RESEARCH PAPER
Morphophysiological adjustments and Antioxidant defense in main tree species of southern China to simulated acid deposition
More details
Hide details
1
Forestry College, Fujian Agriculture and Forestry University Fuzhou, 350002 Fujian Province, PR China
2
Department of Forestry and Range Management, Bahauddin Zakariya University, Multan, 66000, Pakistan
3
Department of Botany, Government College University Faisalabad, 38040, Pakistan
4
Bangor College China, a joint unit of Bangor University and Central South University of Forestry and Technology Changsha 410004, China
5
Department of Forestry and Range Management, Bahauddin Zakariya University, 38000, Pakistan
6
Department of Forestry and Range Management, Agriculture University Dera Ismail Khan, 29111, Pakistan
7
Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 47713, Saudi Arabia
8
School of Life Sciences, Qufu Normal University, Qufu 273165, Shandong Province, China
Final revision date: 2025-05-06
Acceptance date: 2025-05-09
Publication date: 2025-07-04
Corresponding author
Xiangqing Ma
Forestry College, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
Int. Agrophys. 2025, 39(4): 399-411
Author Contributions: Matoor Mohsin Gilani and Bo Liu conceived the idea; Matoor Mohsin Gilani and Xiangqing Ma designed the study. Matoor Mohsin Gilani, Muhammad Haroon U. Rashid and Muhammad Waqqas Khan Tarin performed the lab work, Matoor Mohsin Gilani and Ghulam Yasin analyzed the data. Muhammad Zubair, and Ali Noman discussed the results and discussion. Taimoor Hassan Farooq and Fahad Mohammed Alzuaibr revised the English language.
HIGHLIGHTS
- Acid rain
- Photosynthesis
- Antioxidant enzyme
- Gas exchange
- Osmotic adjustment
KEYWORDS
TOPICS
ABSTRACT
Acid deposition has become a significant issue due to increased pollution and forest degradation. To examine the response of acid deposition in Fuzhou, a city in Fujian Province, we investigated the physiology, morphology, osmotic adaptation, photosynthetic characteristics, and antioxidant defense of Pinus massoniana, Cunninghamia lanceolata, Liquidambar formosana, Schima superba, and Phoebe zhennan. Seedlings were subjected to pH levels of 2.5, 3.5, 4.5, and 5.5 in a greenhouse experiment. Plant height, diameter, and biomass increased in the control group (6.5); however, pH 4.5 and 5.5 resulted in tall and thin seedlings. Height and diameter decreased under increased acid deposition specifically at pH 2.5 and 3.5. Biochemical parameters and chlorophyll contents were reduced under low pH levels. The activities of catalase, peroxidase, superoxide dismutase, malonaldehyde, and proline increased initially under low pH, but decreased later due to high acidity, whereas soluble sugar and protein contents were inhibited under higher acidity levels (pH 2.5 and 3.5). The findings showed that the seedlings responded differently but more sensitively to acid deposition below pH 4.5. The exposure to less acidic deposition had a slight effect on the development of these tree seedlings. This trial aids in detecting bioindicators and resilient species to acid deposition existing in forests and urban areas.
FUNDING
This work was supported by Cross-Strait Collaborative Innovation Center of Soil and Water Conservation (K80ND8003) (2015-2027).
CONFLICT OF INTEREST
Authors declare no conflict of interest exists.
REFERENCES (89)
1.
Ahmad, I., Gilani, M., Wu, P., 2019. Cuttings growth response of Dalbergia sissoo (shisham) to soil compaction stress. Appl. Ecol. Env. Res. 17(1), 1049-1059.
http://dx.doi.org/10.15666/aee....
2.
Ahmed, I.M., Cao, F., Zhang, M., Chen, X., Zhang, G., Wu, F., 2013. Difference in yield and physiological features in response to drought and salinity combined stress during anthesis in Tibetan wild and cultivated barleys. PloS one, 8(10) e77869.
https://doi.org/10.1371/journa....
3.
Akhter, N., Habiba, O., Hina, M., Shahnaz, M.M., Alzuaibr, F.M., Alamri, S., et al., 2022. Structural, biochemical, and physiological adjustments for toxicity management, accumulation, and remediation of cadmium in wetland ecosystems by Typha domingensis Pers. Water Air Soil Poll. 233(5), 151.
https://doi.org/10.1007/s11270....
