RESEARCH PAPER
Phytoremediation potential of Calendula officinalis L. and Verbena hybrida for chromium detoxification in tannery wastewater
 
More details
Hide details
1
Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
 
2
Department of Botany, Government College Women University, Sialkot, Pakistan
 
3
State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems (SKLHIGA), College of Ecology, Lanzhou University, Lanzhou, China
 
4
Department of Environmental Sciences, The University of Lahore, Lahore, Pakistan
 
5
Department of Biology, college of Science, princess Nourah bint Abddulrahman University P.O. Box 84428, Riyadh 11671, Saudi Arabia
 
6
Department of Geography and Environemental Sustainability, College of Science, princess Nourah bint Abddulrahman University P.O. Box 84428, Riyadh 11671, Saudi Arabia
 
7
Department of Botany, Government College University, Faisalabad, Pakistan
 
These authors had equal contribution to this work
 
 
Final revision date: 2025-07-29
 
 
Acceptance date: 2025-08-12
 
 
Publication date: 2025-09-09
 
 
Corresponding author
Naila Hadayat   

Department of Botany, Division of Science & Technology, University of Education Lahore, Pakista
 
 
Ali Noman   

Department of Botany, Government College University, Faisalabad, Pakistan
 
 
Int. Agrophys. 2025, 39(4): 489-504
 
HIGHLIGHTS
  • Increased tannery wastewater reduced plant growth and photosynthetic pigments
  • Chromium stress elevated oxidative markers and boosted antioxidant defenses
  • Citric acid enhanced Cr uptake, photosynthesis, and stress tolerance in plants
  • Calendula officinalis L. tolerated Cr; Verbena hybrida was an efficient extractor
KEYWORDS
TOPICS
ABSTRACT
Chromium (Cr) contamination from tannery wastewater (TWW) poses significant environmental and health risks particularly in regions where untreated wastewater is commonly used for irrigation. This study explores the potential of ornamental plants, Calendula officinalis L. and Verbena hybrida , as promising species for Cr remediation. A completely randomized pot experiment with different TWW concentrations (0, 25, 50, 75, 100%) with and without 5 mM citric acid (CA) was conducted. Seedlings were treated twice weekly with TWW for one month. Increasing the TWW concentration reduced growth parameters, such as shoot and root length, leaf number, and biomass, with the greatest decline at 100% TWW. Photosynthetic pigments decreased, while malondialdehyde, hydrogen peroxide, and proline levels increased. Antioxidant enzyme activities peaked at 50% TWW with CA. The highest Cr accumulation occurred at 100% TWW with CA, with C. officinalis L. accumulating 3633 mg kg-1 in roots and 2780 mg kg-1 in shoots, and V. hybrida accumulating 2965 mg kg-1 in roots and 3673 mg kg-1 in shoots. C. officinalis L. was identified as Cr-tolerant (translocation factor < 1), whereas V. hybrida served as a Cr-phytoextractor (bioconcentration and translocation factors > 1). These findings underscore the potential of these plants for sustainable Cr remediation in contaminated environments.
ACKNOWLEDGEMENTS
The authors would like to express their sincere gratitude to the Princess Nourah bint Abdulrahman University Researchers Supporting Project (PNURSP) for funding this research through project number (PNURSP2025R241). The authors are also grateful to the University of Education, Bank Road Campus, Lahore for providing research facilities and institutional support.
FUNDING
This work was funded by Princess Nourah bint Abdulrahman University Researchers supporting project number PNURSP2025R241 Princess Nourah bint Abdulrahman University P.O. Box 84428, Riyadh 11671, Saudi Arabia.
CONFLICT OF INTEREST
The authors declare that they have no conflict of interest.
REFERENCES (98)
1.
Adhikari, A., Adhikari, S., Ghosh, S., Azahar, I., Shaw, A.K., Roy, D., et al., 2020. Imbalance of redox homeostasis and antioxidant defense status in maize under chromium (VI) stress. Environ. Exp. Bot. 169, 103873. https://doi.org/10.1016/j.enve....
 
