RESEARCH PAPER
Strategies for enhancing valuable metabolites produced by the soil microalga
More details
Hide details
1
Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
Final revision date: 2025-08-26
Acceptance date: 2025-09-02
Publication date: 2025-09-15
Corresponding author
Izabela Krzemińska
Laboratory of Microalgal Biotechnology, Institute of Agrophysics, Polish Academy of Sciences, Poland
Int. Agrophys. 2025, 39(4): 505-516
Author contributions: I.K.: Conceptualization, Methodology, Investigation, Formal analysis, Writing – original draft, Writing – review and editing, Funding acquisition; M.S.: Investigation; W.C.: Assembly of data; A.N.: Methodology, Investigation, Formal analysis, Writing – original draft, Writing – review and editing. All authors have read and agreed to the published version of the manuscript.
Data availability. The datasets used and analysed during the current study available from the corresponding author on reasonable request.
HIGHLIGHTS
- Photosynthetic activity of the soil microalga V. calaminaris
- Effects of IAA and nitrogen deficiency under high light were investigated
- High content of oleic and palmitoleic acids observed inV. calaminaris cells
- V. calaminaris is a promising strain for microalgal fatty acid production
KEYWORDS
TOPICS
ABSTRACT
The current knowledge of metabolite accumulation by soil microalgae is not fully recognised. This study provides insights into the production of bio-products and the photosynthetic activity of the soil alga Vischeria calaminaris.The cell response to environmental abiotic factors, nitrogen limitation and indole-3-acetic acid (IAA) supplementation under high light intensity to induce the accumulation of high-value metabolites was investigated. The addition of IAA improved cell growth only in the nitrogen-limited treatments. In the nitrogen-limited conditions, the maximum photochemical quenching of PS II decreased over the cultivation period. Additionally, IAA regulated nonphotochemical quenching in the nitrogen-limited treatment, showing an enhanced capacity to actively dissipate excess light energy in low-nitrogen growth conditions. In response to the nitrogen stress, the protein content of the V. calaminaris decreased and increased in the IAA supplemented cultures. The results showed that IAA significantly stimulated the content of Chl a and carotenoids in both nitrogen treatments tested. The highest lipid content was obtained in the nitrogen-limited variant supplemented with IAA. The lipidomic analysis revealed high content of oleic and palmitoleic acids in V. calaminaris. The IAA supplementation in the low-nitrogen growth conditions was suitable for accumulation of high-value monounsaturated fatty acids for biofuel production from V. calminaris biomass.
FUNDING
This work was funded by the National Science Centre, Poland, grant number 2016/23/D/NZ9/02670.
CONFLICT OF INTEREST
The authors declare no conflicts of interest.
REFERENCES (51)
1.
Accomasso, D., Londi, G., Cupellini, L., Mennucci, B., 2024. The nature of carotenoid S* state and its role in the nonphotochemical quenching of plants. Nat. Commun. 15(1), 847.
https://doi.org/10.1038/s41467....
2.
Ajayan, K.V., Saranya, K., Harilal, C.C., 2022. Indole-3-butyric acid mediated growth and biochemical enhancement in three Selenastracean green microalgae under limited supply of nitrogen source. J. Biotechnol. 351, 60-73.
https://doi.org/10.1016/j.jbio....
3.
Amaral, R., Fawley, K.P., Němcová, Y., Ševčíková, T., Lukešová, A, Fawley, M.W., et al., 2020. Toward modern classification of eustigmatophytes, including the description of Neomonodaceae fam. nov. and three new genera. J. Phycol. 56(3), 630-648.
https://doi.org/10.1111/jpy.12....
4.
Babu, A.G., Wu, X., Kabra, A.N., Kim, D.P., 2017. Cultivation of an indigenous Chlorella sorokiniana with phytohormones for biomass and lipid production under N-limitation. Algal Res. 23, 178-185.
https://doi.org/10.1016/j.alga....
5.
Barbosa, M.J., Janssen, M., Südfeld C., D’Adamo, S., Wijffels, R.H., 2023. Hypes, hopes, and the way forward for microalgal biotechnology. Trends Biotechnol. 41(3), 452-471.
https://doi.org/10.1016/j.tibt....
6.
Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.72, 248-254.
https://doi.org/10.1006/abio.1....
7.
Cardol, P., De Paepe, R., Franck, F., Forti, G., Finazzi, G., 2010. The onset of NPQ and ΔμH+ upon illumination of tobacco plants studied through the influence of mitochondrial electron transport. Biochim. Biophys. Acta (BBA) - Bioenerg. 1797(2), 177-188.
https://doi.org/10.1016/j.bbab....