4.
Amini, F., Ehsanpour, A.A., 2005. Soluble proteins, proline, carbohydrates and Na+/K+ changes in two tomato (Lycopersicon esculentum Mill.) cultivars under in vitro salt stress. Am. J. Biochem. Biotech. 1 (4), 204-208.
https://doi.org/10.3844/ajbbsp....
5.
Bäck, J., Huttunen, S., Turunen, M., Lamppu, J., 1995. Effects of acid rain on growth and nutrient concentrations in Scots pine and Norway spruce seedlings grown in a nutrient-rich soil. Environ. Pollut. 89(2), 177-187.
https://doi.org/10.1016/0269-7....
6.
Bao, G., Tang, W., He, F., Chen, W., Zhu, Y., Fan, C., et al., 2019. Physiological response in the leaf and stolon of white clover under acid precipitation and freeze-thaw stress. Funct. Plant Biol. 47, 50-57.
https://doi.org/10.1071/FP1907....
8.
Blanco, J.A., Wei, X., Jiang, H., Jie, C.Y., Xin, Z.H., 2012. Impacts of enhanced nitrogen deposition and soil acidification on biomass production and nitrogen leaching in Chinese fir plantations. Can. J. For. Res. 42, 437-450.
https://doi.org/10.1139/x2012-....
9.
Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.
https://doi.org/10.1016/0003-2....
10.
Bussotti, F., Bottacci, A., Grossoni, P., Mori, B., Tani, C., 1997. Cytological and structural changes in Pinus pines L. needles following the application of an anionic surfactant. Plant Cell Environ. 20, 513-520.
https://doi.org/10.1046/j.1365....
11.
Cape, J., 1993. Direct damage to vegetation caused by acid rain and polluted cloud: definition of critical levels for forest trees. Environ. Pollut. 82, 167-180.
https://doi.org/10.1016/0269-7....
12.
Chang, C.-T., Yang, C.-J., Huang, K.-H., Huang, J.-C., Lin, T.-C., 2022. Changes of precipitation acidity related to sulfur and nitrogen deposition in forests across three continents in north hemisphere over last two decades. Sci. Total Environ. 806, 150552.
https://doi.org/10.1016/j.scit....
13.
Chen, J., Hu, W.-J., Wang, C., Liu, T.-W., Chalifour, A., Chen, J., et al., 2014. Proteomic analysis reveals differences in tolerance to acid rain in two broad-leaf tree species, Liquidambar formosana and Schima superba. PLoS One, 9(7), e102532.
https://doi.org/10.1371/journa....
14.
Chen, J., Li, W., Gao, F., 2010. Biogeochemical effects of forest vegetation on acid precipitation-related water chemistry: a case study in southwest China. J. Environ. Monit. 12(10), 1799-1806.
https://doi.org/10.1039/C0EM00....
15.
Chen, J., Wang, W.-H., Liu, T.-W., Wu, F.-H., Zheng, H.-L., 2013. Photosynthetic and antioxidant responses of Liquidambar formosana and Schima superba seedlings to sulfuric-rich and nitric-rich simulated acid rain. Plant Physiol. Biochem. 64, 41-51.
https://doi.org/10.1016/j.plap....
16.
Chen, L., Heerink, N., Van Den Berg, M., 2006. Energy consumption in rural China: A household model for three villages in Jiangxi Province. Ecol. Econ. 58, 407-420.
https://doi.org/10.1016/j.ecol....
17.
Chen, Z., Ye, S., Cao, J., Shang, H., 2021. Nitrogen fertilization modified the responses of Schima superba seedlings to elevated CO2 in subtropical China. Plants 10(2), 383.
https://doi.org/10.3390/plants....
18.
Cheng, Y., Peng, J., Gu, Y., Guo, H., Jiang, T., Yang, H., 2023. The early effect of plant density on soil physicochemical attributes and bacterial and understory plant diversity in Phoebe zhennan plantations. Forests 14.
https://doi.org/10.3390/f14081....
19.