2.
Ahmad, R., Ali, S., Rizwan, M., Dawood, M., Farid, M., Hussain, A., et al., 2020a. Hydrogen sulfide alleviates chromium stress on cauliflower by restricting its uptake and enhancing antioxidative system. Physiol. Plant. 168, 289-300. https://doi.org/10.1111/ppl.13....
 
3.
Ahmad, R., Ishaque, W., Khan, M., Ashraf, U., Riaz, M.A., Ghulam, S., et al., 2020b. Relief role of lysine chelated zinc (Zn) on 6-week-old maize plants under tannery wastewater irrigation stress. Int. J. Environ. Res. Public Health. 17, 5161. https://doi.org/10.3390/ijerph....
 
4.
Aqeel, M., Khalid, N., Tufail, A., Ahmad, R.Z., Akhter, M.S., Luqman, M., et al., 2021. Elucidating the distinct interactive impact of cadmium and nickel on growth, photosynthesis, metal-homeostasis, and yield responses of mung bean (Vigna radiata L.) varieties. Environ. Sci. Pollut. Res. 28, 27376-27390. https://doi.org/10.1007/s11356....
 
5.
Al Mahmud, J., Hasanuzzaman, M., Nahar, K., Bhuyan, M.B., Fujita, M., 2018. Insights into citric acid-induced cadmium tolerance and phytoremediation in Brassica juncea L.: Coordinated functions of metal chelation, antioxidant defense and glyoxalase systems. Ecotoxicol. Environ. Saf. 147, 990-1001. https://doi.org/10.1016/j.ecoe....
 
6.
Ali, H., Khan, E., Sajad, M.A., 2013. Phytoremediation of heavy metals-concepts and applications. Chemosphere 91, 869-881. https://doi.org/10.1016/j.chem....
 
7.
Ali, S., Rizwan, M., Waqas, A., Hussain, M. B., Hussain, A., Liu, S., et al., 2018. Fulvic acid prevents chromium-induced morphological, photosynthetic, and oxidative alterations in wheat irrigated with tannery waste water. J. Plant Growth Regul. 37, 1357-1367. https://doi.org/10.1007/s00344....
 
8.
Ali, H.Q., Yasir, M.U., Farooq, A., Khan, M., Salman, M., Waqar, M., 2022. Tanneries impact on groundwater quality: a case study of Kasur city in Pakistan. Environ. Monit. Assess. 194, 823. https://doi.org/10.1007/s10661....
 
9.
Alyemeni, M.N., Hayat, Q., Hayat, S., Faizan, M., Faraz, A., 2016. Exogenous proline application enhances the efficiency of nitrogen fixation and assimilation in chickpea plants exposed to cadmium. Legume Res. 39, 221-227. https://doi.org/10.18805/lr.v0....
 
10.
American Public Health Association (APHA), 2005. Standard Methods for the Examination of Water and Wastewater. American Public Health Association Washington, DC, 1-874.
 
11.
Amin, H., Ahmed Arain, B., Abbasi, M.S., Amin, F., Jahangir, T. M., Soomro, N.U.A., 2019. Evaluation of chromium phyto-toxicity, phyto-tolerance, and phyto-accumulation using biofuel plants for effective phytoremediation. Int. J. Phytoremediation 21, 352-363. https://doi.org/10.1080/152265....
 
12.
Analytical Software, 2005. STATISTIX 8.1: User’s Manual. Tallahassee, FL: Analytical Software.
 
13.
Anjum, N.A., Ahmad, I., Mohmood, I., Pacheco, M., Duarte, A.C., Pereira, E., et al., 2012. Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids – a review. Environ. Exp. Bot. 75, 307-324. https://doi.org/10.1016/j.enve....
 
14.
Arnon, D.I., 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24, 1-15. https://doi.org/10.1104/pp.24.....
 
15.
Attique, U., Iqbal, S., Khan, N., Qazi, B., Javeed, A., Anjum, K.M., et al., 2020. Multivariate assessment of water chemistry and metals in a river impacted by tanning industry. Fresenius Environ. Bull. 29, 3013-3025.
 
16.
Azeez, N.A., Dash, S.S., Gummadi, S.N., Deepa, V.S., 2021. Nano-remediation of toxic heavy metal contamination: Hexavalent chromium [Cr (VI)]. Chemosphere 266, 129204. https://doi.org/10.1016/j.chem....
 
