 
11.
Chen, Z., Kamchoom, V., Chen, R., Prasittisopin, L., 2023. Investigating the impacts of biochar amendment and soil compaction on unsaturated hydraulic properties of silty sand. Agronomy 13, 1845.https://doi.org/10.3390/agrono....
 
12.
Eadie, W.T., Drijard, D., James, F.E., Roos, M., Sadoulet, B., 1971. Statistical Methods in Experimental Physics. North-Holland, Amsterdam, 269-271.
 
13.
Edeh, I.G., Mašek, O., Buss, W., 2020. A meta-analysis on biochar’s effects on soil water properties – New insights and future research challenges. Sci. Total Environ. 714, 136857. https://doi.org/10.1016/j.scit....
 
14.
Edeh, I.G., Mašek, O., 2022. The role of biochar particle size and hydrophobicity in improving soil hydraulic properties. Eur. J. Soil Sci. 73(1), e13138. https://doi.org/10.1111/ejss.1....
 
15.
Faloye, O.T., Ajayi, A.E., Ajiboye, Y., Alatise, M.O., Ewulo, B.S., Adeosun, S.S., et al., 2022. Unsaturated hydraulic conductivity prediction using artificial intelligence and multiple linear regression models in biochar amended sandy clay loam soil. J. Soil Sci. Plant Nutr. 22, 1589-1603. https://doi.org/10.1007/s42729....
 
16.
Faloye, O.T., Ajayi, E.B., Rostek, J., Schroeren, V., Fashina, T.B.A., Horn, R., 2024. Hydraulic and pore functions of differently textured soils modified by biochar from different parts of the mango plant. Soil Till. Res. 236, 105944, https://doi.org/10.1016/j.stil....
 
17.
Feizi, Z., Ayoubi, S., Mosaddeghi, M.R., Besalatpour, A.A., Zeraatpisheh, M., Rodrigo-Comino, J., 2019. A wind tunnel experiment to investigate the effect of polyvinyl acetate, biochar, and bentonite on wind erosion control. Archives Agronomy Soil Sci. 65(8), 1049-1062. https://doi.org/10.1080/036503....
 
18.
Feng, J., Shang, M., Liu, P., 2009. Comparative study on the soil water retention curve between macroporous soil and homogeneous soil (in Chinese). Chin. J. Soil Sci. 40,1006-1009.
 
19.
Fišarová, L., Berchová, K., Lukáč, M., Beesley, L., Vosátka, M., Hausenblas, M., et al., 2024. Microgranular biochar improves soil fertility and mycorrhization in crop systems. Soil Use Manag. 40, 2. https://doi.org/10.1111/sum.13....
 
20.
Fornes, F., Lidón, A., Belda, R.M., Macan, G.P.F., Cayuela, M.L., Sánchez-García, M., et al., 2024. Soil fertility and plant nutrition in an organic olive orchard after 5 years of amendment with compost, biochar or their blend. Sci. Rep. 14(1), 16606. https://doi.org/10.1038/s41598....
 
21.
Gao, S., DeLuca, T.H., 2022. Rangeland application of biochar and rotational grazing interact to influence soil and plant nutrient dynamics. Geoderma 408, 115572. https://doi.org/10.1016/j.geod....
 
22.
Garg, A., Zhu H.H., Sarmah, A.K., Mei, G., Gadi, V.K., 2023. Evaluating mechanism and inconsistencies in hydraulic conductivity of unsaturated soil using newly proposed biochar conductivity factor. Biochar 5, 34 https://doi.org/10.1007/s42773....
 
23.
Gliński, J., Lipiec, J., 2018. Soil Physical Conditions and Plant Roots1st Edition, CRC Press, 260pp, First Published 1990. Reissued 2018 by CRC Press Taylor Francis Group ISBN 13: 978-1-351-07670-8 (ebk).
 
24.
Global Biochar Market Report 2023 by International Biochar Initiative, US Biochar Initiative is licensed under CC BY-NC-ND 4.0.
 
25.
Głąb, T., Palmowska, J., Zaleski, T., Gondek, K., 2016. Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Geoderma 28, 11-20. https://doi.org/10.1016/j.geod....
 