Debnath, B., Irshad, M., Mitra, S., Li, M., Rizwan, H.M., Liu, S., et al., 2018. Acid rain deposition modulates photosynthesis, enzymatic and non-enzymatic antioxidant activities in tomato. Int. J. Environ. Res. 12, 203-214.
https://doi.org/10.1007/s41742....
20.
Debnath, B., Sikdar, A., Islam, S., Hasan, K., Li, M., Qiu, D., 2021. Physiological and molecular responses to acid rain stress in plants and the impact of melatonin, glutathione and silicon in the amendment of plant acid rain stress. Molecules 26(4), 862.
https://doi.org/10.3390/molecu....
21.
Diatta, J., Youssef, N., Tylman, O., Grzebisz, W., Markert, B., Drobek, L., et al., 2021. Acid rain induced leakage of Ca, Mg, Zn, Fe from plant photosynthetic organs-Testing for deciduous and dicotyledons. Ecol. Indic. 121, 107210.
https://doi.org/10.1016/j.ecol....
22.
Dong, D., Du, E., Sun, Z., Zeng, X., De Vries, W., 2017. Non-linear direct effects of acid rain on leaf photosynthetic rate of terrestrial plants. Environ. Pollut. 231, 1442-1445.
https://doi.org/10.1016/j.envp....
23.
Du, E., Dong, D., Zeng, X., Sun, Z., Jiang, X., De Vries, W., 2017. Direct effect of acid rain on leaf chlorophyll content of terrestrial plants in China. Sci. Total Environ. 605, 764-769.
https://doi.org/10.1016/j.scit....
24.
Eguagie, M., Aiwansoba, R., Omofomwan, K., Oyanoghafo, O., 2016. Impact of simulated acid rain on the growth, yield and plant component of Abelmoschus caillei. J. Adv. Biol. Biotechnol. 6, 1-6.
https://doi.org/0.9734/JABB/20....
25.
Fan, H.B., Wang, Y.H., 2000. Effects of simulated acid rain on germination, foliar damage, chlorophyll contents and seedling growth of five hardwood species growing in China. For. Ecol. Manag. 126(3), 321-329.
https://doi.org/10.1016/S0378-....
26.
Farooq, T., Yan, W., Rashid, M., Tigabu, M., Gilani, M., Zou, X., Wu, P., 2019. Chinese fir (Cunninghamia Lanceolata) a green gold of china with continues decline in its productivity over the successive rotations: A review. Appl. Ecol. Env. Res. 17, 5.
https://doi.org/10.15666/aeer/....
27.
Farooq, T.H., Shakoor, A., Wu, X., Li, Y., Rashid, M.H.U., Zhang, X., et al., 2021. Perspectives of plantation forests in the sustainable forest development of China. Iforest. 14, 166-174.
http://doi:org/10.3832/ifor355....
28.
Farooq, T.H., Yan, W., Chen, X., Shakoor, A., Rashid, M.H.U., Gilani, M.M., et al., 2020. Dynamics of canopy development of Cunninghamia lanceolata mid-age plantation in relation to foliar nitrogen and soil quality influenced by stand density. Glob. Ecol. Conserv. 24, e01209.
https://doi.org/10.1016/j.gecc....
29.
Feng, Z.-W., Miao, H., Zhang, F.-Z., Huang, Y.-Z., 2002. Effects of acid deposition on terrestrial ecosystems and their rehabilitation strategies in China. J. Environ Sci. (China) 14(2), 227-33. PMID: 12046292.
30.
Flagler, R.B., Lock, J.E., Elsik, C.G., 1994. Leaf-level and whole-plant gas exchange characteristics of shortleaf pine exposed to ozone and simulated acid rain. Tree Physiol. 14, 361-374.
https://doi.org/10.1093/treeph....
31.
Foyer, C.H., Noctor, G., 2005. Oxidant and antioxidant signalling in plants: a re‐evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ. 28, 1056-1071.
https://doi.org/10.1111/j.1365....
32.
Gilani, M., Tigabu, M., Farooq, T., Rashid, M., Yasin, G., Zubair, M., et al., 2023. Influence of differential nitrogen forms on seedling morphology of four widely grown species in southern China. Appl. Ecol. Env. Res. 21.
https://doi.org/10.15666/aeer/....
33.