17.
Bates, L.S., Waldren, R.P., Teare, I.D., 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39, 205-207. https://doi.org/10.1007/BF0001....
 
18.
Bouyoucos, G.J., 1962. Hydrometer method improved for making particle size analyses of soils 1. Agron. J. 54, 464-465. https://doi.org/10.2134/agronj....
 
19.
Brasili, E., Bavasso, I., Petruccelli, V., Vilardi, G., Valletta, A., Dal Bosco, C., et al., 2020. Remediation of hexavalent chromium contaminated water through zero-valent iron nanoparticles and effects on tomato plant growth performance. Sci. Rep. 10, 1920. https://doi.org/10.1038/s41598....
 
20.
Cervantes, C., Campos-García, J., Devars, S., Gutiérrez-Corona, F., Loza-Tavera, H., Torres-Guzmán, J.C., et al., 2001. Interactions of chromium with microorganisms and plants. FEMS Microbial Rev. 25, 335-347. https://doi.org/10.1111/j.1574....
 
21.
Chance, B., Maehly, A.C., 1955. Assay of catalases and peroxidases. Methods Enzymol. 2, 764-775. https://doi.org/10.1016/S0076-....
 
22.
Chen, H.C., Zhang, S.L., Wu, K.J., Li, R., He, X.R., He, D.N., et al., 2020. The effects of exogenous organic acids on the growth, photosynthesis and cellular ultrastructure of Salix variegata Franch. Under Cd stress. Ecotoxicol. Environm. Saf. 187, 109790. https://doi.org/10.1016/j.ecoe....
 
23.
Conceicao Gomes, M.A., Hauser-Davis, R.A., Suzuki, M.S., Vitoria, A.P., 2017. Plant chromium uptake and transport, physiological effects and recent advances in molecular investigations. Ecotoxicol. Environ. Saf. 140, 55-64. https://doi.org/10.1016/j.ecoe....
 
24.
Danish, S., Kiran, S., Fahad, S., Ahmad, N., Ali, M.A., Tahir, F.A., et al., 2019 Alleviation of chromium toxicity in maize by Fe fortification and chromium tolerant ACC deaminase producing plant growth promoting rhizobacteria. Ecotoxicol. Environ. Saf. 185, 109706. https://doi.org/10.1016/j.ecoe....
 
25.
Diarra, I., Kotra, K.K., Prasad, S., 2021. Assessment of biodegradable chelating agents in the phytoextraction of heavy metals from multi-metal contaminated soil. Chemosphere 273, 128483. https://doi.org/10.1016/j.chem....
 
26.
Dotaniya, M.L., Rajendiran, S., Coumar, M.V., Meena, V.D., Saha, J.K., Kundu, S., et al., 2018. Interactive effect of cadmium and zinc on chromium uptake in spinach grown in Vertisol of Central India. Int. J. Environ. Sci. Technol. 15, 441-448. https://doi.org/10.1007/s13762....
 
27.
Eid, E.M., El-Bebany, A.F., Alrumman, S.A., Hesham, A.E.L., Taher, M.A., Fawy, K.F., 2017. Effects of different sewage sludge applications on heavy metal accumulation, growth and yield of spinach (Spinacia oleracea L.). Int. J. Phytoremediation 19, 340-347. https://doi.org/10.1080/152265....
 
28.
Ejaz, U., Khan, S.M., Aqeel, M., Khalid, N., Sarfraz, W., Naeem, N., et al., 2022. Use of Parthenium hysterophorus with synthetic chelator for enhanced uptake of cadmium and lead from contaminated soils-a step toward better public health. Front. Public health, 10, p.1009479. https://doi.org/10.3389/fpubh.....
 
29.
Farid, M., Ali, S., Rizwan, M., Ali, Q., Abbas, F., Bukhari, S.A.H., et al., 2017. Citric acid assisted phytoextraction of chromium by sunflower; morpho-physiological and biochemical alterations in plants. Ecotoxicol. Environ. Saf. 145, 90-102. https://doi.org/10.1016/j.ecoe....
 