8.
Chin, G.J.W.L., Andrew, A.R., Abdul-Sani, E.R., Yong, W.T.L., Misson, M., Anton, A., 2023. The effects of light intensity and nitrogen concentration to enhance lipid production in four tropical microalgae. Biocatal. Agric. Biotechnol. 48, 102660.
https://doi.org/10.1016/j.bcab....
9.
Chung, T.Y., Kuo, C.Y., Lin, W.J., Wang, W.L., Chou, J.Y., 2018. Indole-3-acetic-acid-induced phenotypic plasticity in Desmodesmus algae. Sci. Rep. 8(1), 10270.
https://doi.org/10.1038/s41598....
10.
Cointet, E., Wielgosz-Collin, G., Bougaran, G., Rabesaotra, V., Gonçalves, O., Méléder, V., 2019. Effects of light and nitrogen availability on photosynthetic efficiency and fatty acid content of three original benthic diatom strains. PLoS ONE, 14(11), e0224701.
https://doi.org/10.1371/journa....
11.
Dao, G.H., Wu, G.X., Wang, X.X., Zhuang, L.L., Zhang, T.Y., Hu, H.Y., 2018. Enhanced growth and fatty acid accumulation of microalgae Scenedesmus sp. LX1 by two types of auxin. Bioresour. Technol. 247, 561-567.
https://doi.org/10.1016/j.bior....
12.
Dunlap, J.R., Robacker, K.M., 1988. Nutrient salts promote light-induced degradation of indole-3-acetic acid in tissue culture media. Plant Physiol. 88(2), 379-382.
https://doi.org/10.1104/pp.88.....
13.
Eliáš, M., Amaral, R., Fawley, K.P., Fawley, M.W., Němcová, Y., Neustupa, J., et al., 2017. In: Handbook of the Protists; Archibald, J.M.; Simpson, A.G.B., Slamovits, C.H., Ed., Springer Int. Publishing: Cham, Switzerland 1, 11, 367-406.
https://doi.org/10.1007/978-3-....
14.
Gee, D.M., Archer, L., Fleming, G.T.A., Gillespie, E., Touzet, N., 2020. The effect of nutrient and phytohormone supplementation on the growth, pigment yields and biochemical composition of newly isolated microalgae. Process Biochem. 92, 61-68.
https://doi.org/10.1016/j.proc....
15.
Grudzinski, W., Krzemińska, I., Luchowski, R., Nosalewicz, A., Gruszecki, W.I., 2016. Strong-light-induced yellowing of green microalgae Chlorella: A study on molecular mechanisms of the acclimation response. Algal Res. 16, 245-254.
https://doi.org/10.1016/j.alga....
16.
Jose, S., Renuka, N., Ratha, S.K., Kumari, S., Bux, F., 2024. Bioprospecting of microalgae from agricultural fields and developing consortia for sustainable agriculture. Algal Res. 78, 103428.
https://doi.org/10.1016/j.alga....
17.
Kalinowska, R., Pawlik-Skowrońska, B., 2010. Response of two terrestrial green microalgae (Chlorophyta, Trebouxiophyceae) isolated from Cu-rich and unpolluted soils to copper stress. Environ. Pollut. 158(8), 2778-2785.
https://doi.org/10.1016/j.envp....
18.
Kozlova, T.A., Hardy, B.P., Krishna, P., Levin, D.B., 2017. Effect of phytohormones on growth and accumulation of pigments and fatty acids in the microalgae Scenedesmus quadricauda. Algal Res. 27, 325-334.
https://doi.org/10.1016/j.alga....
19.
Kruk, J., Szymańska, R., 2021. Singlet oxygen oxidation products of carotenoids, fatty acids and phenolic prenyllipids. J. Photochem. Photobiol. B: Biol., 216, 112148.
https://doi.org/10.1016/j.jpho....
20.
Kryvenda, A., Rybalka, N., Wolf, M., Friedl, T., 2018. Species distinctions among closely related strains of Eustigmatophyceae (Stramenopiles) emphasizing ITS2 sequence-structure data: Eustigmatos and Vischeria. Eur. J. Phycol. 53(4), 471-491.
https://doi.org/10.1080/096702....
21.
Krzemińska, I., Nosalewicz, A., Reszczyńska, E., Pawlik-Skowrońska, B., 2020. Enhanced light-induced biosynthesis of fatty acids suitable for biodiesel production by the yellow-green alga Eustigmatos magnus. Energies 13 (22), 6098.
https://doi.org/10.3390/en1322....
22.