Gilani, M.M., Tigabu, M., Liu, B., Farooq, T.H., Rashid, M.H.U., Ramzan, M., et al., 2021. Seed germination and seedling emergence of four tree species of southern China in response to acid rain. J. For. Res. 32, 471-481.
https://doi.org/10.1007/s11676....
34.
Grennfelt, P., Engleryd, A., Forsius, M., Hov, Ø., Rodhe, H., Cowling, E., 2020. Acid rain and air pollution: 50 years of progress in environmental science and policy. Ambio 49, 849-864.
https://doi.org/10.1007/s13280....
35.
Hasan, M.M., Liu, X.-D., Waseem, M., Guang-Qian, Y., Alabdallah, N.M., Jahan, M.S., et al., 2022. ABA activated SnRK2 kinases: An emerging role in plant growth and physiology. Plant Signal Behav. 17(1), 2071024.
https://doi.org/10.1080/155923....
36.
Hodges, D.M., Delong, J.M., Forney, C.F., Prange, R.K., 1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207, 604-611.
https://doi.org/10.1007/s00425....
37.
Hu, W.-J., Chen, J., Liu, T.-W., Simon, M., Wang, W.-H., Wu, F.-H., et al., 2014. Comparative proteomic analysis of differential responses of Pinus massoniana and Taxus wallichiana var. mairei to simulated acid rain. Int. J. Mol. Sci. 15(3), 4333-4355.
https://doi.org/10.3390/ijms15....
38.
Hu, Y., Wang, B., Hu, T., Chen, H., Li, H., Zhang, W., et al., 2015. Combined action of an antioxidant defence system and osmolytes on drought tolerance and post-drought recovery of Phoebe zhennan S. Lee saplings. Acta Physiol. Plant. 37, 1-13.
https://doi.org/10.1007/s11738....
39.
Hua, T., Tan, S., Liu, Z., 2022. Effects of cadmium and simulated acid rain on growth and physiological characteristics of bermudagrass seedling. Acta Physiol. Plant. 44, 17.
https://doi.org/10.1007/s11738....
40.
Huang, L., Yang, J., Zhang, G., 2012. Chemistry and source identification of wet precipitation in a rural watershed of subtropical China. Chin. J. Geochem. 31, 347-354.
https://doi.org/10.1007/s11631....
41.
Jian-Fu, L., Ming-Yuan, W., Chen, Y., Ai-Jun, Z., 2013. Effects of exogenous nitric oxide on physiological characteristics of longan (Dimocarpus longana) seedlings under acid rain stress. Yingyong Shengtai Xuebao 24(8).
https://openurl.ebsco.com/EPDB....
42.
Khalid, N., Noman, A., Aqeel, M., Hadayat, N., Anjum, S., 2018. NPK could alleviate the adverse effects of simulated acid rain in sunflower (Helianthus annuus L.). Plant Nutr. 41(5), 584-595.
https://doi.org/10.1080/019041....
43.
Kováčik, J., Klejdus, B., Bačkor, M., Štork, F., Hedbavny, J., 2011. Physiological responses of root-less epiphytic plants to acid rain. Ecotoxicol. 20, 348-357.
https://doi.org/10.1007/s10646....
44.
Kumaravelu, G., Ramanujam, M., 1998. Impact of simulated acidic rain on growth, photosynthetic pigments, cell metabolites, and leaf characteristics of green gram. Photosynthetica 35, 71-78.
https://doi.org/10.1023/A:1006....
45.
Li, Z., Peng, Y., Ma, X., 2013. Different response on drought tolerance and post-drought recovery between the small-leafed and the large-leafed white clover (Trifolium repens L.) associated with antioxidative enzyme protection and lignin metabolism. Acta Physiol. Plant. 35, 213-222.
https://doi.org/10.1007/s11738....
46.
Lichtenthaler, H.K., Wellburn, A.R., 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Portland Press Ltd.
https://doi.org/10.1042/bst011....
47.
Liu, J., Zhou, G., Yang, C., Ou, Z., Peng, C., 2007. Responses of chlorophyll fluorescence and xanthophyll cycle in leaves of Schima superba Gardn. Champ. and Pinus massoniana Lamb. to simulated acid rain at Dinghushan Biosphere Reserve, China. Acta Physiol. Plant. 29, 33-38.
https://doi.org/10.1007/s11738....