30.
Farid, M., Ali, S., Saeed, R., Rizwan, M., Bukhari, S.A.H., Abbasi, G.H., et al., 2019. Combined application of citric acid and 5-aminolevulinic acid improved biomass, photosynthesis and gas exchange attributes of sunflower (Helianthus annuus L.) grown on chromium contaminated soil. Int. J. Phytoremediation 21, 760-767. https://doi.org/10.1080/152265....
 
31.
Fatnassi, I.C., Chiboub, M., Saadani, O., Jebara, M., Jebara, S.H., 2015. Phytostabilization of moderate copper contaminated soils using co‐inoculation of Vicia faba with plant growth promoting bacteria. J. Basic Microbiol. 55, 303-311. https://doi.org/10.1002/jobm.2....
 
32.
García-Salgado, S., García-Casillas, D., Quijano-Nieto, M.A., Bonilla-Simón, M.M., 2012. Arsenic and heavy metal uptake and accumulation in native plant species from soils polluted by mining activities. Water, Air Soil Pollut 223, 559-572. https://doi.org/10.1007/s11270....
 
33.
García-Valero, A., Martínez-Martínez, S., Faz, Á., Terrero, M.A., Muñoz, M.Á., Gómez-López, M.D., et al., 2020. Treatment of wastewater from the tannery industry in a constructed wetland planted with Phragmites australis. Agronomy 10, 176. https://doi.org/10.3390/agrono....
 
34.
Garty, J., 2001. Biomonitoring atmospheric heavy metals with lichens: theory and application. Crit. Rev. Plant Sci. 20, 309-371. https://doi.org/10.1080/200135....
 
35.
Ghosh, M., Singh, S.P., 2005. A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J. Energy Environ. 6, 18.
 
36.
Giannopolitis, C.N., Ries, S.K., 1977. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol. 59, 309-314. https://doi.org/10.1104/pp.59.....
 
37.
Gill, R.A., Zang, L., Ali, B., Farooq, M.A., Cui, P., Yang, S., et al., 2015. Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L. Chemosphere 120, 154-164. https://doi.org/10.1016/j.chem....
 
38.
Gil-Loaiza, J., White, S.A., Root, R.A., Solís-Dominguez, F.A., Hammond, C.M., Chorover, J., et al., 2016. Phytostabiliza-tion of mine tailings using compost-assisted direct planting: translating greenhouse results to the field. Sci. Total Environ. 565, 451-461. https://doi.org/10.1016/j.scit....
 
39.
Guo, P., Wang, T., Liu, Y., Xia, Y., Wang, G., Shen, Z., et al., 2014. Phytostabilization potential of evening primrose (Oenothera glazioviana) for copper-contaminated sites. Environ. Sci. Pollut. Res 21, 631-640. https://doi.org/10.1007/s11356....
 
40.
Habiba, U., Ali, S., Farid, M., Shakoor, M.B., Rizwan, M., Ibrahim, M., et al., 2015. EDTA enhanced plant growth, antioxidant defense system, and phytoextraction of copper by Brassica napus L. Environ. Sci. Pollut. Res. 22, 1534-1544. https://doi.org/10.1007/s11356....
 
41.
Heath, R.L., Packer, L., 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125, 189-198. https://doi.org/10.1016/0003-9....
 
42.
Hussain, A., Ali, S., Rizwan, M., Zia ur Rehman, M., Hameed, A., Hafeez, F., et al., 2018. Role of zinc–lysine on growth and chromium uptake in rice plants under Cr stress. J. Plant Growth Regul. 37, 1413-1422. https://doi.org/10.1007/s00344....
 
43.
Hussain, A., Kamran, M.A., Javed, M.T., Hayat, K., Farooq, M.A., Ali, N., et al., 2019. Individual and combinatorial application of Kocuria rhizophila and citric acid on phytoextraction of multi-metal contaminated soils by Glycine max L. Environ. Exp. Bot. 159, 23-33. https://doi.org/10.1016/j.enve....
 
44.
Ibrahim, E.A., 2023. Effect of citric acid on phytoextraction potential of Cucurbita pepo, Lagenaria siceraria, and Raphanus sativus plants exposed to multi-metal stress. Sci. Rep. 13, 13070. https://doi.org/10.1038/s41598....
 