26.
Gong, H., Tan, Z., Zhang, L., Huang, Q., 2019. Preparation of biochar with high absorbability and its nutrient adsorption-desorption behaviour. Sci. Total Environ. 694. http://doi.org/10.1016/j.scito tenv.2019.133728.
 
27.
Hessel, R., Wyseure, G., Panagea, I.S., Alaoui, A., Reed, M.S., van Delden, H., et al., 2022. Soil-improving cropping systems for sustainable and profitable farming in Europe. Land 11, 780.https://doi.org/10.3390/land11....
 
28.
Horn, R., Fleige, H., Dörner, J., Zimmermann, I., Wendroth, O., 2025. Pore rigidity as an undervalued process in soil structure development. Soil Till. Res. 245, 106280. https://doi.org/10.1016/j.stil....
 
29.
Hyväluoma, J., Kulju, S., Hannula, M., Wikberg, H., Källi, A., Rasa, K., 2018. Quantitative characterization of pore structure of several biochars with 3D imaging. Environ. Sci. Pollut. Res. 25, 25648-25658. https://doi.org/10.1007/s11356....
 
30.
Juriga, M., Šimanský, V., 2018. Effect of biochar on soil structure – review. Acta fytotechn. 147. Zootech. 21, 11-19. https://doi.org/10.15414/afz.2....
 
31.
Kameyama, K., Miyamoto, T., Iwata, Y., 2019. The preliminary study of water-retention related properties of biochar produced from various. Materials 12(1732), 1-13.
 
32.
Kaźmierowski, C., 2015. Estimation of the hydraulic properties of soils in the Polish Lowlands (in Polish). Wydanie I, Poznań: Wydawnictwo Naukowe UAM, 220.
 
33.
Kelishadi, H., Mosaddeghi M.R., Hajabbasi M.A., Ayoubi S., 2014. Near-saturated soil hydraulic properties as influenced by land use management systems in Koohrang region of central Zagros, Iran. Geoderma 213, 426-434. https://doi.org/10.1016/j.geod....
 
34.
Kinney, T.J., Masiello, C.A., Dugan, B., Hockaday, W.C., Dean, M.R., Zygourakis K., et al., 2012. Hydrologic properties of biochars produced at different temperatures. Biomass Bioenergy 41, 34-43. https://doi.org/10.1016/j.biom....
 
35.
Kirkham, M.B., 2005. Principles of Soil and Plant Water Relations. Boston: Elsevier Academic Press.
 
36.
Klute, A. (Ed.), 1986. Water retention: laboratory methods. In: Methods of soil analysis. Part 1. Physical and mineralogical methods. Am. Soc. Agronomy, Madison, WI, 635-685. https://doi.org/10.2136/sssabo....
 
37.
Kroes, J., Supit, I., van Dam, J., van Walsum, P., Mulder, M., 2018. Impact of capillary rise and recirculation on simulated crop yields. Hydrol. Earth Syst. Sci. 22, 2937-2952, 2018 https://doi.org/10.5194/hess-2....
 
38.
Krzyszczak, J., Baranowski, P., Pastuszka-Woźniak, J., Wesołowska, M., Cymerman, J., Sławiński, C., et al., 2023. Assessment of soil water retention characteristics based on VNIR/SWIR hyperspectral imaging of soil surface, Soil Till. Res. 233, 105789, https://doi.org/10.1016/j.stil....
 
39.
Kumar, A., Bhattacharya, T., Mukherjee, S., Sarkar, B., 2022. A perspective on biochar for repairing damages in the soil -plant system caused by climate change‑driven extreme weather events. Biochar 4, 22 https://doi.org/10.1007/s42773....
 
40.
Kumar, A., Bhattacharya, T., Shaikh, W.A., Roy, A., Chakraborty, S., Vithanage, M., et al., 2023. Multifaceted applications of biochar in environmental management: a bibliometric profile. Biochar 5, 11, https://doi.org/10.1007/s42773....
 
41.
Lehmann, J., 2007. Bio-energy in the black. Front. Ecol. Environ. 5, 381-387. https://doi.org/10.1890/1540-9....
 
42.
Lei, O., Zhang, R., 2013. Effects of biochars derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties. J. Soils Sediments 13, 1561-1572. https://doi.org/10.1007/s11368....
 