48.
Liu, M., Korpelainen, H., Dong, L., Yi, L., 2019. Physiological responses of Elaeocarpus glabripetalus seedlings exposed to simulated acid rain and cadmium. Ecotoxicol. Environ. Saf. 175, 118-127.
https://doi.org/10.1016/j.ecoe....
49.
Liu, X., Fu, Z., Zhang, B., Zhai, L., Meng, M., Lin, J., et al., 2018. Effects of sulfuric, nitric, and mixed acid rain on Chinese fir sapling growth in Southern China. Ecotoxicol. Environ. Saf. 160, 154-161.
https://doi.org/10.1016/j.ecoe....
50.
Liu, Z., Liu, Z., Wu, L., Li, Y., Wang, J., Wei, H., et al., 2022. Effect of polyethylene microplastics and acid rain on the agricultural soil ecosystem in Southern China. Environ. Pollut. 303, 119094.
https://doi.org/10.1016/j.envp....
51.
Ma, S., Chen, W., Zhang, J., Shen, H., 2020. Influence of simulated acid rain on the physiological response of flowering Chinese cabbage and variation of soil nutrients. Plant Soil Environ. 66.
https://doi.org/10.17221/469/2....
52.
Marcińska, I., Czyczyło-Mysza, I., Skrzypek, E., Grzesiak, M.T., Janowiak, F., Filek, M., et al., 2013. Alleviation of osmotic stress effects by exogenous application of salicylic or abscisic acid on wheat seedlings. Int. J. Mol. Sci. 14, 13171-13193.
https://doi.org/10.3390/ijms14....
53.
Meng, Y., Zhao, Y., Li, R., Li, J., Cui, L., Kong, L., et al., 2019. Characterization of inorganic ions in rainwater in the megacity of Shanghai: Spatiotemporal variations and source apportionment. Atmos. Res. 222, 12-24.
https://doi.org/10.1016/j.atmo....
54.
Mofunanya, A., Soonen, L., 2017. Physiological and morphological responses of Amaranthus hybridus L. (green) to simulated nitric and sulphuric acid rain. Br. J. Appl. Sci. Technol. 21, 1-12.
https://doi.org/10.9734/BJAST/....
55.
Moharekar, S., Lokhande, S., Hara, T., Tanaka, R., Tanaka, A., Chavan, P., 2003. Effect of salicylic acid on chlorophyll and carotenoid contents of wheat and moong seedlings. Photosynthetica 41, 315-317.
https://doi.org/10.1023/B:PHOT....
56.
Montillet, J.-L., Chamnongpol, S., Rustérucci, C., Dat, J., Van De Cotte, B., Agnel, J.-P., et al., 2005. Fatty acid hydroperoxides and H2O2 in the execution of hypersensitive cell death in tobacco leaves. Plant Physiol. 138, 1516-1526.
https://doi.org/10.1104/pp.105....
57.
Naheed, R., Aslam, H., Kanwal, H., Farhat, F., Gamar, M.I.A., Al-Mushhin, A.A., et al., 2021. Growth attributes, biochemical modulations, antioxidant enzymatic metabolism and yield in Brassica napus varieties for salinity tolerance. Saudi J. Biol. Sci. 28(10), 5469-5479.
https://doi.org/10.1016/j.sjbs....
58.
Noman, A., Ali, Q., Maqsood, J., Iqbal, N., Javed, M.T., Rasool, N., et al., 2018. Deciphering physio-biochemical, yield, and nutritional quality attributes of water-stressed radish (Raphanus sativus L.) plants grown from Zn-Lys primed seeds. Chemosphere 195, pp.175-189.
https://doi.org/10.1016/j.chem....
59.
Noman, A., Ali, S., Naheed, F., Ali, Q., Farid, M., Rizwan, M., et al., 2015. Foliar application of ascorbate enhances the physiological and biochemical attributes of maize (Zea mays L.) cultivars under drought stress. Archives Agron. Soil Sci. 61(12), 1659-1672.
https://doi.org/10.1080/036503....
60.
Pan, T., Li, Y., Ma, C., Qiu, D., 2015. Calcium affecting protein expression in longan under simulated acid rain stress. ESPR 22, 12215-12223.
https://doi.org/10.1007/s11356....