45.
Islam, F., Yasmeen, T., Arif, M.S., Riaz, M., Shahzad, S.M., Imran, Q., et al., 2016. Combined ability of chromium (Cr) tolerant plant growth promoting bacteria (PGPB) and salicylic acid (SA) in attenuation of chromium stress in maize plants. Plant Physiol. Biochem. 108, 456-467. https://doi.org/10.1016/j.plap....
 
46.
Jacobs, A., Drouet, T., Noret, N., 2018. Field evaluation of cultural cycles for improved cadmium and zinc phytoextraction with Noccaea caerulescens. Plant Soil 430, 381-394. https://doi.org/10.1007/s11104....
 
47.
Kanwal, U., Ali, S., Shakoor, M.B., Farid, M., Hussain, S., Yasmeen, T., et al., 2014. EDTA ameliorates phytoextraction of lead and plant growth by reducing morphological and biochemical injuries in Brassica napus L. under lead stress. Environ. Sci. Pollut. Res. 21, 9899-9910. https://doi.org/10.1007/s11356....
 
48.
Kaur, R., Yadav, P., Sharma, A., Thukral, A.K., Kumar, V., Kohli, S.K., et al., 2017. Castasterone and citric acid treatment restores photosynthetic attributes in Brassica juncea L. under Cd (II) toxicity. Ecotoxicol. Environ. Saf. 145, 466-475. https://doi.org/10.1016/j.ecoe....
 
49.
Kavi Kishor, P.B., Hima Kumari, P., Sunita, M.S.L., Sreenivasulu, N., 2015. Role of proline in cell wall synthesis and plant development and its implications in plant ontogeny. Front. Plant Sci. 6, 148328. https://doi.org/10.3389/fpls.2....
 
50.
Khalid, N., Masood, A., Noman, A., Aqeel, M., Qasim, M., 2019a. Study of the responses of two biomonitor plant species (Datura alba and Ricinus communis) to roadside air pollution. Chemosphere 235, 832-841. https://doi.org/10.1016/J.CHEM....
 
51.
Khalid, N., Noman, A., Aqeel, M., Masood, A., Tufail, A., 2019b. Phytoremediation potential of Xanthium strumarium for heavy metals contaminated soils at roadsides. Int. J. Environ. Sci. Technol. 16(4), 2091-2100. https://doi.org/10.1007/S13762....
 
52.
Khalid, N., Noman, A., Sanaullah, T., Akram, M.A., Aqeel, M., 2018. Vehicle pollution toxicity induced changes in physiology, defence system and biochemical characteristics of Calotropis procera L. Chem. Ecol. 34, 565-581.
 
53.
Khalid, N., Rizvi, Z.F., Yousaf, N., Khan, S.M., Noman, A., Aqeel, M., et al., 2021. Rising metals concentration in the environment: a response to effluents of leather industries in Sialkot. Bull Environ Contam Toxicol. 106, 493-500. https://doi.org/10.1007/s00128....
 
54.
Krzciuk, K., Gałuszka, A., 2015. Prospecting for hyperaccumulators of trace elements: a review. Crit. Rev. Biotechnol. 35, 522-532. https://doi.org/10.3109/073885....
 
55.
Laxmi, V., Kaushik, G., 2020. Toxicity of hexavalent chromium in environment, health threats, and its bioremediation and detoxification from tannery wastewater for environmental safety. Bioremediation of Industrial Waste for Environ. Safety: Volume I: Industrial Waste and Its Management 223-243. https://doi.org/10.1007/978-98....
 
56.
Li, L., Zhang, K., Gill, R.A., Islam, F., Farooq, M.A., Wang, J., et al., 2018. Ecotoxicological and interactive effects of copper and chromium on physiochemical, ultrastructural, and molecular profiling in Brassica napus L. BioMed Res. Int. 1, 9248123. https://doi.org/10.1155/2018/9....
 
57.
Mahdavian, K., 2021. Effect of citric acid on antioxidant activity of red bean (Phaseolus calcaratus L.) under Cr+6 stress. S. Afr. J. Bot. 139, 83-91. https://doi.org/10.1016/j.sajb....
 