43.
Li, Y., Feng, G., Tewolde, H., 2023. Biochar derived from papermill factories improves soil physical and hydraulic properties in no‑till cotton fields Biochar 5, 35. https://doi.org/10.1007/s42773....
 
44.
Li, X., Wu, D., Liu, X., Huang, Y., Cai, A., Xu, H., et al., 2024. A global dataset of biochar application effects on crop yield, soil properties, and greenhouse gas emissions. Sci Data 11, 57, https://doi.org/10.1038/s41597....
 
45.
Lim, T.J., Spokas, K., Feyereisen, G., Novak, J., 2015. Predicting the impact of biochar additions on soil hydraulic properties. Chemosphere 142. https://doi.org/10.1016/j.chem....
 
46.
Lipiec, J., Usowicz, B., Kłopotek, J., Turski, M., Frąc, M., 2021. Effects of application of recycled chicken manure and spent mushroom substrate on organic matter, acidity, and hydraulic properties of sandy soils. Materials 14, 4036. https://doi.org/10.3390/ma1414....
 
47.
Liu, Z., Dugan, B., Masiello, C.A., Gonnermann, H.M., 2017. Biochar particle size, shape, and porosity act together to influence soil water properties. PLoS One 12, 1-19. https://doi.org/10.1371/journa....
 
48.
Mualem, Y., 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Res. Res. 12, 513-522. https://doi.org/10.1029/WR012i....
 
49.
Nemes, A., Schaap, M., Leij, F., Wösten, J., 2001. Description of the unsaturated soil hydraulic database UNSODA version 2.0, J. Hydrol. 251, 151-162, https://doi.org/10.1016/S0022-....
 
50.
Novak, J., Sigua, G., Watts, D., Cantrell, K., Shumaker, P., Szogi, A., et al., 2016. Biochars impact on water infiltration and water quality through a compacted subsoil layer. Chemosphere 142,160-167. https://doi.org/10.1016/j.chem....
 
51.
O’Keeffe, A.O., Brooks, E., Dunkel, C., Shrestha, D.S., 2023. Soil moisture routing modeling of targeted biochar amendment in undulating topographies: an analysis of biochar’s effects on streamflow. AIMS Environ. Sci. 10, 529-546. https://doi.org/10.3934/enviro....
 
52.
Orzechowski, M., Smólczyński, S., Długosz, J., Kalisz, B., 2022. Spatial variability of water properties of soils formed from glaciolimnic deposits in Sępopol Lowland (Poland) – results from a field-scale study. J. Elem. 27(3): 533-544. https://doi.org/10.5601/jelem.....
 
53.
Saeidi, T., Mosaddeghi M.R., Afyuni M., Ayoubi S., Sauer D., 2023. Modeling the effect of slope aspect on temporal variation of soil water content and matric potential using different approaches by HYDRUS-1D. Geoderma Regional 35, e00724. https://doi.org/10.1016/j.geod....
 
54.
Sohi, S., Lopez-Capel, E., Krull, E., Bol, R., 2009. Biochar, climate change and soil: a review to guide future research. Civ. Eng. 6618:64. https://doi.org/10.1139/Z03-13....
 
55.
Suliman W., Hars, J.B., Abu-Lail, N.I., Fortuna, A.M., Dallmeyer I., Garcia-Perez M., 2017. The role of biochar porosity and surface functionality in augmenting hydrologic properties of a sandy soil. Sci. Total Environ. 574, 139-147. https://doi.org/10.1016/j.scit....
 
56.
Tomczyk, A., Sokołowska, Z., Boguta, P., 2020. Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Rev. Env.Sci. Biotechnol. 19, 191-215. https://doi.org/10.1007/s11157....
 
57.
Usowicz, B., 2000. Statistical and physical models of mass and energy flow in a porous medium (in Polish). Acta Agrophys. 29, 3-113.
 
58.
Usowicz, B., 2001. Statistical approach for hydraulic conductivity of porous medium (in Polish). Acta Agrophys. 53, 177-187.
 
59.
Usowicz, B., Lipiec, J., 2020. Modelling the saturated hydraulic conductivity of soils amended with different biochars. 22nd EGU General Assembly, 4-8 May 2020, id 7575. https://doi.org/10.5194/egusph....
 