Krzemińska, I., Piasecka, A., Nosalewicz, A., Simionato, D., Wawrzykowski, J., 2015. Alterations of the lipid content and fatty acid profile of Chlorella protothecoides under different light intensities, Bioresour. Technol. 196, 72-77.
https://doi.org/10.1016/j.bior....
23.
Krzemińska, I., Szymańska, M., Ciempiel, W., Piasecka, A., 2023. Auxin supplementation under nitrogen limitation enhanced oleic acid and MUFA content in Eustigmatos calaminaris biomass with potential for biodiesel production. Sci. Rep. 13, 594.
https://doi.org/10.1038/s41598....
24.
Lin, H., Li, Y., Hill, R.T., 2022. Microalgal and bacterial auxin biosynthesis: implications for algal biotechnology. Curr. Opin. Biotechnol. 73, 300-307.
https://doi.org/10.1016/j.copb....
25.
Liu, J., Qiu, W., Song, Y., 2016. Stimulatory effect of auxins on the growth and lipid productivity of Chlorella pyrenoidosa and Scenedesmus quadricauda. Algal Res. 18, 273-280.
https://doi.org/10.1016/j.alga....
26.
Magierek, E., Krzemińska, I., Tys, J., 2017. Stimulatory effect of indole-3-acetic acid and continuous illumination on the growth of Parachlorella kessleri. Int. Agrophys. 31(4), 483-489.
https://doi.org/10.1515/intag-....
27.
Malhotra, M., Srivastava, S., 2008. Organization of the ipdC region regulates IAA levels in different Azospirillum brasilense strains: molecular and functional analysis of ipdC in strain SM. Environmental Microbiology 10, 1365-1373.
https://doi.org/10.1111/j.1462....
28.
Mandal, M.K., Chanu, N.K., Chaurasia, N., 2020. Exogenous addition of indole acetic acid and kinetin under nitrogen-limited medium enhances lipid yield and expression of glycerol-3-phosphate acyltransferase and diacylglycerol acyltransferase genes in indigenous microalgae: A potential approach for biodiesel production. Bioresour. Technol. 297, 122439.
https://doi.org/10.1016/j.bior....
29.
Mustila, H., Muth‐Pawlak, D., Aro, E.M., Allahverdiyeva, Y., 2021. Global proteomic response of unicellular cyanobacterium Synechocystis sp. PCC 6803 to fluctuating light upon CO2 step‐down. Physiol. Plant. 173(1), 305-320.
30.
Negi, S., Daughton, B., Carr, C.K., Klein, B., Davis, R., Banerjee, S., et al., 2014. Effect of plant growth-promoting molecules on improving biomass productivity in DISCOVR production strains. Algal Res. 77, 103364.
https://doi.org/10.1016/j.alga....
31.
Nzayisenga, J.C., Farge, X., Groll, S.L., Sellstedt, A., 2020. Effects of light intensity on growth and lipid production in microalgae grown in wastewater. Biotechnol. Biofuels. 13, 4.
https://doi.org/10.1186/s13068....
32.
Park, W.K., Yoo, G., Moon, M., Kim, C.W., Choi, Y.E., Yang, J.W., 2013. Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel broduction. Appl. Biochem. Biotechnol. 171, 1128-1142.
https://doi.org/10.1007/s12010....
33.
Perera, I.A., Abinandan, S., Subashchandrabose, S.R., Venkateswarlu, K., Cole, N., Naidu, R., et al., 2022. Extracellular polymeric substances drive symbiotic interactions in bacterial-microalgal consortia. Microb. Ecol. 83, 596-607.
https://doi.org/10.1007/s00248....
34.
Piasecka, A., Baier, A., 2022. Metabolic and proteomic analysis of Chlorella sorokiniana, Chloroidium saccharofilum, and Chlorella vulgaris cells cultured in autotrophic, photoheterotrophic, and mixotrophic cultivation modes. Molecules 27(15), 4817.
https://doi.org/10.3390/molecu....
35.
Pinzi, S., Garcia, I.L., Lopez-Gimenez, F.J., Luque de Castro, M.D., Dorado, G., Dorado, M.P., 2009. The ideal vegetable oil-based biodiesel composition: A review of social, economical and technical implications. Energy Fuels 23, 2325-2341.
https://doi.org/10.1021/ef8010....
36.
Piotrowska-Niczyporuk, A., Bajguz, A., 2014. The effect of natural and synthetic auxins on the growth, metabolite content and antioxidant response of green alga Chlorella vulgaris (Trebouxiophyceae). Plant Growth Regul. 73, 57-66.
https://doi.org/10.1007/s10725....
37.