58.
Mallhi, A.I., Chatha, S.A.S., Hussain, A.I., Rizwan, M., Bukhar, S.A.H., Hussain, A., et al., 2020. Citric acid assisted phytoremediation of chromium through sunflower plants irrigated with tannery wastewater. Plants 9, 380. https://doi.org/10.3390/plants....
 
59.
Mallhi, Z.I., Rizwan, M., Mansha, A., Ali, Q., Asim, S., Ali, S., et al., 2019. Citric acid enhances plant growth, photosynthesis, and phytoextraction of lead by alleviating the oxidative stress in castor beans. Plants 8, 525. https://doi.org/10.3390/plants....
 
60.
Maqbool, A., Ali, S., Rizwan, M., Ishaque, W., Rasool, N., Rehman, M.Z.U., et al., 2018. Management of tannery wastewater for improving growth attributes and reducing chromium uptake in spinach through citric acid application. Environ. Sci. Pollut. Res 25, 10848-10856. https://doi.org/10.1007/s11356....
 
61.
Marchiol, L., Sacco, P., Assolari, S., Zerbi, G., 2004. Reclamation of polluted soil: phytoremediation potential of crop-related Brassica species. Water Air, Soil Pollut. 158, 345-356. https://doi.org/10.1023/B:WATE....
 
62.
Mobin, F., Deloya, J.M., Guo, L., 2025. The Impact of Citric Acid on Metal Accumulation in Lemna minor. Water 17, 830. https://doi.org/10.3390/w17060....
 
63.
Najeeb, U., Xu, L., Ali, S., Jilani, G., Gong, H.J., Shen, W.Q., et al., 2009. Citric acid enhances the phytoextraction of manganese and plant growth by alleviating the ultrastructural damages in Juncus effusus L. J. Hazard. Mater. 170, 1156-1163. https://doi.org/10.1016/j.jhaz....
 
64.
Parveen, A., Saleem, M.H., Kamran, M., Haider, M.Z., Chen, J.T., Malik, Z., et al., 2020. Effect of citric acid on growth, ecophysiology, chloroplast ultrastructure, and phytoremediation potential of jute (Corchorus capsularis L.) seedlings exposed to copper stress. Biomolecules 10, 592. https://doi.org/10.3390/biom10....
 
65.
Patra, D.K., Pradhan, C., Patra, H.K., 2019. Chromium bioaccumulation, oxidative stress metabolism and oil content in lemon grass Cymbopogon flexuosus (Nees ex Steud.) W. Watson grown in chromium rich over burden soil of Sukinda chromite mine, India. Chemosphere 218, 1082-1088. https://doi.org/10.1016/j.chem....
 
66.
Qiang, T., Fan, G., Yufeng, G., Toru, I., Takeshi, K., 2018. Desorption characteristics of Cr (III), Mn (II), and Ni (II) in contaminated soil using citric acid and citric acid-containing wastewater. Soils Found 58, 50-64. https://doi.org/10.1016/j.sand....
 
67.
Qureshi, F.F., Ashraf, M.A., Rasheed, R., Ali, S., Hussain, I., Ahmed, A., et al., 2020. Organic chelates decrease phytotoxic effects and enhance chromium uptake by regulating chromium-speciation in castor bean (Ricinus communis L.). Plant Sci. Total Environ. 716, 137061. https://doi.org/10.1016/j.scit....
 
68.
Rai, V., Vajpayee, P., Singh S.N., Mehrotra, S., 2004. Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L. Plant Sci. 167, 1159-1169. https://doi.org/10.1016/j.plan....
 
69.
Rana, M.S., Hu, C.X., Shaaban, M., Imran, M., Afzal, J., Moussa, M.G., et al., 2020. Soil phosphorus transformation characteristics in response to molybdenum supply in leguminous crops. J. Environ. Manag. 268, 110610. https://doi.org/10.1016/j.jenv....
 
70.
Rane, N.R., Chandanshive, V.V., Watharkar, A.D., Khandare, R.V., Patil, T.S., Pawar, P.K., et al., 2015. Phytoremediation of sulfonated Remazol Red dye and textile effluents by Alternanthera philoxeroides: an anatomical, enzymatic and pilot scale study. Water Res. 83, 271-281. https://doi.org/10.1016/j.watr....
 