61.
Qiu, D., Liu, X., 2002. Effects of simulated acid rain on chloroplast activity in Dimorcarpus longana Lour. cv. wulongling leaves. Ying Yong Sheg Tai Xue Bao. J. Appl. Ecol. 13, 1559-1562.
https://europepmc.org/article/....
62.
Rahman, S.U., Xuebin, Q., Kamran, M., Yasin, G., Cheng, H., Rehim, A., et al., 2021. Silicon elevated cadmium tolerance in wheat (Triticum aestivum L.) by endorsing nutrients uptake and antioxidative defense mechanisms in the leaves. Plant Physiol. Biochem. 166, 148-159.
https://doi.org/10.1016/j.plap....
63.
Rajjou, L., Duval, M., Gallardo, K., Catusse, J., Bally, J., Job, C., et al., 2012. Seed germination and vigor. Annu. Rev. Plant Biol. 63, 507-533.
https://doi.org/10.1146/annure....
64.
Ren, J., Zhu, L., Zhang, X., Luo, Y., Zhong, X., Li, B., et al., 2024. Variation characteristics of acid rain in Zhuzhou, Central China over the period 2011-2020. J. Environ. Sci. 138, 496-505.
https://doi.org/10.1016/j.jes.....
65.
Shu, X., Zhang, K., Zhang, Q., Wang, W., 2019. Ecophysiological responses of Jatropha curcas L. seedlings to simulated acid rain under different soil types. Ecotoxicol. Environ. Saf. 185, 109705.
https://doi.org/10.1016/j.ecoe....
66.
Song, Y., Li, D., Wang, Y., Wang, R., Xu, H., 2011. Chemical characteristics and cause analysis of precipitation in the South of Liaodong Peninsula. Procedia Eng. 18, 220-225.
https://doi.org/10.1016/j.proe....
67.
Sun, J., Hu, H., Li, Y., Wang, L., Zhou, Q., Huang, X., 2016. Effects and mechanism of acid rain on plant chloroplast ATP synthase. ESPR. 23, 18296-18306.
https://doi.org/10.1007/s11356....
68.
Sun, Z., Wang, L., Chen, M., Wang, L., Liang, C., Zhou, Q., et al., 2012. Interactive effects of cadmium and acid rain on photosynthetic light reaction in soybean seedlings. Ecotoxicol. Environ. Saf. 79, 62-68.
https://doi.org/10.1016/j.ecoe....
69.
Tong, G., Liang, H., 2005. Effects of simulated acid rain and its acidified soil on soluble sugar and nitrogen contents of wheat seedlings (in China). Ying Yong Sheng Tai Xue Bao 16(8), 1487-92. Chinese. PMID: 16262064.
https://pubmed.ncbi.nlm.nih.go....
70.
Velikova, V., Tsonev, T., Yordanov, I., 1999. Light and CO2 responses of photosynthesis and chlorophyll fluorescence characteristics in bean plants after simulated acid rain. Physiol Plant. 107, 77-83.
https://doi.org/10.1034/j.1399....
71.
Verbruggen, N., Hermans, C., 2013. Physiological and molecular responses to magnesium nutritional imbalance in plants. Plant Soil 368, 87-99.
https://doi.org/10.1007/s11104....
72.
Wang, L., Wang, W., Zhou, Q., Huang, X., 2014. Combined effects of lanthanum (III) chloride and acid rain on photosynthetic parameters in rice. Chemosphere 112, 355-361.
https://doi.org/10.1016/j.chem....
73.
Wei, H., Liu, W., Zhang, J., Qin, Z., 2017. Effects of simulated acid rain on soil fauna community composition and their ecological niches. Environ. Pollut. 220, 460-468.
https://doi.org/10.1016/j.envp....
74.
Wu Gang, W. G., 1998. Effect of acidic deposition on productivity of forest ecosystem and estimation of its economic losses in southern suburbs of Chongqing, China 210-215.
https://www.cabidigitallibrary....
75.
Wu, H., Wu, X., Li, Z., Duan, L., Zhang, M., 2012. Physiological evaluation of drought stress tolerance and recovery in cauliflower (Brassica oleracea L.) seedlings treated with methyl jasmonate and coronatine. J. Plant Growth Regul. 31, 113-123.
https://doi.org/10.1007/s00344....