Rodolfi, L., Zittelli, G.C., Bassi, N., Padovani, G., Biondi, N., Bonini, G., et al., 2009. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 102 (1), 100-112.
https://doi.org/10.1002/bit.22....
38.
Shah, S., Li, X., Jiang, Z., Fahad, S., Hassan, S., 2022. Exploration of the phytohormone regulation of energy storage compound accumulation in microalgae. Food Energy Secur. 11.
https://doi.org/10.1002/fes3.4....
39.
Sinetova, M.A., Sidorov, R.A., Medvedeva, A.A., Starikov, A.Y., Markelova, A.G., Allakhverdiev, S.I., et al., 2021. Effect of salt stress on physiological parameters of microalgae Vischeria punctata strain IPPAS H-242, a superproducer of eicosapentaenoic acid. J. Biotechnol. 331, 63-73.
https://doi.org/10.1016/j.jbio....
40.
Singh, S., Singh, A., Singh, S., Prasad, N., Singh, L.P., Asthana, R.K., 2024. IAA induced biomass and lipid overproduction in microalga via two-stage cultivation strategy: Characterization using FTIR/CHNS/TGA/DTG and 1H- NMR for bioenergy potential. Energy Convers. Manag. 311, 118546.
https://doi.org/10.1016/j.enco....
41.
Stirk, W.A., Staden, J., 2020. Potential of phytohormones as a strategy to improve microalgae productivity for biotechnological applications. Biotechnol. Adv. 44, 107612.
https://doi.org/10.1016/j.biot....
42.
Tan, C.Y., Dodd, I.C., Chen, J.E., Phang, S.M., Chin, C.F., Yow, Y.Y., et al., 2021. Regulation of algal and cyanobacterial auxin production, physiology, and application in agriculture: an overview. J. Appl. Phycol. 33, 2995-3023.
https://doi.org/10.1007/s10811....
43.
Trzcińska, M., Pawlik-Skowrońska, B., Krokowski, D., Watanabe, S., 2014. Genetic and morphological characteristics of two ecotypes of Eustigmatos calaminaris sp. nov. (Eustigmato-phyceae) inhabiting Zn- and Pb-loaded calamine mine spoils. Fottea 14(1), 1-13.
https://doi.org/10.5507/fot.20....
44.
Udayan, A., Kathiresan, S., Arumugam, M., 2018. Kinetin and Gibberellic acid (GA3) act synergistically to produce high value polyunsaturated fatty acids in Nannochloropsis oceanica CASA CC201. Algal Res. 32, 182-192.
https://doi.org/10.1016/j.alga....
45.
Udayan, A., Sabapathy, H., Arumugam, M., 2020. Stress hormones mediated lipid accumulation and modulation of specific fatty acids in Nannochloropsis oceanica CASA CC201, Bioresour. Technol. 310, 123437.
https://doi.org/10.1016/j.bior....
46.
Vijay, A.K., Syama, P., Jubin, T., Kurian, J.S., Basil, G., 2020. Effect of auxin and its synthetic analogues on the biomass production and biochemical composition of freshwater microalga Ankistrodesmus falcatus CMSACR1001. J. Appl. Phycol. 32, 3787-3797.
https://doi.org/10.1007/s10811....
47.
Wang, F., Gao, B., Huang, L., Su, M., Dai, C., Zhang, C., 2018. Evaluation of oleaginous eustigmatophycean microalgae as potential biorefinery feedstock for the production of palmitoleic acid and biodiesel. Bioresour. Technol. 270, 30-37.
https://doi.org/10.1016/j.bior....
48.
Wellburn, A.R., 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 144(3), 307-313.
https://doi.org/10.1016/S0176-....
49.
Yang, Z.K., Ma, Y.H., Zheng, J.W., Yang, W.D., Liu, J.S., Li, H.Y., 2014. Proteomics to reveal metabolic network shifts towards lipid accumulation following nitrogen deprivation in the diatom Phaeodactylum tricornutum. J. Appl. Phycol. 26(1), 73-82.
https://doi.org/10.1007/s10811....
50.
Yu, Z., Pei, H., Jiang, L., Hou, Q., Nie, C., Zhang, L., 2018. Phytohormone addition coupled with nitrogen depletion almost tripled the lipid productivities in two algae. Bioresour. Technol. 247, 904-914.
https://doi.org/10.1016/j.bior....
51.
Zulu, N.N., Zienkiewicz, K., Vollheyde, K., Feussner, I., 2018. Current trends to comprehend lipid metabolism in diatoms. Prog. Lipid Res. 70, 1-16.
https://doi.org/10.1016/j.plip....