71.
Rehman, M., Liu, L., Bashir, S., Saleem, M.H., Chen, C., Peng, D., et al., 2019. Influence of rice straw biochar on growth, antioxidant capacity and copper uptake in ramie (Boehmeria nivea L.) grown as forage in aged copper-contaminated soil. Plant Physiol. Biochem. 138, 121-129. https://doi.org/10.1016/j.plap....
 
72.
Riaz, M., Yasmeen, T., Arif, M.S., Ashraf, M.A., Hussain, Q., Shahzad, S.M., et al., 2019. Variations in morphological and physiological traits of wheat regulated by chromium species in long-term tannery effluent irrigated soils. Chemosphere 222, 891-903. https://doi.org/10.1016/j.chem....
 
73.
Rodriguez, E., Santos, C., Azevedo, R., Moutinho-Pereira, J., Correia, C., Dias, M.C., 2012. Chromium (VI) induces toxicity at different photosynthetic levels in pea. Plant Physiol. Biochem. 53, 94-100. https://doi.org/10.1016/j.plap....
 
74.
Saleem, M.H., Ali, S., Irshad, S., Hussaan, M., Rizwan, M., Rana, M.S., et al., 2020a. Copper uptake and accumulation, ultra-structural alteration, and bast fibre yield and quality of fibrous jute (Corchorus capsularis L.) plants grown under two different soils of China. Plants 9, 404. https://doi.org/10.3390/plants....
 
75.
Saleem, M.H., Fahad, S., Adnan, M., Ali, M., Rana, M.S., Kamran, M., et al., 2020b. Foliar application of gibberellic acid endorsed phytoextraction of copper and alleviates oxidative stress in jute (Corchorus capsularis L.) plant grown in highly copper-contaminated soil of China. Environ. Sci. Pollut. Res. 27, 37121-37133. https://doi.org/10.1007/s11356....
 
76.
Saleem, M., Asghar, H.N., Khan, M.Y., Zahir, Z.A., 2015. Gibberellic acid in combination with pressmud enhances the growth of sunflower and stabilizes chromium (VI)-contaminated soil. Environ. Sci. Pollut. Res. 22, 10610-10617. https://doi.org/10.1007/s11356....
 
77.
Sehrish, A.K., Aziz, R., Hussain, M.M., Rafiq, M.T., Rizwan, M., Muhammad, N., et al., 2019. Effect of poultry litter biochar on chromium (Cr) bioavailability and accumulation in spinach (Spinacia oleracea) grown in Cr-polluted soil. Arab. J. Geosci. 12, 1-9. https://doi.org/10.1007/s12517....
 
78.
Shahid, M., Dumat, C., Khalid, S., Niazi, N.K., Antunes, P.M.C., 2016. Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system. In Rev. Environ. Contam. Toxicol. 241, 73-137. https://doi.org/10.1007/398-20....
 
79.
Shahid, M., Dumat, C., Silvestre, J., Pinelli, E., 2012. Effect of fulvic acids on lead-induced oxidative stress to metal sensitive Vicia faba L. plant. Biol. Fertil. Soils. 48, 689-697. https://doi.org/10.1007/s00374....
 
80.
Shahid, M., Pourrut, B., Dumat, C., Nadeem, M., Aslam, M., Pinelli, E., 2014. Heavy-metal-induced reactive oxygen species: Phytotoxicity and physicochemical changes in plants. In Rev. Environ. Contam. Toxicol. 232, 1-44. https://doi.org/10.1007/978-3-....
 
81.
Shahid, M., Shamshad, S., Rafiq, M., Khalid, S., Bibi, I., Niazi, N.K., et al., 2017. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system:.
 
82.
A review. Chemosphere 178, 513-533. https://doi.org/10.1016/j.chem....
 
83.
Shakoor, M.B., Ali, S., Hameed, A., Farid, M., Hussain, S., Yasmeen, T., et al., 2014. Citric acid improves lead (Pb) phytoextraction in Brassica napus L. by mitigating Pb-induced morphological and biochemical damages. Ecotoxicol. Environ. Saf. 109, 38-47. https://doi.org/10.1016/j.ecoe....
 