76.
Wu, J., Wang, M., Wang, T., Fu, X., 2022. Evaluation of ecological service function of liquidambar formosana plantations. Int. J. Environ. Res. Public Health. 19, 15317.
https://doi.org/10.3390/ijerph....
77.
Wyrwicka, A., Skłodowska, M., 2006. Influence of repeated acid rain treatment on antioxidative enzyme activities and on lipid peroxidation in cucumber leaves. Environ. Exp. Bot. 56, 198-204.
https://doi.org/10.1016/j.enve....
78.
Xu, J., Guo, L., Liu, L., 2022. Exogenous silicon alleviates drought stress in maize by improving growth, photosynthetic and antioxidant metabolism. Environ. Exp. Bot. 201, 104974.
https://doi.org/10.1016/j.enve....
79.
Yao, F.-F., Ding, H.-M., Feng, L.-L., Chen, J.-J., Yang, S.-Y., Wang, X.-H., 2016. Photosynthetic and growth responses of Schima superba seedlings to sulfuric and nitric acid depositions. ESPR. 23, 8644-8658.
https://doi.org/10.1007/s11356....
80.
Yasin, G., Nawaz, M.F., Zubair, M., Azhar, M.F., Gilani, M.M., Ashraf, M.N., et al., 2023. Role of traditional agroforestry systems in climate change mitigation through carbon sequestration: An investigation from the semi-arid region of Pakistan. Land, 12(2), 513.
https://doi.org/10.3390/land12....
81.
Yasin, G., Ur Rahman, S., Yousaf, M.T.B., Azhar, M.F., Zahid, D.M., Imtiaz, M., et al., 2021. Phytoremediation potential of E. camaldulensis and M. alba for copper, cadmium, and lead absorption in urban areas of Faisalabad City, Pakistan. International J. Environ. Res. 15, 597-612.
https://doi.org/10.1007/s41742....
83.
Zhang, C., Yi, X., Gao, X., Wang, M., Shao, C., Lv, Z., et al., 2020. Physiological and biochemical responses of tea seedlings (Camellia sinensis) to simulated acid rain conditions. Ecotoxicol. Environ. Saf. 192, 110315.
https://doi.org/10.1016/j.ecoe....
84.
Zhang, Y., Tian, C., Yu, T., Dayananda, B., Fu, B., Senaratne, S.L., et al., 2021a. Differential effects of acid rain on photosynthetic performance and pigment composition of the critically endangered Acer amplum subsp. catalpifolium. Glob. Ecol. Conserv. 30, e01773.
https://doi.org/10.1016/j.gecc...
85.
Zhang, Y., Yu, T., Ma, W., Dayananda, B., Iwasaki, K., Li, J., 2021b. Morphological, physiological and photophysiological responses of critically endangered acer catalpifolium to acid stress. Plants 10, 1958.
https://doi.org/10.3390/plants....
86.
Zhang, Y., Yang, F., Wang, Y., Zheng, Y., Zhu, J., 2023. Effects of acid rain stress on the physiological and biochemical characteristics of three plant species. Forests 14, 1067.
https://doi.org/10.3390/f14051....
87.
Zheng, Q.-P., Wang, H., Chen, B.-B., Sui, P., Lin, W., 2014. Characteristics and the impact factors of acid rain in Fuzhou and Xiamen 1992-2012 (in China). Huan Jing ke Xue Huanjing Kexue, 35, 3644-3650. PMID: 25693365.
https://europepmc.org/article/....
88.
Zhou, S., Zhang, M., Chen, S., Xu, W., Zhu, L., Gong, S., et al., 2020. Acid resistance of Masson pine (Pinus massoniana Lamb.) families and their root morphology and physiological response to simulated acid deposition. Sci. Rep. 10, 22066.
https://doi.org/10.1038/s41598....
89.
Zhu, Y., An, W., Peng, J., Li, J., Gu, Y., Jiang, B., et al., 2022. Genetic diversity of Nanmu (Phoebe zhennan S. Lee. et FN Wei) breeding population and extraction of core collection using nSSR, cpSSR and phenotypic markers. Forests 13, 1320.
https://doi.org/10.3390/f13081....