60.
Usowicz, B., Lipiec, J., Ferrero, A., 2006a. Prediction of soil thermal conductivity based on penetration resistance and water content or air-filled porosity. Int. J. Heat Mass Transf. 49, 5010-5017. https://doi.org/0.1016/j.ijhea....
 
61.
Usowicz, B., Lipiec, J., Marczewski, W., Ferrero, A., 2006b. Thermal conductivity modelling of terrestrial soil media − a comparative study. Planet. Space Sci. 54, 1086-1095. https://doi.org/10.1016/j.pss.....
 
62.
Usowicz, B., Lipiec, J., Łukowski, M., Marczewski, W., Usowicz, J., 2016. The effect of biochar application on thermal properties and albedo of loess soil under grassland and fallow. Soil Till Res. 164, 45-51. http://dx.doi.org/10.1016/j.st....
 
63.
Usowicz, B., Lipiec, J., Łukowski, M., Bis, Z., Usowicz, J., Latawiec, A.E., 2020. Impact of biochar addition on soil thermal properties: Modelling approach. Geoderma 376, 114574. https://doi.org/10.1016/j.geod....
 
64.
Usowicz, B., Lipiec, J., Siczek, A., 2024. Fitting the van Genuchten model to the measured hydraulic parameters in soils of different genesis and texture at the regional scale. Int. Agrophys. 38, 373-382. https://doi.org/10.31545/intag....
 
65.
Usowicz, B., Lipiec, J., Usowicz, J.B., Marczewski, W., 2013.Effects of aggregate size on soil thermal conductivity: Comparison of measured and model-predicted data. Int. J. Heat Mass Transf. 57, 536-541. https://doi.org/10.1016/j.ijhe....
 
66.
van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 4, 892-898. https://doi.org/10.2136/sssaj1....
 
67.
van Genuchten M., Th., Pachepsky, Y., 2011. Hydraulic Properties of Unsaturated Soils. In: Gliński, J., Horabik, J., Lipiec, J., (Eds), Encyclopedia of Agrophysics. Springer Dordrecht, Heidelberg, London, New York, 368-376. https://doi.org/10.1007/978-90....
 
68.
Villagra-Mendoza, K., Horn, R., 2018a. Effect of biochar addition on hydraulic functions of two textural soils. Geoderma 326, 88-95. https://doi.org/10.1016/j.geod....
 
69.
Villagra-Mendoza, K., Horn, R., 2018b. Effect of biochar on the unsaturated hydraulic conductivity of two amended soils. Int. Agrophys. 32(3), 373-378. https://doi.org/10.1515/intag-....
 
70.
Wang, Z., Sedighi, M., Lea-Langton, A.R., Babaei, M., 2022. Hydraulic behaviour of sand-biochar mixtures in water and waste water treatment applications. J. Hydrol. 612, 128220. https://doi.org/10.1016/j.jhyd....
 
71.
Yan, Y., Akbar Nakhli, S.A., Jin, J., Mills, G., Willson, C.S., Legates D.R., et al., 2021. Predicting the impact of biochar on the saturated hydraulic conductivity of natural and engineered media. J. Environ. Manag. 1(295), 113143. https://doi.org/10.1016/j.jenv....
 
72.
Zhang, A., Bian, R., Pan, G., Cui, L., Hussain, Q., Li, L., et al., 2012. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: a field study of 2 consecutive rice growing cycles. Field Crop Res. 127, 153-160. https://doi.org/10.1016/j.fcr.....
 
73.
Zhang, Y., Gu, K, Li J., Tang, C., Shen, Z., Shi, B., 2020. Effect of biochar on desiccation cracking characteristics of clayey soils. Geoderma 364, 114182. https://doi.org/10.1016/j.geod....
 
74.
Zhang, L., Jing, Y., Chen, G., Wang, X., Zhang R., 2019. Improvement of physical and hydraulic properties of desert soil with amendment of different biochars. J. Soils Sediments 19, 2984-2996. https://doi.org/10.1007/s11368....
 
eISSN:2300-8725
ISSN:0236-8722
Journals System - logo
Scroll to top