84.
Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M., Zheng, B., 2019. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24, 2452. https://doi.org/10.3390/molecu....
 
85.
Sharma, J.K., Kumar, N., Singh, N.P., Santal, A.R., 2023. Phytoremediation technologies and their mechanism for removal of heavy metal from contaminated soil: An approach for a sustainable environment. Front. Plant Sci. 14, 1076876. https://doi.org/10.3389/fpls.2....
 
86.
Singh, A., Malaviya, P., 2019. Chromium particularization and its impact on growth and photosynthetic pigments of Spirodela polyrrhiza (L.) Schleid. on exposure to tannery effluent. Environ. Sustain. 2, 157-166. https://doi.org/10.1007/s42398....
 
87.
Singh, K., Kumari, M., Prasad, K.S., 2023. Tannery effluents: current practices, environmental consequences, human health risks, and treatment options. CLEAN-Soil Air Water 51, 2200303. https://onlinelibrary.wiley.co....
 
88.
Velikova, V., Yordanov, I., Edreva, A., 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants protective role of exogenous polyamines. Plant Sci. 151, 59-66. https://doi.org/10.1016/S0168-....
 
89.
Walkley, A., Black, I.A., 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37, 29-38. https://doi.org/10.1097/000106....
 
90.
Wang, S., Wei, M., Cheng, H., Wu, B., Du, D., Wang, C., 2020. Indigenous plant species and invasive alien species tend to diverge functionally under heavy metal pollution and drought stress. Ecotoxicol. Environ. Saf. 205, 111160. https://doi.org/10.1016/j.ecoe....
 
91.
Wani, K.I., Naeem, M., Aftab, T., 2022. Chromium in plant-soil nexus: Speciation, uptake, transport and sustainable remediation techniques. Environ. Pollut. 315, 120350. https://doi.org/10.1016/j.envp....
 
92.
Wu ZhiPeng, W.Z., McGrouther, K., Chen DongLiang, C.D., Wu WeiDong, W.W., Wang HaiLong, W.H., 2013. Subcellular distribution of metals within Brassica chinensis L. in response to elevated lead and chromium stress. J. Agric. Food. Chem. 61, 4715-4722. https://doi.org/10.1021/jf4005....
 
93.
Yan, A., Wang, Y., Tan, S.N., Mohd Yusof, M.L., Ghosh, S., Chen, Z., 2020. Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front. Plant. Sci. 11, 359. https://doi.org/10.3389/fpls.2....
 
94.
Yan, L., Riaz, M., Jiang, C., 2020. Exogenous application of proline alleviates B-deficiency-induced injury while aggravates aluminum toxicity in trifoliate orange seedlings. Sci. Hortic. 268, 109372. https://doi.org/10.1016/j.scie....
 
95.
Yu, X.Z., Lu, C.J., Li, Y.H., 2018. Role of cytochrome c in modulating chromium-induced oxidative stress in Oryza sativa. Environ. Sci. Pollut. Res. 25, 27639-27649. https://doi.org/10.1007/s11356....
 
96.
Zaheer, I.E., Ali, S., Rizwan, M., Bareen, F.E., Abbas, Z., Bukhari, S.A.H., et al., 2019. Zinc-lysine prevents chromium-induced morphological, photosynthetic, and oxidative alterations in spinach irrigated with tannery wastewater. Environ. Sci. Pollut. Res. 26, 28951-28961. https://doi.org/10.1007/s11356....
 
97.
Zechmeister, H.G., Grodzińska, K., Szarek-Łukaszewska, G., , 2003. Bryophytes. In: Markert, B., Breure, A.M., Zechmeister, H.G., (Eds). Trace metals and other contaminants in the environment. Elsevier, Amsterdam, 6, 329-375. https://doi.org/10.1016/S0927-....
 
98.
Zhang, H., Gao, Y., Xiong, H., 2017. Removal of heavy metals from polluted soil using the citric acid fermentation broth: a promising washing agent. Environ. Sci. Pollut. Res. 24, 9506-9514. https://doi.org/10.1007/s11356....
 
eISSN:2300-8725
ISSN:0236-8722
Journals System - logo
Scroll to top